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The dual spaces of martingale Hardy–Lorentz spaces

By YANBO REN (Luoyang)

Abstract. In this paper, the dual spaces of martingale Hardy–Lorentz spaces Hs
p,q

are identified by use of the technique of atomic decomposition. We show that the dual

spaces of martingale Hardy–Lorentz spaces Hs
p,q are Λ2(α), where 0 < p < 1, 0 < q ≤ 1,

α = 1
p
− 1.

1. Introduction

Fefferman [1] has proved that the dual space of the Hardy spaceH1 is BMO

(the space of functions of bounded mean oscillation). In martingale setting, it was

proved by Herz [3] that the dual space of martingale Hardy space Hs
1 is BMO2,

and considering a sequence of atomic σ-algebras he also proved in [4] that the dual

spaces of Hs
p(0 < p < 1) are Λ2(α)

(
α = 1

p − 1
)
. Weisz[5] improved the result

of Herz with the aid of atomic decomposition, he proved that the dual spaces of

martingale Hardy spaces Hs
p(0 < p ≤ 1) are Λ2(α)

(
α = 1

p − 1
)
for a sequence

of arbitrary σ-algebras. On the main dual theorems in classical martingale Hp

theory, the readers may refer to [2], [10] and [11].

The method of atomic decomposition has been successfully applied to study

the dual spaces of martingale spaces. There is a lot of excellent work on this

topic, see for example [6], [7], [15], [17]. The purpose of this paper is to apply the
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method of atomic decomposition to study the dual spaces of martingale Hardy–

Lorentz spaces Hs
p,q for 0 < p < 1, 0 < q ≤ 1. The dual spaces of Hs

p,q have been

identified by Weisz in [10] for 1 < p, q < ∞. However, the question of the dual

spaces of Hs
p,q is still not solved completely. In this paper, we show that the dual

spaces of martingale Hardy–Lorentz spaces Hs
p,q are Λ2(α), where 0 < p < 1,

0 < q ≤ 1, α = 1
p − 1.

The organization of this paper is divided into two further sections. Some

basic knowledge, which we will use, is collected in the next section. Main result

and its proof will be given in Section 3.

2. Preliminaries

Let (Ω,F ,P) be a complete probability space and f a measurable function

defined on Ω. Denote its distribution function by

λf (t) = P(x : |f(x)| > t), t ≥ 0,

and its decreasing rearrangement function f∗ is defined as

f∗(t) = inf{s > 0 : λf (s) ≤ t}, t ≥ 0.

The Lorentz space Lp,q(Ω) = Lp,q, 0 < p < ∞, 0 < q ≤ ∞, consists of those

measurable functions f with finite quasinorm ∥f∥p,q given by

∥f∥p,q =

(∫ ∞

0

[
t
1
p f∗(t)

]q dt
t

) 1
q

, 0 < q < ∞,

∥f∥p,∞ = sup
t>0

t
1
p f∗(t), q = ∞.

We recall three facts about Lorentz spaces. The first is that the quasinorm of

Lorentz spaces has an equivalent definition, namely

∥f∥p,q =

(
q

∫ ∞

0

[
tP(|f(x)| > t)

1
p
]q dt

t

) 1
q

, 0 < q < ∞,

∥f∥p,∞ = sup
t>0

tP(|f(x)| > t)
1
p , q = ∞.

The second is that Lorentz spaces Lp,q increase as the second exponent q increases,

and decrease as the first exponent p increases (the second exponent q is not
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involved). Namely, Lp,q1⊂Lp,q2 for 0 < p < ∞ and 0 < q1 ≤ q2 ≤ ∞, Lr,s ⊂ Lp,q

for 0 < p < r ≤ ∞ and 0 < q, s ≤ ∞. Let 0 < p, q < ∞ and f ∈ Lp,q, the

third is that Lp,q has absolutely continuous norm, and limn→∞ ∥fn∥p,q = 0 if

|fn| ≤ |f | and limn→∞ fn = 0 a.e. (see Theorem 2.3.4 and Proposition 2.3.3 in

[16] or Proposition 3.5 in[9]).

