Curvature properties of certain pseudosymmetric manifolds

By RYSZARD DESZCZ (Wrocław) and ṢAHNUR YAPRAK (Ankara)

1. Introduction

Let (M, g) be a connected n-dimensional, $n \geq 3$, semi-Riemannian manifold of class C^{∞} with the metric g and the Levi-Civita connection ∇. Moreover, let S and κ be the Ricci tensor and the scalar curvature of (M, g), respectively. A semi-Riemannian manifold $(M, g), n \geq 3$, is said to be Einstein manifold ([1], p. 3) if

$$
\begin{equation*}
S=\frac{\kappa}{n} g \tag{1}
\end{equation*}
$$

holds on M. Certain Einstein manifolds can be realized as hypersurfaces immersed isometrically in a semi-Riemannian space of constant curvature $M^{n+1}(c)([18],[20],[21],[22])$. Such hypersurfaces have also a curvature property of pseudosymmetry type. Namely, in [15] (Proposition 3.2) it was proved that every Einstein hypersurface immersed isometrically in a semi-Riemannian space of constant curvature $M^{n+1}(c), n \geq 4$, is a pseudosymmetric manifold. A semi-Riemannian manifold $(M, g), n \geq 3$, is said to be pseudosymmetric [12] if at every point of M the following condition is satisfied:
(*) the tensors $R \cdot R$ and $Q(g, R)$ are linearly dependent.
The manifold (M, g) is pseudosymmetric if and only if

$$
\begin{equation*}
R \cdot R=L_{R} Q(g, R) \tag{2}
\end{equation*}
$$

holds on the set $U_{R}=\{x \in M \mid Z(R) \neq 0$ at $x\}$, where L_{R} is some function on U_{R}. The definitions of the tensors $R \cdot R, Q(g, R)$ and $Z(R)$ will be given in the next section. Pseudosymmetric manifolds are a generalization of the notion of locally symmetric manifolds $(\nabla R=0)$ as well as of the notion of semisymmetric manifolds $(R \cdot R=0,[23])$. We refer [10] as a review paper on pseudosymmetric manifolds.

Another class of semi-Riemannian manifolds are manifolds with pseudosymmetric Weyl tensor. A semi-Riemannian manifold $(M, g), n \geq 4$, is
said to be manifold with pseudosymmetric Weyl tensor if at every point of M its Weyl conformal curvature tensor C satisfies the following condition ([16], [17]):
$(* *)$ the tensors $C \cdot C$ and $Q(g, C)$ are linearly dependent.
We note that the condition ($* *$) is invariant under the conformal deformations of the metric tensor g. The manifold (M, g) is a manifold with pseudosymmetric Weyl tensor if and only if

$$
\begin{equation*}
C \cdot C=L_{C} Q(g, C) \tag{3}
\end{equation*}
$$

holds on the set $U_{C}=\{x \in M \mid C \neq 0$ at $x\}$, where L_{C} is some function on U_{C}. The definitions of the tensors $C \cdot C$ and $Q(g, C)$ will be given also in the next section. Note that $U_{C} \subset U_{R}$. If (M, g) is an Einstein manifold then $U_{C}=U_{R}$. The condition ($* *$) arose during the study of 4-dimensional warped products ([9]). It was shown in [9] (Theorem 2) that every warped product $M_{1} \times_{F} M_{2}$, $\operatorname{dim} M_{1}=\operatorname{dim} M_{2}=2$, fulfils ($* *$). Furthermore, it is easy to verify that if $(M, g), n \geq 4$, is an Einstein manifold then the relations (2) and (3), with $L_{C}=L_{R}-\frac{\kappa}{n(n-1)}$, are equivalent on U_{R} (cf. [3], Theorem 3.1). Examples of not Einsteinian semi-Riemannian manifolds realizing $(*)$ and $(* *)$ are described in [3] (Theorem 4.1) and [11] (Theorem 4.1). In addition, these manifolds satisfying a certain another condition, weaker than (1). Namely, it is easy to check that at every point of the manifolds described in the above theorems also the following condition is fulfilled:
$(* * *)$ the tensors $S^{2}-\frac{\operatorname{tr}\left(S^{2}\right)}{n} g$ and $S-\frac{\kappa}{n} g$ are linearly dependent.
The tensor S^{2} is defined by $S^{2}(X, Y)=S(\tilde{S} X, Y)$, where the tensor \tilde{S}, defined by $S(X, Y)=g(\tilde{S} X, Y)$, is the Ricci operator of (M, g) and X, Y are vector fields on M. However, the classes of manifolds satisfying (*) or $(* *)$ do not coincide. A suitable example is given in [3] (Example 5.2). Warped products realizing ($* *$) are considered in [16]. Hypersurfaces in Euclidean spaces realizing $(* *)$ are studied in [5].

In this paper we will investigate curvature properties of pseudosymmetric manifolds having pseudosymmetric Weyl tensor. Certain results concerned with this subject are present in [19]. Namely, by Theorems 1 and 2 and Proposition 4 of [19] (cf. [2], Theorem 4.2) we obtain some curvature properties of pseudosymmetric manifolds (M, g) satisfying the condition:

$$
\begin{equation*}
\omega(X) \tilde{C}(Y, Z)+\omega(Y) \tilde{C}(Z, X)+\omega(Z) \tilde{C}(X, Y)=0 \tag{4}
\end{equation*}
$$

where \tilde{C} is the Weyl curvature operator of $(M, g), \omega$ is an 1-form on M and X, Y, Z are vector fields on M. We note that the tensor $C \cdot C$ vanishes at all point of a semi-Riemannian manifold fulfilling (4) at which the 1-form ω is nonzero ([13], Corollary 1).

