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Curvature properties of certain
pseudosymmetric manifolds

By RYSZARD DESZCZ (Wroctaw) and SAHNUR YAPRAK (Ankara)

1. Introduction

Let (M, g) be a connected n-dimensional, n > 3, semi-Riemannian
manifold of class C'*° with the metric ¢ and the Levi-Civita connection
V. Moreover, let S and k be the Ricci tensor and the scalar curvature of
(M, g), respectively. A semi-Riemannian manifold (M, g), n > 3, is said
to be Einstein manifold ([1], p. 3) if

(1) S =g

holds on M. Certain Einstein manifolds can be realized as hypersurfaces
immersed isometrically in a semi-Riemannian space of constant curvature

M™1(e) ([18], [20], [21], [22]). Such hypersurfaces have also a curvature
property of pseudosymmetry type. Namely, in [15] (Proposition 3.2) it
was proved that every Einstein hypersurface immersed isometrically in
a semi-Riemannian space of constant curvature M"*(c), n > 4, is a
pseudosymmetric manifold. A semi-Riemannian manifold (M, g), n > 3,
is said to be pseudosymmetric [12] if at every point of M the following

condition is satisfied:
(x) the tensors R - R and Q(g, R) are linearly dependent.

The manifold (M, g) is pseudosymmetric if and only if
(2) R-R=LrQ(g,R)

holds on the set Up = {x € M | Z(R) # 0 at x}, where L is some function
on Ugr. The definitions of the tensors R- R, Q(g, R) and Z(R) will be given
in the next section. Pseudosymmetric manifolds are a generalization of the
notion of locally symmetric manifolds (VR = 0) as well as of the notion
of semisymmetric manifolds (R - R = 0, [23]). We refer [10] as a review
paper on pseudosymmetric manifolds.

Another class of semi-Riemannian manifolds are manifolds with pseu-
dosymmetric Weyl tensor. A semi-Riemannian manifold (M, g), n > 4, is
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said to be manifold with pseudosymmetric Weyl tensor if at every point of
M its Weyl conformal curvature tensor C' satisfies the following condition
([(16], [17]):

(xx) the tensors C - C and Q(g,C) are linearly dependent.

We note that the condition (xx) is invariant under the conformal defor-
mations of the metric tensor g. The manifold (M, g) is a manifold with
pseudosymmetric Weyl tensor if and only if

(3) C-C=LcQ(g,0)

holds on the set Uc = {x € M | C # 0 at =}, where L¢ is some function
on Ug. The definitions of the tensors C - C and Q(g,C) will be given also
in the next section. Note that Uc C Ug. If (M, g) is an Einstein manifold
then Ugs = Ug. The condition (xx) arose during the study of 4-dimensional
warped products ([9]). It was shown in [9] (Theorem 2) that every warped
product My xXp Mo, dim M; = dim My = 2, fulfils (xx). Furthermore,
it is easy to verify that if (M,g), n > 4, is an Einstein manifold then
the relations (2) and (3), with Le = Lr — 7o) are equivalent on Ug

(cf. [3], Theorem 3.1). Examples of not Einsteinian semi-Riemannian
manifolds realizing (*) and (*x) are described in [3] (Theorem 4.1) and [11]
(Theorem 4.1). In addition, these manifolds satisfying a certain another
condition, weaker than (1). Namely, it is easy to check that at every
point of the manifolds described in the above theorems also the following
condition is fulfilled:

(* * *) the tensors S? — @ g and § — g are linearly dependent.

The tensor S? is defined by S?(X,Y) = S(SX, Y'), where the tensor S,
defined by S(X,Y) = ¢(SX,Y), is the Ricci operator of (M, g) and X,Y
are vector fields on M. However, the classes of manifolds satisfying (x)
or (xx) do not coincide. A suitable example is given in [3] (Example 5.2).
Warped products realizing (xx) are considered in [16]. Hypersurfaces in
Euclidean spaces realizing (#x) are studied in [5].

In this paper we will investigate curvature properties of pseudosym-
metric manifolds having pseudosymmetric Weyl tensor. Certain results
concerned with this subject are present in [19]. Namely, by Theorems
1 and 2 and Proposition 4 of [19] (cf. [2], Theorem 4.2) we obtain some
curvature properties of pseudosymmetric manifolds (M, g) satisfying the
condition:

(4) w(X)C(Y, Z) + w(Y)C(Z, X) + w(Z)C(X,Y) = 0,

where C'is the Weyl curvature operator of (M, g), w is an 1-form on M and
X,Y, Z are vector fields on M. We note that the tensor C' - C' vanishes at
all point of a semi-Riemannian manifold fulfilling (4) at which the 1-form
w is nonzero ([13], Corollary 1).
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Our main result (Theorem 3.1) states: If (M,g), dimM > 4, is a
semi-Riemannian manifold realizing (*) and (**) then at every point of M
the condition (x * *) is satisfied.