Let (Fn)n≥0 be a non-decreasing sequence of sub-σ-algebras of F such that

F = σ(
∪

n≥0 Fn). The expectation operator and the conditional expectation

operators relative to Fn are denoted by E and En, respectively. For a martingale

f = (fn)n≥0 relative to (Ω,F ,P; (Fn)n≥0), denote dfi = fi − fi−1( i ≥ 0, with

convention df0 = 0) and

Mnf = sup
0≤i≤n

|fi|, Mf = sup
0≤i

|fi|,

sn(f) =

( n∑
i=0

Ei−1|dfi|2
) 1

2

, s(f) =

( ∞∑
i=0

Ei−1|dfi|2
) 1

2

.

For 0 < p < ∞, 0 < q ≤ ∞, martingale Hardy–Lorentz spaces Hs
p,q are

defined by

Hs
p,q = {f = (fn)n≥0 : ∥f∥Hs

p,q
= ∥s(f)∥p,q < ∞}.

Let 1 ≤ q < ∞, α > 0 and T be the set of stopping times relative to (Fn)n≥0,

the Lipschitz space Λq(α) denotes the space of functions f ∈ Lq for which

∥f∥Λq(α) = sup
ν∈T

P(ν < ∞)−
1
q−α∥f − fν∥q < ∞.

We recall that Λq(0) = BMOq (see [10]).

Throughout this paper, we denote the set of integers and the set of non-

negative integers by Z and N, respectively. We use C to denote positive constants

and may denote different constants at different occurrences.

3. Main result and its proof

In order to prove the main result, we first establish weak atomic decompo-

sition for martingale Hardy–Lorentz spaces Hs
p,q, which is also a complement to

Theorem 1 in [13]. An atomic decomposition theorem for martingale Hardy–

Lorentz spaces Hs
p,q can be found in [14].

Definition 3.1 ([12], [5]). A measurable function a is called a weak atom of

the first category (or w − 1-atom, briefly) if there exists a stopping time ν (ν is

called the stopping time associated with a) such that
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(i) an = Ena = 0 if ν ≥ n,

(ii) ∥s(a)∥∞ < ∞.

Lemma 3.2. Let 0 < p, q < ∞. If f = (fn)n≥0 ∈ Hs
p,q, then there exist a

sequence (ak)k∈Z of w − 1-atoms and the corresponding stopping times (νk)k∈Z

such that

(i) fn =
∑

k∈Z Ena
k, ∀n ∈ N;

(ii) s(ak) ≤ A · 2k, ∀k ∈ Z for some constant A > 0, {2kP(νk < ∞)
1
p }k∈Z ∈ lq,

and

∥{2kP(νk < ∞)
1
p }k∈Z∥lq ≤ C∥f∥Hs

p,q
. (3.1)

Moreover, the sum
∑

k∈Z ak converges to f in Hs
p,q.

Proof. Assume that f = (fn)n≥0 ∈ Hs
p,q. Define stopping times for all

k ∈ Z as following:

νk = inf{n ∈ N : sn+1(f) > 2k} (inf ∅ = ∞).

Obviously, νk ↑ ∞ (k → ∞). Let fνk = (fn∧νk
)n≥0 be the stopping martingale.

Then∑
k∈Z

(fνk+1
n − fνk

n ) =
∑
k∈Z

( n∑
m=0

χ(m ≤ νk+1)dfm −
n∑

m=0

χ(m ≤ νk)dfm

)

=
n∑

m=0

(∑
k∈Z

χ(νk < m ≤ νk+1)dfm

)
= fn, (3.2)

where χ(A) denotes the characteristic function of the set A. Now let akn = f
νk+1
n −

fνk
n (k ∈ Z, n ∈ N). It is clear that for any fixed k ∈ Z, ak = (akn)n≥0 is a

martingale. Since s(fνk) = sνk
(f) ≤ 2k, we have

s(ak) =

( ∞∑
i=0

Ei−1|daki |2
) 1

2
( ∞∑

i=0

Ei−1|df
νk+1

i − dfνk
i |2

) 1
2

≤ s(fνk+1) + s(fνk) ≤ 3 · 2k. (3.3)

Thus ∥Ma∥2 ≤ C∥s(ak)∥2 ≤ C · 3 · 2k and (akn)n≥0 is L2-bounded. So (akn)n≥0

converges almost everywhere. Denote the limit still by ak. Then Ena
k = akn

(∀n ≥ 0). It is clear that akn = 0 if n ≤ νk, by (3.3) we have ∥s(ak)∥∞ < ∞, so

ak is a w-1-atom. It follows from (3.2) that

fn =
∑
k∈Z

(fνk+1
n − fνk

n ) =
∑
k∈Z

akn =
∑
k∈Z

Ena
k.



