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A common structure of nk’s for which nkα mod 1 → x

By ŠTEFAN PORUBSKÝ (Prague) and OTO STRAUCH (Bratislava)

Abstract. Let α be an irrational number and εk ≤ 1, k = 1, 2, . . . , be an arbitrary

decreasing sequence of real numbers such that εk → 0. In this paper we show a con-

struction of sequences nk, k = 1, 2, . . . , for which the fractional parts {nkα} → x, where

x ∈ [0, 1] is fixed but arbitrary and k/nk ≥ εk for k = 1, 2, . . . . Here {nkα} ∈ Ij for

kj−1 < k ≤ kj and the length |Ij | = {hjα}, where hj is a positive integer for j = 1, 2, . . . .

The increasing sequence kj is independent of x. Moreover, the differences nk+1 − nk

satisfy the three gaps property with parameters aj , bj and aj + bj not depending on x

for every kj−1 < k < kj and j = 2, 3, . . . .

1. Introduction

In what follows α denotes an irrational number and {nα} denotes the frac-

tional part of nα. The H. Weyl’s classical result [17, Satz 2] that the sequence

{nα}, n = 1, 2, . . . , is uniformly distributed in the unit interval [0, 1] implies that

to every x ∈ [0, 1] there exists an increasing sequence nk = nk(x), k = 1, 2, . . . , of

positive integers such that {nkα} → x as k → ∞. In a previous paper [16, Satz 6]

he proved that given an increasing sequence nk, k = 1, 2, . . . , the sequence {nkα},
k = 1, 2, . . . , is uniformly distributed in [0, 1] for almost all real numbers α.

Mathematics Subject Classification: 11K31, 11K38, 11B05, 11J71.
Key words and phrases: Weyl theorem, Slater theorem, fractional part, uniform distribution,

asymptotic density, limit point.
The first author was supported by the Grant Agency of the Czech Republic,

Grant # P201/12/2351 and the strategic development financing RVO 67985807 and the second

one by VEGA Projects 2/0146/14 and 1/1022/12 while both also partly by the bilateral ex-

change agreement between Academy of Sciences of the Czech Republic and Slovak Academy of

Sciences.
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P. Erdős asked whether there exists a real number x ∈ [a, b] such that the

sequence nkx is not everywhere dense mod 1. He and S. J.Taylor [3] proved

that if nk is a lacunary sequence of real positive numbers, that is if nk+1/nk ≥ λ

for some λ > 1 and every k, then the set of the real numbers α belonging to any

interval [a, b], a < b, such that the sequence nkα is not u.d. mod 1 has Hausdorff

dimension 1.

A. Dubickas found an α and n1 < n2 < n3 < . . . such that {nkα} converges

to zero while k/nk tends to 0 arbitrarily slowly. More precisely, he proved [2,

Theorem 1]

Theorem 1.1. Let α be a real quadratic algebraic number, and let1 1 ≥ ε1 ≥
ε2 ≥ ε3 ≥ . . . be a sequence of real numbers such that εn → 0 as n → ∞. Then

there exists an increasing sequence of positive integers n1 < n2 < . . . satisfying

εk ≤ k
nk

for each k ≥ 1 such that limk→∞{nkα} = 0.

The condition A. Dubickas limk→∞ εk = 0 cannot be weakened as there

follows from Theorem 2 of [2] saying:

Theorem 1.2. Let nk be an increasing sequence of positive integers with

positive upper asymptotic density,2 and let α be an irrational real number. Then

the set of limit points of the sequence {nkα}, k = 1, 2 . . . , is infinite.

Another proof of Dubickas’ condition also follows from the following reason-

ing: The asymptotic distribution function g(x) of {nα} is g(x) = x, and thus it

is a continuous function over [0, 1]. Consequently there follows from [7, Exam-

ple 3.1] that the sequence nk = nk(x) such that {nkα} → x, has zero asymptotic

density for every x ∈ [0, 1], i.e.

lim
k→∞

k

nk
= 0, (1)

for every x ∈ [0, 1].

Other well-known result on limit points of {nkα} is Furstenberg’s result [4,
Theorem IV.1] implying that if the increasing sequence of positive integers n1 <

n2 < . . . forms a multiplicative semigroup which is not generated by powers of a

single integer (e.g. {2a3b : a, b positive integers}), then the sequence of fractional

parts nkα, k = 1, 2, . . . , is everywhere dense in [0, 1] for each real irrational α.

