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Curvature properties of certain
pseudosymmetric manifolds

By RYSZARD DESZCZ (WrocÃlaw) and S.AHNUR YAPRAK (Ankara)

1. Introduction

Let (M, g) be a connected n-dimensional, n ≥ 3, semi-Riemannian
manifold of class C∞ with the metric g and the Levi-Civita connection
∇. Moreover, let S and κ be the Ricci tensor and the scalar curvature of
(M, g), respectively. A semi-Riemannian manifold (M, g), n ≥ 3, is said
to be Einstein manifold ([1], p. 3) if

(1) S =
κ

n
g

holds on M . Certain Einstein manifolds can be realized as hypersurfaces
immersed isometrically in a semi-Riemannian space of constant curvature
Mn+1(c) ([18], [20], [21], [22]). Such hypersurfaces have also a curvature
property of pseudosymmetry type. Namely, in [15] (Proposition 3.2) it
was proved that every Einstein hypersurface immersed isometrically in
a semi-Riemannian space of constant curvature Mn+1(c), n ≥ 4, is a
pseudosymmetric manifold. A semi-Riemannian manifold (M, g), n ≥ 3,
is said to be pseudosymmetric [12] if at every point of M the following
condition is satisfied:
(∗) the tensors R ·R and Q(g, R) are linearly dependent.
The manifold (M, g) is pseudosymmetric if and only if

(2) R ·R = LRQ(g, R)

holds on the set UR = {x ∈ M | Z(R) 6= 0 at x}, where LR is some function
on UR. The definitions of the tensors R ·R, Q(g,R) and Z(R) will be given
in the next section. Pseudosymmetric manifolds are a generalization of the
notion of locally symmetric manifolds (∇R = 0) as well as of the notion
of semisymmetric manifolds (R · R = 0, [23]). We refer [10] as a review
paper on pseudosymmetric manifolds.

Another class of semi-Riemannian manifolds are manifolds with pseu-
dosymmetric Weyl tensor. A semi-Riemannian manifold (M, g), n ≥ 4, is
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said to be manifold with pseudosymmetric Weyl tensor if at every point of
M its Weyl conformal curvature tensor C satisfies the following condition
([16], [17]):

(∗∗) the tensors C · C and Q(g, C) are linearly dependent.
We note that the condition (∗∗) is invariant under the conformal defor-
mations of the metric tensor g. The manifold (M, g) is a manifold with
pseudosymmetric Weyl tensor if and only if

(3) C · C = LCQ(g, C)

holds on the set UC = {x ∈ M | C 6= 0 at x}, where LC is some function
on UC . The definitions of the tensors C ·C and Q(g, C) will be given also
in the next section. Note that UC ⊂ UR. If (M, g) is an Einstein manifold
then UC = UR. The condition (∗∗) arose during the study of 4-dimensional
warped products ([9]). It was shown in [9] (Theorem 2) that every warped
product M1 ×F M2, dim M1 = dim M2 = 2, fulfils (∗∗). Furthermore,
it is easy to verify that if (M, g), n ≥ 4, is an Einstein manifold then
the relations (2) and (3), with LC = LR − κ

n(n−1) , are equivalent on UR

(cf. [3], Theorem 3.1). Examples of not Einsteinian semi-Riemannian
manifolds realizing (∗) and (∗∗) are described in [3] (Theorem 4.1) and [11]
(Theorem 4.1). In addition, these manifolds satisfying a certain another
condition, weaker than (1). Namely, it is easy to check that at every
point of the manifolds described in the above theorems also the following
condition is fulfilled:
(∗ ∗ ∗) the tensors S2 − tr(S2)

n g and S − κ
ng are linearly dependent.

The tensor S2 is defined by S2(X, Y ) = S(S̃X, Y ), where the tensor S̃,
defined by S(X,Y ) = g(S̃X, Y ), is the Ricci operator of (M, g) and X, Y
are vector fields on M . However, the classes of manifolds satisfying (∗)
or (∗∗) do not coincide. A suitable example is given in [3] (Example 5.2).
Warped products realizing (∗∗) are considered in [16]. Hypersurfaces in
Euclidean spaces realizing (∗∗) are studied in [5].