Our main result (Theorem 3.1) states: If $(M, g), \operatorname{dim} M \geq 4$, is a semi-Riemannian manifold realizing $(*)$ and $(* *)$ then at every point of M the condition $(* * *)$ is satisfied.

Furthermore, we will find also another curvature relations of manifolds realizing these both conditions. In the last section we shall investigate curvature properties of pseudosymmetry type of a certain four-dimensional Riemannian manifold described in [6]. This manifold is an example of a non Ricci-pseudosymmetric manifold with pseudosymmetric Weyl tensor.

2. Preliminaries

Let (M, g) be a connected n-dimensional, $n \geq 3$, semi-Riemannian manifold. We define on M the endomorphisms $\tilde{R}(X, Y), X \wedge Y$ and $\tilde{C}(X, Y)$ by

$$
\begin{gathered}
\tilde{R}(X, Y) Z=\left[\nabla_{X}, \nabla_{Y}\right] Z-\nabla_{[X, Y]} Z \\
(X \wedge Y) Z=g(Y, Z) X-g(X, Z) Y \\
\tilde{C}(X, Y)=\tilde{R}(X, Y)-\frac{1}{n-2}\left((X \wedge \tilde{S} Y+\tilde{S} X \wedge Y)-\frac{\kappa}{n-1} X \wedge Y\right),
\end{gathered}
$$

respectively, where $X, Y, Z \in \Xi(M), \Xi(M)$ being the Lie algebra of vector fields on M. Furthermore, we define the Riemann-Christoffel curvature tensor R, the Weyl conformal curvature tensor C, the tensor G and the concircular tensor $Z(R)$ of (M, g) by

$$
\begin{gathered}
R\left(X_{1}, X_{2}, X_{3}, X_{4}\right)=g\left(\tilde{R}\left(X_{1}, X_{2}\right) X_{3}, X_{4}\right), \\
C\left(X_{1}, X_{2}, X_{3}, X_{4}\right)=g\left(\tilde{C}\left(X_{1}, X_{2}\right) X_{3}, X_{4}\right) \\
G\left(X_{1}, X_{2}, X_{3}, X_{4}\right)=g\left(\left(X_{1} \wedge X_{2}\right) X_{3}, X_{4}\right)
\end{gathered}
$$

and $Z(R)=R-\frac{\kappa}{n(n-1)} G$, respectively. For a $(0, k)$-tensor T on $M, k \geq 1$, we define the $(0, k+2)$-tensors $R \cdot T$ and $Q(g, T)$ by

$$
\begin{aligned}
R \cdot T\left(X_{1}, \ldots, X_{k} ; X, Y\right)= & -T\left(\tilde{R}(X, Y) X_{1}, X_{2}, \ldots, X_{k}\right) \\
& -\cdots-T\left(X_{1}, \ldots, X_{k-1}, \tilde{R}(X, Y) X_{k}\right), \\
Q(g, T)\left(X_{1}, \ldots, X_{k} ; X, Y\right)= & T\left((X \wedge Y) X_{1}, X_{2}, \ldots, X_{k}\right) \\
& +\cdots+T\left(X_{1}, \ldots, X_{k-1},(X \wedge Y) X_{k}\right),
\end{aligned}
$$

respectively. Similarly, we can define the $(0, k+2)$-tensor $C \cdot T$. Let now A and T be a symmetric $(0,2)$-tensor and a $(0, k)$-tensor on a semiRiemannian manifold $(M, g), n \geq 3$, respectively. We define on M the
$(0, k+2)$-tensor $Q(A, T)$ by

$$
\begin{aligned}
Q(A, T)\left(X_{1}, \ldots, X_{k} ; X, Y\right)= & T\left(\left(X \wedge_{A} Y\right) X_{1}, X_{2}, \ldots, X_{k}\right) \\
& +\cdots+T\left(X_{1}, \ldots, X_{k-1},\left(X \wedge_{A} Y\right) X_{k}\right)
\end{aligned}
$$

where $X \wedge_{A} Y$ is the endomorphism defined by

$$
\left(X \wedge_{A} Y\right) Z=A(Y, Z) X-A(X, Z) Y
$$

In particular, we have $X \wedge_{g} Y=X \wedge Y$. Let (M, g) be a semi-Riemannian manifold covered by a system of charts $\left\{U ; x^{k}\right\}$. We denote by

$$
g_{i j}, R_{h i j k}, S_{i j}, S_{i}^{j}=g^{j k} S_{i j}, G_{h i j k}=g_{h k} g_{i j}-g_{h j} g_{i k}
$$

and

$$
\begin{aligned}
C_{h i j k}= & R_{h i j k}+\frac{\kappa}{(n-1)(n-2)} G_{h i j k} \\
& -\frac{1}{n-2}\left(g_{h k} S_{i j}-g_{h j} S_{i k}+g_{i j} S_{h k}-g_{i k} S_{h j}\right),
\end{aligned}
$$

the local components of the metric tensor g, the Riemann-Christoffel curvature tensor R, the Ricci tensor S, the Ricci operator \tilde{S}, the tensor G and the Weyl tensor C, respectively. By $R \cdot T_{i_{1} \ldots i_{k} \ell m}$ we will denote the local components of the tensor $R \cdot T$.