Furthermore, we will find also another curvature relations of manifolds
realizing these both conditions. In the last section we shall investigate
curvature properties of pseudosymmetry type of a certain four-dimensional
Riemannian manifold described in [6]. This manifold is an example of a
non Ricci-pseudosymmetric manifold with pseudosymmetric Weyl tensor.

2. Preliminaries

Let (M, g) be a connected n-dimensional, n > 3, semi-Riemannian
manifold. We define on M the endomorphisms R(X,Y), X AY and

C(X,Y) by

R(X,Y)Z = [Vx,Vy|Z -V x y1Z,

K

C(X,Y)=R(X,Y)—

1 _ _
QOXASY+SXAyy-

n —

XANY
n—1 )’

—

respectively, where X,Y, Z € Z(M), Z(M) being the Lie algebra of vector
fields on M. Furthermore, we define the Riemann—Christoffel curvature
tensor R, the Weyl conformal curvature tensor C, the tensor G and the
concircular tensor Z(R) of (M, g) by

R(X17X27X37X4) = Q(R(X17X2)X3,X4),

C<X17X27X37X4) - g(C(leXQ)X37X4)7
G(XlaXQ,X?);XZL) = g((Xl A\ XZ)X37X4)

and Z(R) = R— ﬁG, respectively. For a (0, k)-tensor T on M, k > 1,

we define the (0, %k + 2)-tensors R - T and Q(g,7T) by

R-T(X1,... . X4 X,Y) = — T(R(X,Y)X1, Xz, ... , Xp)

— o =T(Xy,..., X1, R(X, V) X}),
Q. T) (X1, .., Xis X,¥) =T((X AY) X1, X, ., X
+ + T (X, oo, Xm1, (X AY) X)),
respectively. Similarly, we can define the (0,%k + 2)-tensor C - T. Let

now A and T be a symmetric (0, 2)-tensor and a (0, k)-tensor on a semi-
Riemannian manifold (M,g), n > 3, respectively. We define on M the
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(0, k + 2)-tensor Q(A,T) by
QAT Xy,..., Xp; X,Y)=T(X ANaY)X1, Xo, ..., Xk)
+ o+ T (X, X1, (X A4 Y) XY,
where X A4 Y is the endomorphism defined by
(X aY)VZ=AY,2)X — A(X,2)Y.

In particular, we have X Ay Y = X AY. Let (M, g) be a semi-Riemannian
manifold covered by a system of charts {U;x*}. We denote by

9ij, Rhijk, Sija Sf = gjksija Ghijk = 9nk9ij — 9njGik

and
Chiji = Ruijk + Gy
hijk — {lhijk (TL — 1)(TL — 2) hijk
1
- m(ghksij — 9njSik + 9ijShk — JikShj)

the local components of the metric tensor g, the Riemann-Christoffel cur-
vature tensor R, the Ricci tensor S, the Ricci operator S, the tensor G
and the Weyl tensor C, respectively. By R - T}, . ;. ¢m we will denote the
local components of the tensor R -T.

The semi-Riemannian manifold (M, g) is said to be Ricci-pseudosym-
metric ([14], [7]) if at every point of M the following condition is satisfied:

(* % %) the tensors R - S and Q(g,S) are linearly dependent.
The manifold (M, g) is Ricci-pseudosymmetric if and only if

holds on the set Us = {z € M | S—%g # 0 at x}, where Lg is some fuction
on Ug. It is clear that if at a point  of a manifold (M, g) (*) is satisfied
then also (x#%x) holds at . The converse statement is not true ([14], [7]).
For instance, the Cartan hypersurfaces of dimensions > 3 are not pseu-
dosymmetric, Ricci-pseudosymmetric manifolds ([17], Theorem 1). These
hypersurfaces satisfy also the condition (x * ).

At the end of this section we present the following two lemmas.

Lenna 2.1. The Weyl curvature tensor of every Ricci-pseudosymmet-
ric semi-Riemannian manifold (M,g), dim M > 4, fulfils the following
equality

(5) C(SX,Y,Z, W)+ C(SZ,Y,W,X)+C(SW,Y,X,Z) =0,
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where X, Y, Z, W € Z(M).