The dual spaces of martingale Hardy–Lorentz spaces 461

Hence we get (i).

Since {νk < ∞} = {s(f) > 2k}, for any k ∈ Z we have

∑
k∈Z

2kqP(νk < ∞)
q
p =

∑
k∈Z

2kqP(s(f) > 2k)
q
p ≤C

(∑
k∈Z

∫ 2k

2k−1

yq−1dyP(s(f)>2k
) q

p

≤ C

(∑
k∈Z

∫ 2k

2k−1

yq−1P(s(f) > y

) q
p

dy

≤ C

∫ ∞

0

yq−1P(s(f) > y)
q
p dy ≤ C∥f∥qHs

p,q
,

from which we get (3.1).

Let f ∈ Hs
p,q, since

f −
m∑
k=l

ak = (f − fνm+1) + fνl , s(f − fνm+1) ≤ s(f), s(fνl) ≤ s(f),

and the a.e. limits of s(f − fνm+1) and s(fνl) are equal to 0 as m → ∞, l → −∞,

we know that the sum
∑

k∈Z ak converges to f in Hs
p,q. The proof is complete. �

Theorem 3.3. The dual of Hs
p,q is Λ2(α), where 0 < p < 1, 0 < q ≤ 1

,α = 1
p − 1.

Proof. By Lemma 3.2 and the inequality

∥f∥Hs
p,q

≤ ∥s(f)∥2 = ∥f∥2, (3.4)

we know that L2 is dense in Hs
p,q. Set

lϕ(f) = E(fϕ) (f ∈ L2),

where ϕ ∈ Λ2(α) is arbitrary. If f ∈ L2, one can show that∑
k∈Z

ak =
∑
k∈Z

(fνk+1 − fνk) = f

holds a.e. and also in L2 norm as in Lemma 3.2. So we have

lϕ(f) =
∑
k∈Z

E(akϕ).

By (i) of the definition of th weak atom ak

E(akϕ) = E[ak(ϕ− ϕνk)].
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It follows that

|lϕ(f)| ≤
∑
k∈Z

∥ak∥2∥ϕ− ϕνk∥2 ≤ C
∑
k∈Z

2kP(νk < ∞)
1
2 ∥ϕ− ϕνk∥2

≤ C
∑
k∈Z

2kP(νk < ∞)
1
pP(νk < ∞)

1
2−

1
p ∥ϕ− ϕνk∥2

≤ C
∑
k∈Z

2kP(νk < ∞)
1
p ∥ϕ∥Λ2(α)

Since 0 < q ≤ 1, we have

|lϕ(f)|q ≤ C
∑
k∈Z

2kqP(νk < ∞)
q
p ∥ϕ∥qΛ2(α)

.

Consequently, we obtain from Lemma 3.2 that

|lϕ(f)| ≤ C∥f∥Hs
p,q

∥ϕ∥Λ2(α).

Conversely, let l ∈ (Hs
p,q)

∗ be a bounded linear functional on Hs
p,q. According

to (3.4), there exists ϕ ∈ L2 such that

lϕ(f) = E(fϕ) (f ∈ L2).

Let ν be an arbitrary stopping time and set

g =
ϕ− ϕν

∥ϕ− ϕν∥2P(νk < ∞)
1
p−

1
2

.

Obviously, s(g) = s(g)χ(ν < ∞), then by Hölder inequality we have

∥g∥Hs
p,q

=

(∫ P(ν<∞)

0

(t
1
p s(g)∗(t))q

dt

t

) 1
q

≤
(∫ P(ν<∞)

0

(s(g)∗(t))2dt

) 1
2
(∫ P(ν<∞)

0

t(
q
p−1)· 2

2−q dt

) 2−q
2q

≤ Cp,q∥g∥Hs
2
P(ν < ∞)

1
p−

1
2

= Cp,q∥g∥2P(ν < ∞)
1
p−

1
2 = Cp,q,

where Cp,q = ( 2p−pq
2q−pq )

2−q
2q . Thus

Cp,q∥l∥ ≥ |l(g)| = E[g · (ϕ− ϕν)] = P(ν < ∞)
1
2−

1
p ∥ϕ− ϕν∥2,

which indicates that ∥ϕ∥Λ2(α) ≤ Cp,q∥l∥. The proof is complete. �
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