P. Erdős and S. J. Taylor [3, Theorem 10] also proved that there exists a

1The decreasing property of the sequence εn is clearly not a limitation for one can redefine the

sequence without loss of generality by taking εk = supj≥k εj .
2The asymptotic density of a sequence of positive integers nk, k = 1, 2, . . . , is defined as the

limit limn→∞ #{k;nk ≤ n}/n if the limit exists and, if we write 0 < n1 < n2 < . . . then (cf.

[15, 1.3]) limn→∞ #{k;nk ≤ n}/n = limk→∞ k/nk, providing one of the limits exists.
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constant C, and an increasing sequence nk such that nk+1−nk < C, k = 1, 2, . . . ,

and the set of x such that {nkx} is not uniformly distributed is not enumerable.

Dubickas’ proof of Theorem 1.1 is quite complex and actually the constructed

sequence nk, k = 1, 2, . . . , depends on α. Almost immediately, Y. Bugeaud [1]

answered Dubickas’ question whether given a real algebraic number of degree at

least 3 or a real transcendental number α there exists a slowly increasing sequence

of positive n1 < n2 < . . . such that limn→∞{nkα} = 0. Y. Bugeaud [1] using

tools from the theory of continued fractions proved:

Theorem 1.3. Let α be an irrational number and S a finite subset of [0, 1].

Let 1 ≥ εk ≥ 0, k = 1, 2, . . . , be a given decreasing sequence of real numbers such

that limk→∞ εk = 0. Then there exists an increasing sequence of positive integers

n1 < n2 < . . . satisfying εk ≤ k
nk

for each k ≥ 1 such that the set of limit points

of {nkα} coincides with S.

Recently L. Mǐśık [8] proved the following extension in direction of the set

of limit points

Theorem 1.4. Let X ⊂ [0, 1] be a closed set, α be an irrational number,

and εn ≤ 1 be an arbitrary decreasing sequence such that limk→∞ εk = 0. Then

there exists a sequence n1 < n2 < . . . of positive integers such that the set of

limit points of {nkα} coincides with X and εk + |X| ≤ k
nk

for each k ≥ 1, where

|X| denotes the Lebesgue’s measure of X.

In this paper we prove that for every irrational α and every x ∈ [0, 1] there

exists an increasing sequence of integers n1(x) < n2(x) < . . . such that on one

hand {nkα} → x and the Dubickas’ condition k/nk(x) ≥ εk holds true for every

k while the sequence nk(x) can be endowed with an additional structure. One of

this structural properties extends properties of the set A = {n ∈ N : {nα} ∈ I}
investigated in [12].

2. The result

Theorem 2.1. Let α be an irrational number and εj ≤ 1, j = 1, 2, . . . , be

a decreasing sequence of positive numbers tending to 0. Then for every x ∈ [0, 1]

there exist

• an increasing sequence nk(x), k = 1, 2, . . . , of positive integers,

• an increasing sequence kj , j = 1, 2, . . . , of positive integers independent of x,

• a sequence of pairs aj , bj , j = 1, 2, . . . , also independent of x, such that
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(I) {nk(x)α} → x,

(II) εk ≤ k
nk(x)

for k = 1, 2, . . . , and

(III) for every k, kj−1 < k ≤ kj , j = 2, 3, . . . , we have

nk+1(x)− nk(x) =


aj , or

bj , or

aj + bj ,

where aj and bj are coprime for every j = 1, 2, . . . .

Proof. The roadmap of the proof is as follows:

1◦ Given an arbitrary but fixed x ∈ [0, 1] we construct a sequence 0 = k0 <

k1 < k2 < k3 < . . . of positive integers independent of the limit point x, and

an increasing sequence nk(x) for k’s with kj−1 < k ≤ kj and j = 2, 3, . . . . The

construction of kj ’s for j = 1 and nk’s for k0 < k ≤ k1 will be postponed to

step 3◦. The reason for this partly unusual placing of this step on the third

position is to stress the main idea of construction of k’s and nk’s presented in the

previous two steps. The construction of the initial segment of nk’s for k ≤ k1 may

cause that the values of kj for j > 1 should be increased, nevertheless the crucial

estimates used in the first and third steps remain true also for the increased values

of k’s and the corresponding blowing-up of values of nk’s for k > k1.