The semi-Riemannian manifold (M, g) is said to be Ricci-pseudosymmetric ([14], [7]) if at every point of M the following condition is satisfied:
$(* * * *)$ the tensors $R \cdot S$ and $Q(g, S)$ are linearly dependent. The manifold (M, g) is Ricci-pseudosymmetric if and only if

$$
R \cdot S=L_{S} Q(g, S)
$$

holds on the set $U_{S}=\left\{x \in M \left\lvert\, S-\frac{\kappa}{n} g \neq 0\right.\right.$ at $\left.x\right\}$, where L_{S} is some fuction on U_{S}. It is clear that if at a point x of a manifold $(M, g)(*)$ is satisfied then also $(* * * *)$ holds at x. The converse statement is not true ([14], [7]). For instance, the Cartan hypersurfaces of dimensions >3 are not pseudosymmetric, Ricci-pseudosymmetric manifolds ([17], Theorem 1). These hypersurfaces satisfy also the condition $(* * *)$.

At the end of this section we present the following two lemmas.
Lenna 2.1. The Weyl curvature tensor of every Ricci-pseudosymmetric semi-Riemannian manifold (M, g), $\operatorname{dim} M \geq 4$, fulfils the following equality

$$
\begin{equation*}
C(\tilde{S} X, Y, Z, W)+C(\tilde{S} Z, Y, W, X)+C(\tilde{S} W, Y, X, Z)=0 \tag{5}
\end{equation*}
$$

where $X, Y, Z, W \in \Xi(M)$.
Proof. Evidently, (5) is satisfied at every point of $M-U_{S}$. Let now x be a point of U_{S}. Thus, by our assumptions, the following relation

$$
\begin{align*}
& \quad-R\left(\tilde{S} X_{1}, X_{2}, X_{3}, X_{4}\right)-R\left(X_{1}, \tilde{S} X_{2}, X_{3}, X_{4}\right)= \\
& =L_{S}\left(g\left(X_{4}, X_{1}\right) S\left(X_{3}, X_{2}\right)-g\left(X_{3}, X_{1}\right) S\left(X_{4}, X_{2}\right)\right. \tag{6}\\
& \left.\quad+g\left(X_{4}, X_{2}\right) S\left(X_{3}, X_{1}\right)-g\left(X_{3}, X_{2}\right) S\left(X_{4}, X_{1}\right)\right)
\end{align*}
$$

holds at x, where $X_{1}, \ldots, X_{4} \in T_{x}(M)$. Summing this cyclically in X_{1}, X_{3}, X_{4} we get

$$
R\left(\tilde{S} X_{1}, X_{2}, X_{3}, X_{4}\right)+R\left(\tilde{S} X_{3}, X_{2}, X_{4}, X_{1}\right)+R\left(\tilde{S} X_{4}, X_{2}, X_{1}, X_{3}\right)=0
$$

But on the other hand, we can easily verify that the following identity

$$
\begin{aligned}
& C(\tilde{S} X, Y, Z, W)+C(\tilde{S} Z, Y, W, X)+C(\tilde{S} W, Y, X, Z) \\
= & R(\tilde{S} X, Y, Z, W)+R(\tilde{S} Z, Y, W, X)+R(\tilde{S} W, Y, X, Z)
\end{aligned}
$$

holds on any semi-Riemannian manifold. Using now the last two equations, we can conclude that (5) is fulfilled at x, which completes the proof.

Lemma 2.2. Let (M, g), $\operatorname{dim} M \geq 4$, be a pseudosymmetric semiRiemannian manifold with pseudosymmetric Weyl tensor. Then the relation

$$
\begin{array}{r}
\quad\left((n-2)\left(L_{R}-L_{C}\right)+\frac{\kappa}{n-1}\right) Q(g, C)\left(X_{1}, \ldots, X_{4} ; X, Y\right) \\
=Q(S, C)\left(X_{1}, \ldots, X_{4} ; X, Y\right) \\
+g\left(X_{1}, Y\right) C\left(\tilde{S} X, X_{2}, X_{3}, X_{4}\right)-g\left(X_{1}, X\right) C\left(\tilde{S} Y, X_{2}, X_{3}, X_{4}\right) \tag{7}\\
-g\left(X_{2}, Y\right) C\left(\tilde{S} X, X_{1}, X_{3}, X_{4}\right)+g\left(X_{2}, X\right) C\left(\tilde{S} Y, X_{1}, X_{3}, X_{4}\right) \\
+g\left(X_{3}, Y\right) C\left(\tilde{S} X, X_{4}, X_{1}, X_{2}\right)-g\left(X_{3}, X\right) C\left(\tilde{S} Y, X_{4}, X_{1}, X_{2}\right) \\
-g\left(X_{4}, Y\right) C\left(\tilde{S} X, X_{3}, X_{1}, X_{2}\right)+g\left(X_{4}, X\right) C\left(\tilde{S} Y, X_{3}, X_{1}, X_{2}\right)
\end{array}
$$