PrOOF. Evidently, (5) is satisfied at every point of M — Ug. Let now
x be a point of Ug. Thus, by our assumptions, the following relation

_R(§X17X27X37X4) - R(X17§X27X37X4) -
(6) = Ls(g(X4, X1)S(X3, X2) — g(X3, X1)S(Xy, X2)
+9(X47X2)S(X37X1) - g(X37X2)S<X47X1))

holds at z, where X1, ..., Xy € T,(M). Summing this cyclically in X7, X3,
X4 we get

R(SX1, X2, X3, X4) + R(SX3, X2, X4, X1) + R(SX4, Xo, X1, X3) = 0.
But on the other hand, we can easily verify that the following identity

C(SX,Y,Z, W)+ C(SZ,Y,W,X)+ C(SW,Y, X, Z)
= R(SX,Y,Z, W)+ R(SZ,Y,W,X) + R(SW,Y, X, Z)

holds on any semi-Riemannian manifold. Using now the last two equations,
we can conclude that (5) is fulfilled at , which completes the proof.

Lemma 2.2. Let (M,g), dimM > 4, be a pseudosymmetric semi-
Riemannian manifold with pseudosymmetric Weyl tensor. Then the rela-
tion

((n=2)(Ln — Lo) + —7)Q(9. C)(Xn,.. X X.Y)
=Q(5,C)(Xy,..., Xs;X,)Y)

+9(X1,Y)C(5X, X9, X35, X4) — g(X1, X)O(SY, Xo, X3, X)
—9(X2,Y)C(SX, X1, X3, X4) + 9(X2, X)CO(SY, X1, X3, X4)

9(X3,Y)C(SX, X4, X1, X5) — g(X3, X)C(5Y, X4, X1, X5)
—9(X4,Y)C(SX, X3, X1, X2) + g(X4, X)O(S )
holds on Ug, where X,Y, X1,..., X4 are vector fields on U¢.

ProoOF. First of all we note that from (2) it follows that the relation

(8) R-C=LrQ(9,C)

holds on Ug. Moreover, it is easy to verify that the following identity is
satisfied on Ug

CC(Xh ,X4;X,Y) :RC(Xl, ,X4;X,Y)
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_|_(n — 1>(n — 2)@(9,0)()(1, Ce ,X4;X,Y)

1
— 5 Q(5,0) (X1, X X,Y)

1 ~ -
n— 2<g(X17 Y)C<SX7 X2a X37X4) - g(leX)C(SY7 X27X3; X4)
—9(X2,Y)C(SX, X1, X3, X4) + 9(X2, X)CO(SY, X1, X3, X4)
+9(X3,Y)C(SX, X4, X1, X2) — g(X3, X)C(SY, X4, X1, X2)

—g(X4,Y)C(SX, X5, X1, X5) + g(X4, X)C(SY, X5, X1, X5)).

Now, applying in this (3) and (8) we get (7), completing the proof.

3. Manifolds satisfying (*) and ()

Theorem 3.1. Let (M, g), dimM > 4, be a pseudosymmetric mani-
fold with pseudosymmetric Weyl tensor. Then the conditions (x * %) and

K f
9 S—(———-1L L C———G) =0 R
() Q( (n—l Rt 0)97 n(n—?) > y M ER,
hold at every point of Uc.

PROOF. Let = be a point of Us. We can present (7) in the following
form

K
((n —2)(Lr — Le) + m) Q(9, Oniguem = Q(S, C)niguem
(10) +9nm Sy Cpijie = 9neSh,Crijk = 9im Sy Congk + 9ie'S5, Cphi
+95mSy Cprni — 95650 Cprni — gkmSy Cpjni + greSh Copjni-

hm

Contracting this with ¢"” and using the identities

9" Q(g, C)nijrem = (n — 1)Coijr,
9" Q(S, Cnijhem = £Coijk + S Cpejk + S¥Chitk + Sy Crije — S Coijics

we obtain

(n=1)(n = 2)(Lr — Lc)Clijk = S Cpejr + S5 Cpier,

(11)
+58 Crije + (n —2)SY Cpiji + gjeAri — greAij,
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(n—1)(n—2)

2
Aij = SPCipgj = S™ Ripg; + — 57 — Sij

(12)

1 K2
+7’L—2 < _Spqqu> gij-

n—1

But (11), in view of Lemma 2.1, reduces to
(13) (n—1)(n —2)(Lr — Lc)Criji = SY Cpiji
+(n —1)S)Chiji + 9jeAri — gredij.
Symmetrizing this in ¢,7 we find

1
(14) St Crpej + 57 Cpij = ﬁ(gkéAij + griAje — gjeAir — Gij Are).
Thus (13) turns into

(n—1)(n—2)(Lr — Lc)Coijk = (n — 2)S7 Cpijk + gje Ak
(15) 1
—greAij + E(gkeAz‘j + griAje — gieAik — GijAke).