2◦ In the previous step the constructions of kj ’s and nk’s depended on an

arbitrary but fixed x ∈ [0, 1]. In this step we modify the sequences kj ’s and nk’s

in such a way that the obtained estimations remain true for arbitrary x′ ∈ [0, 1].3

3◦ In this step we complete the construction from 1◦ for the case j = 1.

4◦ We prove property (III).

The details of the proof:

1◦ Given an x ∈ [0, 1], select a sequence I2(x), I3(x), . . . of subintervals of

[0, 1] satisfying the following four conditions

• x ∈ Ij(x), for j = 2, 3, . . . ,

• 1
2 > |I2(x)| > |I3(x)| > . . . , 4

• |Ij(x)| → 0 as j → ∞,

3More precisely, kj ’s for x′ must satisfy new inequalities (7), (8), (11) and (13).
4In the proof of (III) we use Slater’s original theorem holding for intervals I ⊂ [0, 1] of length

≤ 1/2. Actually, from a generalization of Slater’s theorem proved in [12] and holding also for

intervals of length > 1/2, an analogous but complicated result can be proved for k’s satisfying

kj−1 < k ≤ kj with j = 1 and k0 = 0.
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• |Ij(x)| = {hjα}, where hj , j = 2, 3, . . . , are positive integers such that the

above three conditions are fulfilled.

Now, select a preliminary increasing sequence of positive integers (not de-

pending on x)

k0 = 0 < k1 < k2 < k3 < · · · < kj < kj+1 < . . . . (2)

The sequence will be subject of a series of modifications in the process of construc-

tion of the next sequence nk(x), if necessary. Since nα is dense in [0, 1] construct

inductively an increasing sequence of positive integers

0 < n1(x) < n2(x) < n3(x) < . . . (3)

in such a way that for every k such that kj < k ≤ kj+1, j = 1, 2, . . . , take for

nk(x), in increasing order, a corresponding n = nk satisfying

nkj (x) < n ≤ nkj+1(x) and {nα} ∈ Ij+1(x). (4)

in such a way that we exhaust all possible n’s such that {nα} ∈ Ij+1(x) while if

necessary we increase kj+1.

Note that we need that the members of sequence nkj+1(x) are sufficiently

large and satisfy inequalities (7), (8), (11) and (13) in the next steps, so we also

increase adequately kj+1 in these steps. In this process the values of kj ’s and nkj ’s

are stepwise modified in such a way that both initial segments of these sequences

remain unchanged for indices less than the actual j.

The crucial tool in the subsequent parts of the proof will be an old result by

E. Hecke [5], A. Ostrowski [9] and H. Kesten [6] which says: If the interval

I ⊂ [0, 1] is of the form |I| = {hα} where h is a positive integer, then for every

M < N we have

(N −M).|I| − 2h ≤ #{M < n ≤ N ; {nα} ∈ I} ≤ (N −M)|I|+ 2h. (5)

Write for the sake of simplicity |Ij+1(x)| = |Ij+1| and nk(x) = nk. Using

this abbreviated notation, (5) can be rewritten in the form

k − kj = (nk − nkj )|Ij+1|+O(hj+1) (6)

for every kj < k ≤ kj+1, where the O-constant is ≤ 2.

Using (6) we obtain

k

nk
=

kj
nk

+ |Ij+1| −
nkj

nk
|Ij+1|+O

(
hj+1

nk

)
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= |Ij+1|+
nkj

nk

(
kj
nkj

− |Ij+1|
)
+O

(
hj+1

nk

)
≥ |Ij+1| − 2

hj+1

nkj

(7)

under the condition
kj
nkj

− |Ij+1| ≥ 0. (8)

Note that our construction implies kj/nkj → |Ij | for kj → ∞ (note that in this

moment j is fixed),5 and therefore (8) can be achieved by increasing adequately

kj and nkj .
6

If we increase the values of both kj and nkj in such a way that (8) holds and

moreover we also have

|Ij+1| − 2
hj+1

nkj

≥ εkj ,

then using (7) we obtain k/nk ≥ εk for kj < k ≤ kj+1 and consequently

k

nk
≥ εk for kj+1 ≥ k > k1.

An additional increase of k1 and the mentioned subsequent ‘chain’ increment of

already found k’s and nk’s, does not influence the validity of the estimations

above.