holds on U_{C}, where $X, Y, X_{1}, \ldots, X_{4}$ are vector fields on U_{C}.
Proof. First of all we note that from (2) it follows that the relation

$$
\begin{equation*}
R \cdot C=L_{R} Q(g, C) \tag{8}
\end{equation*}
$$

holds on U_{C}. Moreover, it is easy to verify that the following identity is satisfied on U_{C}

$$
C \cdot C\left(X_{1}, \ldots, X_{4} ; X, Y\right)=R \cdot C\left(X_{1}, \ldots, X_{4} ; X, Y\right)
$$

$$
\begin{gathered}
+\frac{\kappa}{(n-1)(n-2)} Q(g, C)\left(X_{1}, \ldots, X_{4} ; X, Y\right) \\
-\frac{1}{n-2} Q(S, C)\left(X_{1}, \ldots, X_{4} ; X, Y\right) \\
-\frac{1}{n-2}\left(g\left(X_{1}, Y\right) C\left(\tilde{S} X, X_{2}, X_{3}, X_{4}\right)-g\left(X_{1}, X\right) C\left(\tilde{S} Y, X_{2}, X_{3}, X_{4}\right)\right. \\
-g\left(X_{2}, Y\right) C\left(\tilde{S} X, X_{1}, X_{3}, X_{4}\right)+g\left(X_{2}, X\right) C\left(\tilde{S} Y, X_{1}, X_{3}, X_{4}\right) \\
+g\left(X_{3}, Y\right) C\left(\tilde{S} X, X_{4}, X_{1}, X_{2}\right)-g\left(X_{3}, X\right) C\left(\tilde{S} Y, X_{4}, X_{1}, X_{2}\right) \\
\left.-g\left(X_{4}, Y\right) C\left(\tilde{S} X, X_{3}, X_{1}, X_{2}\right)+g\left(X_{4}, X\right) C\left(\tilde{S} Y, X_{3}, X_{1}, X_{2}\right)\right)
\end{gathered}
$$

Now, applying in this (3) and (8) we get (7), completing the proof.

3. Manifolds satisfying ($*$) and ($* *$)

Theorem 3.1. Let (M, g), $\operatorname{dim} M \geq 4$, be a pseudosymmetric manifold with pseudosymmetric Weyl tensor. Then the conditions ($* * *$) and

$$
\begin{equation*}
Q\left(S-\left(\frac{\kappa}{n-1}-L_{R}+L_{C}\right) g, C-\frac{\mu}{n(n-2)} G\right)=0, \quad \mu \in \mathbb{R} \tag{9}
\end{equation*}
$$

hold at every point of U_{C}.
Proof. Let x be a point of U_{C}. We can present (7) in the following form

$$
\begin{align*}
& \left((n-2)\left(L_{R}-L_{C}\right)+\frac{\kappa}{n-1}\right) Q(g, C)_{h i j k \ell m}=Q(S, C)_{h i j k \ell m} \\
& \quad+g_{h m} S_{\ell}^{p} C_{p i j k}-g_{h \ell} S_{m}^{p} C_{p i j k}-g_{i m} S_{\ell}^{p} C_{p h j k}+g_{i \ell} S_{m}^{p} C_{p h j k} \tag{10}\\
& +g_{j m} S_{\ell}^{p} C_{p k h i}-g_{j \ell} S_{m}^{p} C_{p k h i}-g_{k m} S_{\ell}^{p} C_{p j h i}+g_{k \ell} S_{m}^{p} C_{p j h i}
\end{align*}
$$

Contracting this with $g^{h m}$ and using the identities

$$
\begin{gathered}
g^{h m} Q(g, C)_{h i j k \ell m}=(n-1) C_{\ell i j k}, \\
g^{h m} Q(S, C)_{h i j k \ell m}=\kappa C_{\ell i j k}+S_{i}^{p} C_{p \ell j k}+S_{j}^{p} C_{p i \ell k}+S_{k}^{p} C_{p i j \ell}-S_{\ell}^{p} C_{p i j k}
\end{gathered}
$$

we obtain

$$
\begin{align*}
& (n-1)(n-2)\left(L_{R}-L_{C}\right) C_{\ell i j k}=S_{i}^{p} C_{p \ell j k}+S_{j}^{p} C_{p i \ell k} \tag{11}\\
& \quad+S_{k}^{p} C_{p i j \ell}+(n-2) S_{\ell}^{p} C_{p i j k}+g_{j \ell} A_{k i}-g_{k \ell} A_{i j},
\end{align*}
$$

where

$$
\begin{align*}
A_{i j}=S^{p q} C_{i p q j} & =S^{p q} R_{i p q j}+\frac{2}{n-2} S_{i j}^{2}-\frac{n \kappa}{(n-1)(n-2)} S_{i j} \\
& +\frac{1}{n-2}\left(\frac{\kappa^{2}}{n-1}-S^{p q} S_{p q}\right) g_{i j} . \tag{12}
\end{align*}
$$

But (11), in view of Lemma 2.1, reduces to

$$
\begin{align*}
& (n-1)(n-2)\left(L_{R}-L_{C}\right) C_{\ell i j k}=S_{i}^{p} C_{p \ell j k} \\
& \quad+(n-1) S_{\ell}^{p} C_{p i j k}+g_{j \ell} A_{k i}-g_{k \ell} A_{i j} . \tag{13}
\end{align*}
$$