It is easy to check that the identity

1
—Sf)cpjké - Sfcpikﬁ = m(gjksge - gﬂSiQk + Qiksjze - gizsjzk)

K
(n—1)(n—2) (9j1Sie — 90Sik + giSjie — 9ieSjk),

+R - Sijre —

by making use of the relation R-S = LrQ(g,.S), which follows immediately
from (2), turns into

(16) =SV Cpjre — S5 Chpine = gjeBix — gjrBie + gie Bjx — gir Bije,

(17) Bjk = LRS]‘k +

K 1 9
(n—1)(n— 2)Sjk a n—QSjk'

Moreover, contracting the equality
—S7 Rpjem — S§ Rpiem = LR(9imSje + gjmSie — 9ieSjm — gjeSim)
with ¢ we obtain
SPIRjpgt = SJZ@ —nLpg (Sjg — ggjg> .
Substituting this in (12) and using (17) we get
(18) A;j = —nB;j +tr(B)gi;.
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Next, transvecting (15) with S% we find

(19) ((n—?)(LR—LC)+ -

1
——— | Ap = By, — —tr(E
(n— 1)) k e — r(E)ger,

where Eg, = S} Apr. On the other hand, transvecting (13) with Sk and
symmetrizing the resulting equality in j, m we obtain

(n—1)(n = 2)(Lr — Lc) (S5, Cpjic + S Rpmie) = SE(SE Crjon + S%Cpmer)
+(n —1)SF(S?,Cpjix + S% Cpmik) + gemEij + gjeLim — SjeAim — SemAsj-

This, by an application of (14), yields

n—1)(n—2

( >n( ) (Lr — L) (gemAij + gjeAim — 9ij Aem — GimAje)
1 n—1

= _E(gﬁmEij + gjéEim - SijAﬁm - SimAjZ) + (SZmAij

+S0Aim — 9ijEom — gimEje) + gemEij + 9jeFim — AijStm — AimSje
which, after antisymmetrization in ¢, ¢, turns into
(n - 1)(“ - 2)(LR - LC’)Q(97A) = _Q(S> A) + (n - 1)Q(Q7E)

Now, in virtue of (19), we have

(20) QS — =g, 4) = 0.

It is clear that if the tensor S — g vanishes at z then also (* * x) and
(21) A= p(S - gg), € R,

are satisfied at z. Further, in view of Lemma 2.4(i) [15], we can conclude
from (20) that if the tensor S— g is nonzero at x then also (21) is fulfilled
at x. Now (18), by (17) and (21), leads to (x * ). Finally, we prove that
(9) holds at z. In fact, the relation (15), in virtue of (21), turns into

1
SYCpijk = (n—1)(Lr — L) Criji — ﬁﬂﬁGéijk + ﬁ(gek&j — 9eSik)
L

(22) _m(giksjﬁ + 9e1Sij — 950Sik — GikSer)-

Applying this in (10) we get

o (55 pevie)ac) (st 50).
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which turns immediately into (9), completing the proof.

Combining Theorem 3.1 with Lemma 1.2 of [4] we get immediately
the following corollary.

Corollary 3.1. Let (M,g), dim M > 4, be a pseudosymmetric man-

2
ifold with pseudosymmetric Weyl tensor. Then the tensors S? — %g

and S — % g are linearly dependent at every point of M.

Theorem 3.2. Let (M,g), dim M > 4, be a pseudosymmetric mani-
fold with pseudosymmetric Weyl tensor. Moreover, let V' be a vector at

x € Uc such that the scalar o = a(V') is nonzero, where a is a covector
defined by

a(X)=S(X,V) - ( " T~ Lr+ Lc) 9(X, V),

n—
X €T, (M) and let F be a (0,2)-tensor defined by

F(X,Y)=C(V,X,Y,V) - ﬁc(v, X,Y,V), X,Y € T, M,

and p is the real number given in (9).
(i) If the tensor S — (=25 — Lr+L¢c)g— éa@a vanishes then the relations:

C(X,Y,Z,W) =
B 2 X Masa VIZW) = F(X asa YIW,2))
(24) a(X)C(Y,Z) + a(Y)C(Z,X) + a(Z)C(X,Y) = 0,
(25) C-C=0, Lc =0,
(26) LR = m,
K 1
(27) Szﬁg-l—ga@a,

hold at x, where X, Y, Z, W € T,(M).
(ii) If the tensor S — (%~ —Lr+L¢c)g— %a@a is nonzero then the equality

n—1

oC(X,Y,Z,W) =

<(n_1’“;(gn_2) +A(nf1 —LR+LC) )G(X,Y,Z,W)
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K

FAS((X AsY)Z, W) — A ( -~ Lr+ Lc) (9(X, W)S(Y, Z)

n_
holds at x, where X, Y, Z, W € T,(M).