2◦ As mentioned, the just constructed sequence nk depended on a fixed

x ∈ [0, 1]. Now we shall adapt it to fit the required estimates for an arbitrary

x′ ∈ [0, 1]. Assume therefore that x′ ∈ [0, 1] is arbitrary.

Let Ij(x
′), j = 2, 3, . . . , be a sequence of subintervals of [0, 1] now satisfying

the previous conditions in the following form

x′ ∈ Ij(x
′), |Ij(x′)| = |Ij(x)| = {hjα}.

In step 1◦ we constructed conjugated sequences n1 < n2 < . . . and k1 < k2 < . . . .

Based on the just constructed sequence of k’s we shall construct a new sequence

n1(x
′) < n2(x

′) < n3(x
′) < . . . (9)

5To see this note that the definition of u.d. says that
#{0<n≤nkj

;nα∈Ij}
nkj

→ |Ij | provided

nkj
→ ∞. Then divide the fraction into two parts

1)
#{0<n≤nkj−1

;nα∈Ij}
nkj

→ 0 for sufficiently large nkj
, and

2)
#{nkj−1

<n≤nkj
;nα∈Ij}

nkj
=

kj−kj−1

nkj
→ kj

nkj
is nkj

is sufficiently large.

6According to condition kj < k ≤ kj+1 in (4) we have nkj+1 < nkj+2 < nkj+3 < · · · < nkj+1.

Thus nkj+1
− nkj

≥ kj+1 − kj and consequently both nkj+1
and kj+1 strictly increase.
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such that for every k with kj < k ≤ kj+1 the increasing sequence nk(x
′) contains

all possible n’s in the interval nkj (x
′) < n ≤ nkj+1(x

′) for which {nα} ∈ Ij+1(x
′).

Abbreviate again nk(x
′) = n′

k.

Relation (6) implied for kj < k ≤ kj+1 that

k − kj = |Ij+1|(nk − nkj ) +O(hj+1),

k − kj = |Ij+1|(n′
k − n′

kj
) +O(hj+1),

where the involved O-constants are smaller than 2. Consequently we get with

nk0 = n′
k0

= 0 that

(n′
k − n′

kj
) = (nk − nkj ) +O

(
hj+1

|Ij+1|

)
k
nk

k
n′
k

=
n′
k

nk
=

(n′
k1

− n′
k0
) + (n′

k2
− n′

k1
) · · ·+ (n′

kj
− n′

kj−1
) + (n′

k − n′
kj
)

(nk1 − nk0) + (nk2 − nk1) · · ·+ (nkj − nkj−1) + (nk − nkj )

=
(nk1 − nk0) +O

(
h1

|I1|
)
+ · · ·+ (nk − nkj ) +O

( hj+1

|Ij+1|
)

(nk1 − nk0) + (nk2 − nk1) · · ·+ (nkj − nkj−1) + (nk − nkj )

= 1 +O

(
j+1∑
i=1

hi

|Ii|

)
1

nk
(10)

where the last O constant in (10) is ≤ 4. Relation (10) thus implies

k

nk
≤ k

n′
k

+ 4

( j+1∑
i=1

hi

|Ii|

)
1

nk
· k

n′
k

.

Since nk ≥ nkj and k
n′
k
≤ 1, we have

k

nk
− 4

( j+1∑
i=1

hi

|Ii|

)
1

nkj

≤ k

n′
k

, (11)

for an arbitrary sequence kj in (2). Assuming that the kj ’s satisfy the inequality

(8), and adding (7) to (11) we obtain

|Ij+1| − 2
hj+1

nkj

− 4

( j+1∑
i=1

hi

|Ii|

)
1

nkj

≤ k

n′
k

. (12)

Now, assume that our sequence kj from (2) and the sequence nkj from (3) satisfy

not only (8) but also

εkj ≤ |Ij+1| − 2
hj+1

nkj

− 4

( j+1∑
i=1

hi

|Ii|

)
1

nkj

(13)

for every j = 1, 2, . . . . Then (12) implies that for every j = 1, 2, . . . we have
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εkj ≤ k
n′
k
, for k, kj < k ≤ kj+1. Since εk is non-increasing, then εk ≤ k

n′
k
, for

kj < k ≤ kj+1 and thus

εk ≤ k

n′
k

for every k1 < k. (14)

That the property (13) can be fulfilled for a suitable nkj follows from the

fact that |Ij+1| is fixed and nkj can be shifted to a sufficiently large value.7

We recall that (8) can be fulfilled for suitable nkj ’s since the sequence {nα}
is uniformly distributed which implies

kj
nkj

→ |Ij |, (15)

while |Ij | > |Ij+1| for every j = 1, 2, . . . . Globally, k/nk tends to zero, but due

to the construction we always have k/nk → |Ij | for kj−1 < k ≤ kj .