Symmetrizing this in ℓ, i we find

$$
\begin{equation*}
S_{i}^{p} C_{p \ell j k}+S_{\ell}^{p} C_{p i j k}=\frac{1}{n}\left(g_{k \ell} A_{i j}+g_{k i} A_{j \ell}-g_{j \ell} A_{i k}-g_{i j} A_{k \ell}\right) . \tag{14}
\end{equation*}
$$

Thus (13) turns into

$$
\begin{gather*}
(n-1)(n-2)\left(L_{R}-L_{C}\right) C_{\ell i j k}=(n-2) S_{\ell}^{p} C_{p i j k}+g_{j \ell} A_{k i} \\
-g_{k \ell} A_{i j}+\frac{1}{n}\left(g_{k \ell} A_{i j}+g_{k i} A_{j \ell}-g_{j \ell} A_{i k}-g_{i j} A_{k \ell}\right) . \tag{15}
\end{gather*}
$$

It is easy to check that the identity

$$
\begin{aligned}
& -S_{i}^{p} C_{p j k \ell}-S_{j}^{p} C_{p i k \ell}=\frac{1}{n-2}\left(g_{j k} S_{i \ell}^{2}-g_{j \ell} S_{i k}^{2}+g_{i k} S_{j \ell}^{2}-g_{i \ell} S_{j k}^{2}\right) \\
& +R \cdot S_{i j k \ell}-\frac{\kappa}{(n-1)(n-2)}\left(g_{j k} S_{i \ell}-g_{j \ell} S_{i k}+g_{i k} S_{j \ell}-g_{i \ell} S_{j k}\right)
\end{aligned}
$$

by making use of the relation $R \cdot S=L_{R} Q(g, S)$, which follows immediately from (2), turns into

$$
\begin{gather*}
-S_{i}^{p} C_{p j k \ell}-S_{j}^{p} C_{p i k \ell}=g_{j \ell} B_{i k}-g_{j k} B_{i \ell}+g_{i \ell} B_{j k}-g_{i k} B_{j \ell} \tag{16}\\
B_{j k}=L_{R} S_{j k}+\frac{\kappa}{(n-1)(n-2)} S_{j k}-\frac{1}{n-2} S_{j k}^{2} \tag{17}
\end{gather*}
$$

Moreover, contracting the equality

$$
-S_{i}^{p} R_{p j \ell m}-S_{j}^{p} R_{p i \ell m}=L_{R}\left(g_{i m} S_{j \ell}+g_{j m} S_{i \ell}-g_{i \ell} S_{j m}-g_{j \ell} S_{i m}\right)
$$

with $g^{\ell m}$ we obtain

$$
S^{p q} R_{j p q \ell}=S_{j \ell}^{2}-n L_{R}\left(S_{j \ell}-\frac{\kappa}{n} g_{j \ell}\right)
$$

Substituting this in (12) and using (17) we get

$$
\begin{equation*}
A_{i j}=-n B_{i j}+\operatorname{tr}(B) g_{i j} \tag{18}
\end{equation*}
$$

Next, transvecting (15) with $S^{i j}$ we find

$$
\begin{equation*}
\left((n-2)\left(L_{R}-L_{C}\right)+\frac{\kappa}{n(n-1)}\right) A_{\ell k}=E_{\ell k}-\frac{1}{n} \operatorname{tr}(E) g_{\ell k} \tag{19}
\end{equation*}
$$

where $E_{\ell k}=S_{\ell}^{p} A_{p k}$. On the other hand, transvecting (13) with S_{m}^{k} and symmetrizing the resulting equality in j, m we obtain

$$
\begin{aligned}
& (n-1)(n-2)\left(L_{R}-L_{C}\right)\left(S_{m}^{p} C_{p j i \ell}+S_{j}^{p} R_{p m i \ell}\right)=S_{i}^{k}\left(S_{m}^{p} C_{p j \ell k}+S_{j}^{p} C_{p m \ell k}\right) \\
& +(n-1) S_{\ell}^{k}\left(S_{m}^{p} C_{p j i k}+S_{j}^{p} C_{p m i k}\right)+g_{\ell m} E_{i j}+g_{j \ell} E_{i m}-S_{j \ell} A_{i m}-S_{\ell m} A_{i j}
\end{aligned}
$$

This, by an application of (14), yields

$$
\begin{gathered}
\frac{(n-1)(n-2)}{n}\left(L_{R}-L_{C}\right)\left(g_{\ell m} A_{i j}+g_{j \ell} A_{i m}-g_{i j} A_{\ell m}-g_{i m} A_{j \ell}\right) \\
=-\frac{1}{n}\left(g_{\ell m} E_{i j}+g_{j \ell} E_{i m}-S_{i j} A_{\ell m}-S_{i m} A_{j \ell}\right)+\frac{n-1}{n}\left(S_{\ell m} A_{i j}\right. \\
\left.+S_{j \ell} A_{i m}-g_{i j} E_{\ell m}-g_{i m} E_{j \ell}\right)+g_{\ell m} E_{i j}+g_{j \ell} E_{i m}-A_{i j} S_{\ell m}-A_{i m} S_{j \ell}
\end{gathered}
$$

which, after antisymmetrization in ℓ, i, turns into

$$
(n-1)(n-2)\left(L_{R}-L_{C}\right) Q(g, A)=-Q(S, A)+(n-1) Q(g, E)
$$

Now, in virtue of (19), we have

$$
\begin{equation*}
Q\left(S-\frac{\kappa}{n} g, A\right)=0 \tag{20}
\end{equation*}
$$