In this paper we will investigate curvature properties of pseudosym-
metric manifolds having pseudosymmetric Weyl tensor. Certain results
concerned with this subject are present in [19]. Namely, by Theorems
1 and 2 and Proposition 4 of [19] (cf. [2], Theorem 4.2) we obtain some
curvature properties of pseudosymmetric manifolds (M, g) satisfying the
condition:

(4) ω(X)C̃(Y, Z) + ω(Y )C̃(Z,X) + ω(Z)C̃(X, Y ) = 0,

where C̃ is the Weyl curvature operator of (M, g), ω is an 1-form on M and
X, Y, Z are vector fields on M . We note that the tensor C · C vanishes at
all point of a semi-Riemannian manifold fulfilling (4) at which the 1-form
ω is nonzero ([13], Corollary 1).
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Our main result (Theorem 3.1) states: If (M, g), dim M ≥ 4, is a
semi-Riemannian manifold realizing (∗) and (∗∗) then at every point of M
the condition (∗ ∗ ∗) is satisfied.

Furthermore, we will find also another curvature relations of manifolds
realizing these both conditions. In the last section we shall investigate
curvature properties of pseudosymmetry type of a certain four-dimensional
Riemannian manifold described in [6]. This manifold is an example of a
non Ricci-pseudosymmetric manifold with pseudosymmetric Weyl tensor.

2. Preliminaries

Let (M, g) be a connected n-dimensional, n ≥ 3, semi-Riemannian
manifold. We define on M the endomorphisms R̃(X,Y ), X ∧ Y and
C̃(X, Y ) by

R̃(X,Y )Z = [∇X ,∇Y ]Z −∇[X,Y ]Z,

(X ∧ Y )Z = g(Y,Z)X − g(X, Z)Y,

C̃(X, Y ) = R̃(X, Y )− 1
n− 2

(
(X ∧ S̃Y + S̃X ∧ Y )− κ

n− 1
X ∧ Y

)
,

respectively, where X,Y, Z ∈ Ξ(M), Ξ(M) being the Lie algebra of vector
fields on M . Furthermore, we define the Riemann–Christoffel curvature
tensor R, the Weyl conformal curvature tensor C, the tensor G and the
concircular tensor Z(R) of (M, g) by

R(X1, X2, X3, X4) = g(R̃(X1, X2)X3, X4),

C(X1, X2, X3, X4) = g(C̃(X1, X2)X3, X4),

G(X1, X2, X3, X4) = g((X1 ∧X2)X3, X4)

and Z(R) = R− κ
n(n−1)G, respectively. For a (0, k)-tensor T on M , k ≥ 1,

we define the (0, k + 2)-tensors R · T and Q(g, T ) by

R · T (X1, . . . , Xk; X, Y ) =− T (R̃(X, Y )X1, X2, . . . , Xk)

− · · · − T (X1, . . . , Xk−1, R̃(X, Y )Xk),

Q(g, T )(X1, . . . , Xk; X, Y ) = T ((X ∧ Y )X1, X2, . . . , Xk)

+ · · ·+ T (X1, . . . , Xk−1, (X ∧ Y )Xk),

respectively. Similarly, we can define the (0, k + 2)-tensor C · T . Let
now A and T be a symmetric (0, 2)-tensor and a (0, k)-tensor on a semi-
Riemannian manifold (M, g), n ≥ 3, respectively. We define on M the
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(0, k + 2)-tensor Q(A, T ) by

Q(A, T )(X1, . . . , Xk;X, Y ) = T ((X ∧A Y )X1, X2, . . . , Xk)

+ · · ·+ T (X1, . . . , Xk−1, (X ∧A Y )Xk),

where X ∧A Y is the endomorphism defined by

(X ∧A Y )Z = A(Y, Z)X −A(X, Z)Y.

In particular, we have X ∧g Y = X ∧Y . Let (M, g) be a semi-Riemannian
manifold covered by a system of charts {U ; xk}. We denote by

gij , Rhijk, Sij , Sj
i = gjkSij , Ghijk = ghkgij − ghjgik

and

Chijk =Rhijk +
κ

(n− 1)(n− 2)
Ghijk

− 1
n− 2

(ghkSij − ghjSik + gijShk − gikShj),

the local components of the metric tensor g, the Riemann-Christoffel cur-
vature tensor R, the Ricci tensor S, the Ricci operator S̃, the tensor G
and the Weyl tensor C, respectively. By R · Ti1...ik`m we will denote the
local components of the tensor R · T .

