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The dual spaces of martingale Hardy—Lorentz spaces

By YANBO REN (Luoyang)

Abstract. In this paper, the dual spaces of martingale Hardy-Lorentz spaces H; ,
are identified by use of the technique of atomic decomposition. We show that the dual
spaces of martingale Hardy—Lorentz spaces H,, , are As(a), where 0 <p < 1,0< ¢ <1,

a=%_-1.
P

1. Introduction

FEFFERMAN [1] has proved that the dual space of the Hardy space H; is BMO
(the space of functions of bounded mean oscillation). In martingale setting, it was
proved by HERZ [3] that the dual space of martingale Hardy space H is BMOa,
and considering a sequence of atomic o-algebras he also proved in [4] that the dual
spaces of H3(0 < p < 1) are Ay(a) (o = 1% —1). Weisz[5] improved the result
of Herz with the aid of atomic decomposition, he proved that the dual spaces of
martingale Hardy spaces H3(0 < p < 1) are Ay(a) (o = % — 1) for a sequence
of arbitrary o-algebras. On the main dual theorems in classical martingale H,
theory, the readers may refer to [2], [10] and [11].

The method of atomic decomposition has been successfully applied to study
the dual spaces of martingale spaces. There is a lot of excellent work on this
topic, see for example [6], [7], [15], [17]. The purpose of this paper is to apply the
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method of atomic decomposition to study the dual spaces of martingale Hardy—
Lorentz spaces H,, , for 0 <p < 1,0 < g < 1. The dual spaces of H, , have been
identified by WEISz in [10] for 1 < p,¢ < co. However, the question of the dual
spaces of H, . is still not solved completely. In this paper, we show that the dual
spaces of martingale Hardy—Lorentz spaces Hy , are As(a), where 0 < p < 1,
0<q§17a:%—1.

The organization of this paper is divided into two further sections. Some
basic knowledge, which we will use, is collected in the next section. Main result
and its proof will be given in Section 3.

2. Preliminaries

Let (2, F,P) be a complete probability space and f a measurable function
defined on ). Denote its distribution function by

A(t) =Bl [f@) > 1), ¢>0,
and its decreasing rearrangement function f* is defined as
ff@t) =inf{s > 0: A\p(s) <t}, t>0.

The Lorentz space Ly, 4(Q2) = L, 4, 0 < p < 00, 0 < g < 00, consists of those
measurable functions f with finite quasinorm ||f||,., given by

o L\t
o= ([~ @1 F) " 0<a<o

/]

l *
poo =suptr f*(t), ¢q=oo.
t>0

We recall three facts about Lorentz spaces. The first is that the quasinorm of
Lorentz spaces has an equivalent definition, namely

oo L d H
o= (a [ [P07@1>03°F) " 0<a<,

1£lp.00 = suptP(lf (@)l > 8)>, g = oo.

The second is that Lorentz spaces L, 4 increase as the second exponent ¢ increases,
and decrease as the first exponent p increases (the second exponent ¢ is not
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involved). Namely, L, ¢, C Ly g4, for 0 <p <ooand 0 < ¢q1 < g2 <00, Ly s C Ly,
for 0 <p<r<ooand0<gs < oo Let 0<p,g<ooand f € Ly, the
third is that L, , has absolutely continuous norm, and lim, e || fnllp,q = O if
|fnl < |f| and lim, o frn = 0 a.e. (see Theorem 2.3.4 and Proposition 2.3.3 in
[16] or Proposition 3.5 in[9]).

Let (Fn)n>0 be a non-decreasing sequence of sub-o-algebras of F such that
F = 0(U,>0 Fn)- The expectation operator and the conditional expectation
operators relative to F, are denoted by E and E,,, respectively. For a martingale
f = (fn)n>o0 relative to (Q, F,P; (F)n>0), denote df; = f; — fi—1( i > 0, with
convention dfy = 0) and

M, f= sup |fil, MFf =suplfil,
< 0<i

0<i<n

1
2
)

sulf) = (gEmldﬁIZ) S(f) = (iEmldﬁIQ)é-

For 0 < p < 00,0 < ¢ < oo, martingale Hardy-Lorentz spaces H, , are
defined by

Hy o =A{f = (Fn)nzo: 1fllmg, = Is(F)llp.q < o0}

Let 1 < ¢ < 00, a > 0 and 7T be the set of stopping times relative to (F,)n>0,
the Lipschitz space A4(«) denotes the space of functions f € L, for which

J

1£lag(e) = sUp P(v < 00) 7o 7= f = fllq < oo

We recall that A,(0) = BMO, (see [10]).

Throughout this paper, we denote the set of integers and the set of non-
negative integers by Z and N, respectively. We use C to denote positive constants
and may denote different constants at different occurrences.

3. Main result and its proof

In order to prove the main result, we first establish weak atomic decompo-

sition for martingale Hardy-Lorentz spaces H, ,

Theorem 1 in [13]. An atomic decomposition theorem for martingale Hardy—

which is also a complement to

Lorentz spaces H, , can be found in [14].