It is clear that if the tensor $S-\frac{\kappa}{n} g$ vanishes at x then also $(* * *)$ and

$$
\begin{equation*}
A=\mu\left(S-\frac{\kappa}{n} g\right), \quad \mu \in \mathbb{R} \tag{21}
\end{equation*}
$$

are satisfied at x. Further, in view of Lemma 2.4(i) [15], we can conclude from (20) that if the tensor $S-\frac{\kappa}{n} g$ is nonzero at x then also (21) is fulfilled at x. Now (18), by (17) and (21), leads to $(* * *)$. Finally, we prove that (9) holds at x. In fact, the relation (15), in virtue of (21), turns into
$S_{\ell}^{p} C_{p i j k}=(n-1)\left(L_{R}-L_{C}\right) C_{\ell i j k}-\frac{1}{n^{2}} \mu \kappa G_{\ell i j k}+\frac{\mu}{n-2}\left(g_{\ell k} S_{i j}-g_{j \ell} S_{i k}\right)$

$$
\begin{equation*}
-\frac{\mu}{n(n-2)}\left(g_{i k} S_{j \ell}+g_{\ell k} S_{i j}-g_{j \ell} S_{i k}-g_{i k} S_{\ell k}\right) \tag{22}
\end{equation*}
$$

Applying this in (10) we get

$$
Q\left(\left(\frac{\kappa}{n-1}-L_{R}+L_{C}\right) g, C\right)=Q\left(S, C-\frac{\mu}{n(n-2)} G\right)
$$

which turns immediately into (9), completing the proof.
Combining Theorem 3.1 with Lemma 1.2 of [4] we get immediately the following corollary.

Corollary 3.1. Let $(M, g), \operatorname{dim} M \geq 4$, be a pseudosymmetric manifold with pseudosymmetric Weyl tensor. Then the tensors $S^{2}-\frac{\operatorname{tr}\left(S^{2}\right)}{n} g$ and $S-\frac{\kappa}{n} g$ are linearly dependent at every point of M.

Theorem 3.2. Let (M, g), $\operatorname{dim} M \geq 4$, be a pseudosymmetric manifold with pseudosymmetric Weyl tensor. Moreover, let V be a vector at $x \in U_{C}$ such that the scalar $\varrho=a(V)$ is nonzero, where a is a covector defined by

$$
a(X)=S(X, V)-\left(\frac{\kappa}{n-1}-L_{R}+L_{C}\right) g(X, V)
$$

$X \in T_{x}(M)$ and let F be a (0,2)-tensor defined by

$$
F(X, Y)=C(V, X, Y, V)-\frac{\mu}{n(n-2)} G(V, X, Y, V), X, Y \in T_{x} M
$$

and μ is the real number given in (9).
(i) If the tensor $S-\left(\frac{\kappa}{n-1}-L_{R}+L_{C}\right) g-\frac{1}{\varrho} a \otimes a$ vanishes then the relations:

$$
\begin{gather*}
C(X, Y, Z, W)= \\
=\frac{1}{\varrho^{2}}\left(F\left(\left(X \wedge_{a \otimes a} Y\right) Z, W\right)-F\left(\left(X \wedge_{a \otimes a} Y\right) W, Z\right)\right), \tag{23}\\
a(X) \tilde{C}(Y, Z)+a(Y) \tilde{C}(Z, X)+a(Z) \tilde{C}(X, Y)=0 \tag{24}\\
C \cdot C=0, L_{C}=0 \tag{25}\\
L_{R}=\frac{\kappa}{n(n-1)} \tag{26}\\
S=\frac{\kappa}{n} g+\frac{1}{\varrho} a \otimes a \tag{27}
\end{gather*}
$$

hold at x, where $X, Y, Z, W \in T_{x}(M)$.
(ii) If the tensor $S-\left(\frac{\kappa}{n-1}-L_{R}+L_{C}\right) g-\frac{1}{\varrho} a \otimes a$ is nonzero then the equality

$$
\begin{gathered}
\varrho C(X, Y, Z, W)= \\
\left(\frac{\mu \varrho}{(n-1)(n-2)}+\lambda\left(\frac{\kappa}{n-1}-L_{R}+L_{C}\right)^{2}\right) G(X, Y, Z, W)
\end{gathered}
$$

$$
\begin{gathered}
+\lambda S\left(\left(X \wedge_{S} Y\right) Z, W\right)-\lambda\left(\frac{\kappa}{n-1}-L_{R}+L_{C}\right)(g(X, W) S(Y, Z) \\
+g(Y, Z) S(X, W)-g(X, Z) S(Y, W)-g(Y, W) S(X, Z))
\end{gathered}
$$