ProoOF. We will use notations of Proposition 4.1 of [2].
(i) Applying Proposition 4.1(i) of [2] we get

W
(28) o? <C - mG> ik = apapFij + a;a;Fp — agaj Fi — azaFy;.
(i1) We assume that p vanishes. Then (28) reduces to (23). Thus (24) is
satisfied. Moreover, from (23), in view of Theorem 1 of [13], it follows that
(25) is fulfilled. Next, applying Theorem 4.2 of [2] we get (26). Now we
see that the Ricci tensor S takes the required form (27).

(i2) Suppose that p is nonzero. Then (28), after contraction with g%/,
yields
n—1
29 Pa, Fop = —————— 1102 by —
(29) atap o = =gy He 9ok T aebi — axa,

where by, = aP Fy,. We note that if a”a, vanishes then (29) reduces to
gor = T(agb + arbe), 7€ R —{0},
a contradiction. Thus a”a, must be nonzero. Multiplying now (28) by

aPa, and using (29) we get

A
afa, | C — —G> =
P ( n(n — 2) tiik

n—1
= —mu(aeakgij + a;a;9er — a;0Kge5 — aeajgik)-

Contracting this with ¢g‘* we get
gij:%aiaj, %ER—{O},

a contradiction.
(ii) The second assertion is an immediate consequence of Proposition 4.1(ii)

of [2]. Our theorem is thus proved.

4. Examples

In this section we present some examples of four-dimensional Rie-
mannian manifolds with pseudosymmetric Weyl tensor.
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Let (M,g) be the four-dimensional manifold defined in [6] (Lemme
1.1). As it was proved in [6] (see Lemme 1.1 and Remarqué 1.5), (M, g)
is a non conformally flat and non semisymmetric, Weyl-semisymmetric
manifold, i.e. the tensors C and R- R are nonzero and the condition R-C' =
0 holds on M. Furthermore, using formulas for the local components of
the Ricci tensor and the Riemann-Christoffel tensor of the manifold (M, g)
obtained in [6] (Lemme 1.1), we can easily verify that (M, g) is a non Ricci-
pseudosymmetric manifold satisfying at every point the condition ( * ).

Let V' be a connected subset of the set U = {x € M : u(x) # 0 },
where u is the function defined in [6] (Lemme 1.1). By formula (10) of [6]
we have U = Ug. Let on V' be given the conformal deformation g — g =
mg of the metric g, where k is a constant such that £ > 0 when v > 0
onVork<0whenu<OonV.

First we consider the deformation g — gy = u% g. The manifold (V, go)
is an Einstein manifold ([6], Lemme 1.1(viii)). Moreover, as it was stated

in [8] (Example 3) the relation

o 1 o
R-R=—2(u = pg)Q(go, R)
holds on (V,go), where R is the Riemann-Christoffel curvature tensor of
go and p, q are some constants. Now, in view of Theorem 3.1 of [3], the
equality

o 1 _
C-C= —E(ug — pq + E)Q(go, C)

holds on V, where C' is the Weyl conformal curvature tensor of gy and the
constant k is the scalar curvature of gg. From this we get easily

ud —pg+ R
_ ).
oz Q90

Thus we see that the condition (xx) is fulfilled on (M, g), i.e. (M,g) is a
manifold with pseudosymmetric Weyl tensor.
Now we consider on V' the conformal deformation g — gx = m g,

C.C=—

where k is a positive or negative constant. Since (V, g) is a manifold with
pseudosymmetric Weyl tensor, then (V,gr), k # 0, is also a manifold
with pseudosymmetric Weyl tensor. Moreover, as it was stated in [8]
(Example 2) this manifold is a non Ricci-pseudosymmetric manifold.
Finally, we state that (M, g) is a Riemannian manifold which cannot
be realized as a hypersurface immersed isometrically in a 5-dimensional
Euclidean space. This is an immediate consequence of Corollary 3.1 of
[15] and the fact that the tensor R - R — Q(S, R) is a nonzero tensor on
M. More generally, (M, g) cannot be realized as a hypersurface immersed
isometrically in a 5-dimensional space of constant curvature. This state-
ment follows immediately from Proposition 3.1 of [15] and the fact that
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the tensors R- R—Q(S, R) and Q(g, C) are not linearly dependent at every
point of M.
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