Again the eventual necessary increments of values of k’s and nk’s does not

influence the used inequalities.

3◦ The proof of (14) also for k = 1, 2, . . . , k1 proceed as follows:

For k ≤ k1 put nk = k and suppose that nk1 is sufficiently large8 to satisfy

(13) i.e.

εk1 ≤ |I2| − 2
h2

nk1

− 4

(
h1

|I1|
+

h2

|I2|

)
1

nk1

.

Then put

{i1.α}=min({1.α}, {2.α}, . . . , {k1.α}), {i2.α}=max({1.α}, {2.α}, . . . , {k1.α}),

I1 = [{i1.α}, {i2.α}], h1 = |i2 − i1|.

Due to our construction we have automatically

k

nk
= 1 ≥ εk for k = 1, 2, . . . , k1 and

k1
nk1

− |I2| ≥ 0

and thus the inequality (8) also holds.

We did not assume that x ∈ I1, but on the other hand the interval I1 is fixed

for every x′ ∈ [0, 1]. Thus the proof of (II) is finished.

4◦ The proof of (III) follows from Slater’s three gaps theorem [13] and [14]

saying that if n and n+ s are immediately neighboring indices with the property

7Note again that in the course of the constructions of kj ’s and nkj
’s in the proof they are

enlarged in such way that conditions (7), (8), (11) and (13) are satisfied. However after the

constructions are closed the sequence kj is fixed and independent of x.
8Again an eventual shift of nk1

to a larger value does not influence the previous estimates, only

forces an additional work with the reconstruction of nk’s.
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that both nα and (n + s)α belong to interval I, then s = a or s = a + b or

s = b depending on the length |I| of interval I. In accordance with (4) for

kj < k ≤ kj+1, the numbers nk and nk+1 are the closest ones with nkα ∈ Ij+1

and nk+1α ∈ Ij+1, and consequently nk+1 − nk = aj , or aj + bj , or bj depending

on the length |Ij+1|. The extension of Slater’s theorem proved for instance in [12]

says that the differences nk+1 − nk depend only on the length |I| of the interval

I but not on its position within the unit interval [0, 1].

For the sake of simplicity let I = Ij(x), a= aj , b= bj for every j=2, 3, . . . .

Since |I| ≤ 1/2, define a and b as the least positive integers such that {aα}∈ (0, |I|)
and {bα}∈ (1 − |I|, 1). Let {nα}∈ I and let s be minimal with {(n + s)α} ∈ I.

Then

s =


a, if 0 ≤ {nα} < |I| − {aα},
a+ b, if |I| − {aα} ≤ {nα} < 1− {bα},
b, if 1− {bα} ≤ {nα} < |I|.

(16)

In addition a and b are relatively prime. �

Concluding remark: The given proof of Theorem 1.1 also gives a general

construction of sequence n1 < n2 < . . . from Dubickas’ Theorem 3.1 in the

following sense: Let x′′ is an arbitrary number from interval (0, 1). The intervals

I1(x), I2(x), I3(x), . . . used in proof of Theorem 1.1 shift in such a way that they

contain the given x′′. Denote them as I1(x
′′), I2(x

′′), I3(x
′′), . . . . Now select

k1 consecutive n’s for which {nα} ∈ I1(x
′′). Denote the last one as nk1 . Then

continue selecting k2−k1 consecutive n’s, n > nk1 for which again {nα} ∈ I2(x
′′).

The last one denote nk2 . In the next step select k3 − k2 consecutive integers n

such that n > nk2 and {nα} ∈ I3(x
′′). The last one denote as nk3 , etc. There

follows from the construction that in this way selected sequence nk has properties

required by Dubickas’ Theorem and {nkα} converges to x′′ and k/nk > εk for

given εk, k = 1, 2, . . . .
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[6] H. Kesten, On a conjecture of Erdős and Szüsz related to uniform distribution mod 1,
Acta Arith. 12 (1966), 193–212.
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ŠTEFAN PORUBSKÝ
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