holds at x, where $X, Y, Z, W \in T_{x}(M)$.
Proof. We will use notations of Proposition 4.1 of [2].
(i) Applying Proposition 4.1(i) of [2] we get
(28) $\varrho^{2}\left(C-\frac{\mu}{n(n-2)} G\right)_{\ell i j k}=a_{\ell} a_{k} F_{i j}+a_{i} a_{j} F_{\ell k}-a_{\ell} a_{j} F_{i k}-a_{i} a_{k} F_{\ell j}$.
(i1) We assume that μ vanishes. Then (28) reduces to (23). Thus (24) is satisfied. Moreover, from (23), in view of Theorem 1 of [13], it follows that (25) is fulfilled. Next, applying Theorem 4.2 of [2] we get (26). Now we see that the Ricci tensor S takes the required form (27).
(i2) Suppose that μ is nonzero. Then (28), after contraction with $g^{i j}$, yields

$$
\begin{equation*}
a^{p} a_{p} F_{\ell k}=-\frac{n-1}{n(n-2)} \mu \varrho^{2} g_{\ell k}+a_{\ell} b_{k}-a_{k} a_{\ell} \tag{29}
\end{equation*}
$$

where $b_{k}=a^{p} F_{\ell k}$. We note that if $a^{p} a_{p}$ vanishes then (29) reduces to

$$
g_{\ell k}=\tau\left(a_{\ell} b_{k}+a_{k} b_{\ell}\right), \quad \tau \in \mathbb{R}-\{0\}
$$

a contradiction. Thus $a^{p} a_{p}$ must be nonzero. Multiplying now (28) by $a^{p} a_{p}$ and using (29) we get

$$
\begin{gathered}
a^{p} a_{p}\left(C-\frac{\lambda}{n(n-2)} G\right)_{\ell i j k}= \\
=-\frac{n-1}{n(n-2)} \mu\left(a_{\ell} a_{k} g_{i j}+a_{i} a_{j} g_{\ell k}-a_{i} a_{k} g_{\ell j}-a_{\ell} a_{j} g_{i k}\right)
\end{gathered}
$$

Contracting this with $g^{\ell k}$ we get

$$
g_{i j}=\tilde{\tau} a_{i} a_{j}, \quad \tilde{\tau} \in \mathbb{R}-\{0\}
$$

a contradiction.
(ii) The second assertion is an immediate consequence of Proposition 4.1(ii) of [2]. Our theorem is thus proved.

4. Examples

In this section we present some examples of four-dimensional Riemannian manifolds with pseudosymmetric Weyl tensor.

Let (M, g) be the four-dimensional manifold defined in [6] (Lemme 1.1). As it was proved in [6] (see Lemme 1.1 and Remarqué 1.5), (M, g) is a non conformally flat and non semisymmetric, Weyl-semisymmetric manifold, i.e. the tensors C and $R \cdot R$ are nonzero and the condition $R \cdot C=$ 0 holds on M. Furthermore, using formulas for the local components of the Ricci tensor and the Riemann-Christoffel tensor of the manifold (M, g) obtained in [6] (Lemme 1.1), we can easily verify that (M, g) is a non Riccipseudosymmetric manifold satisfying at every point the condition $(* * *)$.

Let V be a connected subset of the set $U=\{x \in M: u(x) \neq 0\}$, where u is the function defined in [6] (Lemme 1.1). By formula (10) of [6] we have $U=U_{C}$. Let on V be given the conformal deformation $g \rightarrow \bar{g}_{k}=$ $\frac{1}{(u+k)^{2}} g$ of the metric g, where k is a constant such that $k \geq 0$ when $u>0$ on V or $k \leq 0$ when $u<0$ on V.

First we consider the deformation $g \rightarrow \bar{g}_{0}=\frac{1}{u^{2}} g$. The manifold $\left(V, \bar{g}_{0}\right)$ is an Einstein manifold ([6], Lemme 1.1(viii)). Moreover, as it was stated in [8] (Example 3) the relation

$$
\bar{R} \cdot \bar{R}=-\frac{1}{12}\left(u^{3}-p q\right) Q\left(\bar{g}_{0}, \bar{R}\right)
$$

holds on $\left(V, \bar{g}_{0}\right)$, where \bar{R} is the Riemann-Christoffel curvature tensor of \bar{g}_{0} and p, q are some constants. Now, in view of Theorem 3.1 of [3], the equality

$$
\bar{C} \cdot \bar{C}=-\frac{1}{12}\left(u^{3}-p q+\bar{\kappa}\right) Q\left(\bar{g}_{0}, \bar{C}\right)
$$

holds on V, where \bar{C} is the Weyl conformal curvature tensor of \bar{g}_{0} and the constant $\bar{\kappa}$ is the scalar curvature of \bar{g}_{0}. From this we get easily

$$
C \cdot C=-\frac{u^{3}-p q+\bar{\kappa}}{12 u^{2}} Q(g, C)
$$

Thus we see that the condition $(* *)$ is fulfilled on (M, g), i.e. (M, g) is a manifold with pseudosymmetric Weyl tensor.

Now we consider on V the conformal deformation $g \rightarrow \bar{g}_{k}=\frac{1}{(u+k)^{2}} g$, where k is a positive or negative constant. Since (V, g) is a manifold with pseudosymmetric Weyl tensor, then $\left(V, \bar{g}_{k}\right), k \neq 0$, is also a manifold with pseudosymmetric Weyl tensor. Moreover, as it was stated in [8] (Example 2) this manifold is a non Ricci-pseudosymmetric manifold.