Definition 3.1 ([12], [5]). A measurable function a is called a weak atom of
the first category (or w — l-atom, briefly) if there exists a stopping time v (v is
called the stopping time associated with a) such that
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(i) ap =Epa=0ifv >n,
(i) [ls(a)[[oc < oo.

Lemma 3.2. Let 0 < p, ¢ < co. If f = (fn)n>0 € HS ,, then there exist a

P’
sequence (a*)yez of w — 1-atoms and the corresponding stopping times (vy)rez

such that
(1) fn = Zk’EZ Enak’ Vn € N;
(i) s(a*) < A-2% Vk € Z for some constant A > 0, {2FP (v}, < oo)%}kez e,

and

1
1{2"P(vi < 00)7 Yiezllie < C|fllas,,- (3.1)
Moreover, the sum ), 5 a® converges to f in Hp ..
PROOF. Assume that f = (fu)n>0 € H, ,. Define stopping times for all
k € Z as following;:

v =inf{n € N:s,1(f) > 2%} (inf () = o0).

Obviously, vy T 0o (k — 00). Let f“* = (fnau,)n>0 be the stopping martingale.
Then

Do =) = < D x(m < vig)dfm — Y x(m < uk>dfm)

keZ keZ >m=0 m=0
n
=Y (St <m = nadin) = 1o 62)
m=0 “kEZ
where x(A) denotes the characteristic function of the set A. Now let a® = f,*+* —

fve (k € Z, n € N). It is clear that for any fixed k € Z, a* = (aF),>0 is a
martingale. Since s(f**) = s,, (f) < 2, we have

o] % 0o
(SEcama) (Smoaa - arr)
i=0 i=0

<s(frrt) +s(f7F) <328 (3.3)

1
2

s(ak)

Thus ||Mallz < C|[s(a*)|2 < C-3-2% and (a¥),>¢ is La-bounded. So (a%),>¢
converges almost everywhere. Denote the limit still by a*. Then E,a* = a
(Vn > 0). Tt is clear that a® = 0 if n < vy, by (3.3) we have |s(a*)| s < 00, s0

a* is a w-1-atom. It follows from (3.2) that

Fo= Y (e = fre) = ap = End".

kEZ kEZ keZ
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Hence we get (i).
Since {vp < oo} = {s(f) > 2*}, for any k € Z we have

Z/Q i dyP( (f)>2’“>p

kEZ

> 2k, < 00)r = Y 2RP(s(f) > 28)r <C(

keZ keZ

(S rmen=)

kez /2"

< [T yRs) > Wiy < Ol
0 |

from which we get (3.1).

Let f € HS | since

Pq’
F= Y at = (= ) e s = 1) < s(), s < s(f),
k=l

and the a.e. limits of s(f — f”mﬂ) and s(f") are equal to 0 as m — oo,l — —o0,
we know that the sum ), a® converges to f in H? . The proof is complete. [

Theorem 3.3. The dual of H, , is Ag(a), where 0 < p < 1,0<¢g <1

a=31_1.
P

ProOF. By Lemma 3.2 and the inequality

1z, < lls(Hllz = 1 £l2, (3-4)

we know that Lo is dense in H;yq. Set

lo(f) =E(f¢) (f € La),

where ¢ € Ay(«) is arbitrary. If f € Lo, one can show that
doaF =S (- )= f
kezZ kEZ
holds a.e. and also in Ly norm as in Lemma 3.2. So we have
=Y E(a"¢)
kEZ

By (i) of the definition of th weak atom a”

E(a*¢) = E[a"(¢ — ¢")].
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It follows that
(N <D abl2llg — ¢ 2 < C D 2FP(uy, < 00) 7| — 672
keZ keZ
<O 2P(u < 00) P P(vi < 00)2 7 |6 — 62
keZ

1
<O 2"P(v < 00)7 [0l ag(a)
kEZ

Since 0 < ¢ < 1, we have
q
(A1 < € 3 25y < 0)F I1%, o)

keZ

Consequently, we obtain from Lemma 3.2 that

s (N < Cll Nl 191l Az () -

Conversely, let [ € (H,, ,)* be a bounded linear functional on H, . According
0 (3.4), there exists ¢ € Ly such that

lo(f) =E(fo) (f € La).
Let v be an arbitrary stopping time and set
_ ¢ — ¢
9= 11
¢ — ¢ [l2P(vi < 00)r™2
Obviously, s(g) = s(g)x(v < o0), then by Hélder inequality we have

o, = (| P(”<°°)<tis<g>*<t>>“ff)‘l‘

P(r<oo) 3 P(v<oo) 5 =
< ( / <s<g>*<t>>2dt) ( / t<p1>'2th)
0 0

—1
2

1

< CpqllgllasP(v < 00)?
11

= Cpqllgll2P(v < 00)? 72 = Cp g,

_ (2p—pa\ 51 .
where Cp ¢ = (7:=5%)"27 . Thus

Cpalllll = i(g)l = Elg - (¢ — ¢")]
which indicates that |[¢||a, @) < Cpq

11 v
P(v <o0)277]|¢ = 9”2,
I|l. The proof is complete. O
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