Finally, we state that (M, g) is a Riemannian manifold which cannot be realized as a hypersurface immersed isometrically in a 5 -dimensional Euclidean space. This is an immediate consequence of Corollary 3.1 of [15] and the fact that the tensor $R \cdot R-Q(S, R)$ is a nonzero tensor on M. More generally, (M, g) cannot be realized as a hypersurface immersed isometrically in a 5 -dimensional space of constant curvature. This statement follows immediately from Proposition 3.1 of [15] and the fact that
the tensors $R \cdot R-Q(S, R)$ and $Q(g, C)$ are not linearly dependent at every point of M.

References

[1] A. L. Besse, Einstein manifolds, Springer Verlag, Berlin, Heidelberg, 1987.
[2] F. Defever and R. Deszcz, On semi-Riemannian manifolds satisfying the condition $R \cdot R=Q(S, R)$, Geometry and Topology of Submanifolds, III, Leeds, May 1990, World Sci., Singapore, 1991, pp. 108-130.
[3] F. Defever and R. Deszcz, On Riemannian manifolds satisfying certain curvature condition imposed on the Weyl curvature tensor, Acta Univ. Palackianae Olomuncensis Fac. Rer. Nat., Math. 32110 (1993), 27-34.
[4] J. Deprez, R. Deszcz and L. Verstraelen, Examples of pseudosymmetric conformally flat warped products, Chinese J. Math. 17 (1989), 51-65.
[5] J. Deprez, R. Deszcz, L. Verstraelen and Ș. Yaprak, Hypersurfaces satisfying pseudosymmetry conditions for their Weyl conformal curvature tensor (to appear).
[6] A. Derdziński, Examples de métriques de Kaehler et d'Einstein autoduales sur le plan complexe, Géométrie riemannianne en dimension 4, (Séminaire Arthur Besse 1978/79), Cedic/Fernand Nathan, Paris, 1981, pp. 334-346.
[7] R. Deszcz, On Ricci-pseudosymmetric warped products, Demonstratio Math. 22 (1989), 1053-1065.
[8] R. Deszcz, Examples of four-dimensional Riemannian manifolds satisfying some pseudo-symmetry curvature conditions, Geometry and Topology of Submanifolds, Avignon, May 1988, vol. II, World Sci., Singapore, 1990, pp. 134-143.
[9] R. Deszcz, On four-dimensional Riemannian warped product manifolds satisfying certain pseudo-symmetry curvature conditions, Colloquium Math. 62 (1991), 103-120.
[10] R.Deszcz, On pseudosymmetric spaces, Bull. Soc. Math. Belg. 44 (1992 Ser. A,), 1-34.
[11] R. Deszcz, Curvature properties of a certain compact pseudosymmetric manifold, Colloquium Math. 65 (1993), 139-147.
[12] R. Deszcz and W. Grycak, On some class of warped product manifolds, Bull. Inst. Math. Acad. Sinica 15 (1987), 311-322.
[13] R. Deszcz and W. Grycak, On certain curvature conditions on Riemannian manifolds, Colloquium Math. 58 (1990), 259-268.
[14] R. Deszcz and M. Hotloś, Remarks on Riemannian manifolds satisfying a certain condition imposed on the Ricci tensor, Prace Nauk. Pol. Szczec. 11 (1989), 23-34.
[15] R. Deszczand L. Verstraelen, Hypersurfaces of semi-Riemannian conformally flat manifolds, Geometry and Topology of Submanifolds, III, Leeds, May 1990, World Sci., Singapore, 1991, pp. 131-147.
[16] R. Deszcz, L. Verstraelen and Ṣ. Yaprak, Warped products realizing a certain condition of pseudosymmetry type imposed on the Weyl curvature tensor, Chinese J. Math. (to appear).
[17] R. Deszcz and Ș. Yaprak, Curvature properties of Cartan hypersurfaces, Colloquium Math. (to appear).
[18] A. Fialkow, Hypersurfaces of a space of constant curvature, Ann. Math. 39 (1938), 762-785.
[19] M. Hotloś, Curvature properties of some Riemannian manifolds, Proc. of the Third Congress of Geometry, Thessaloniki, 1991, pp. 212-219.
[20] M.A. Magid, Shape operators of Einstein hypersurfaces in indefinite space forms, Proc. AMS 84 (1982), 237-242.
[21] M.A. Magid, Indefinite Einstein hypersurfaces with imaginary principal curvatures, Houston J. Math. 10 (1984), 57-61.
[22] M.A. Magid, Indefinite Einstein hypersurfaces with nilpotent shape operators, Hokkaido Math. J. 13 (1984), 241-250.
[23] Z.I. Szabó, Structure theorems on Riemannian spaces satisfying $R(X, Y) \cdot R=0$. I. The local version, J. Diff. Geom. 17 (1982), 531-582.

```
RYSZARD DESZCZ
DEPARTMENT OF MATHEMATICS
AGRICULTURAL UNIVERSITY OF WROCEAW
UL. C.K. NORWIDA 25, 50-375 WROCEAW
POLAND
```

ṢAHNUR YAPRAK
DEPARTMENT OF MATHEMATICS
UNIVERSITY OF ANKARA
00100 TANDOGAN, ANKARA
TURKEY
(Received August 30, 1993)