The semi-Riemannian manifold (M, g) is said to be Ricci-pseudosym-
metric ([14], [7]) if at every point of M the following condition is satisfied:

(∗ ∗ ∗∗) the tensors R · S and Q(g, S) are linearly dependent.
The manifold (M, g) is Ricci-pseudosymmetric if and only if

R · S = LSQ(g, S)

holds on the set US = {x ∈ M | S− κ
ng 6= 0 at x}, where LS is some fuction

on US . It is clear that if at a point x of a manifold (M, g) (∗) is satisfied
then also (∗∗∗∗) holds at x. The converse statement is not true ([14], [7]).
For instance, the Cartan hypersurfaces of dimensions > 3 are not pseu-
dosymmetric, Ricci-pseudosymmetric manifolds ([17], Theorem 1). These
hypersurfaces satisfy also the condition (∗ ∗ ∗).
At the end of this section we present the following two lemmas.

Lenna 2.1. The Weyl curvature tensor of every Ricci-pseudosymmet-
ric semi-Riemannian manifold (M, g), dim M ≥ 4, fulfils the following
equality

(5) C(S̃X, Y, Z, W ) + C(S̃Z, Y, W,X) + C(S̃W, Y, X, Z) = 0 ,
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where X, Y, Z, W ∈ Ξ(M).

Proof. Evidently, (5) is satisfied at every point of M −US . Let now
x be a point of US . Thus, by our assumptions, the following relation

(6)

−R(S̃X1, X2, X3, X4)−R(X1, S̃X2, X3, X4) =

= LS(g(X4, X1)S(X3, X2)− g(X3, X1)S(X4, X2)

+g(X4, X2)S(X3, X1)− g(X3, X2)S(X4, X1))

holds at x, where X1, . . . , X4 ∈ Tx(M). Summing this cyclically in X1, X3,
X4 we get

R(S̃X1, X2, X3, X4) + R(S̃X3, X2, X4, X1) + R(S̃X4, X2, X1, X3) = 0.

But on the other hand, we can easily verify that the following identity

C(S̃X, Y, Z,W ) + C(S̃Z, Y,W,X) + C(S̃W, Y,X, Z)

= R(S̃X, Y, Z, W ) + R(S̃Z, Y,W,X) + R(S̃W, Y,X, Z)

holds on any semi-Riemannian manifold. Using now the last two equations,
we can conclude that (5) is fulfilled at x, which completes the proof.

Lemma 2.2. Let (M, g), dimM ≥ 4, be a pseudosymmetric semi-
Riemannian manifold with pseudosymmetric Weyl tensor. Then the rela-
tion

(7)

((n− 2)(LR − LC) +
κ

n− 1
)Q(g, C)(X1, . . . , X4; X, Y )

= Q(S,C)(X1, . . . , X4; X,Y )

+g(X1, Y )C(S̃X, X2, X3, X4)− g(X1, X)C(S̃Y, X2, X3, X4)

−g(X2, Y )C(S̃X, X1, X3, X4) + g(X2, X)C(S̃Y, X1, X3, X4)

+g(X3, Y )C(S̃X, X4, X1, X2)− g(X3, X)C(S̃Y, X4, X1, X2)

−g(X4, Y )C(S̃X, X3, X1, X2) + g(X4, X)C(S̃Y, X3, X1, X2)

holds on UC , where X,Y,X1, . . . , X4 are vector fields on UC .

Proof. First of all we note that from (2) it follows that the relation

(8) R · C = LRQ(g, C)

holds on UC . Moreover, it is easy to verify that the following identity is
satisfied on UC

C · C(X1, . . . , X4;X,Y ) = R · C(X1, . . . , X4;X, Y )
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+
κ

(n− 1)(n− 2)
Q(g, C)(X1, . . . , X4; X,Y )

− 1
n− 2

Q(S, C)(X1, . . . , X4; X, Y )

− 1
n− 2

(g(X1, Y )C(S̃X,X2, X3, X4)− g(X1, X)C(S̃Y, X2, X3, X4)

−g(X2, Y )C(S̃X, X1, X3, X4) + g(X2, X)C(S̃Y, X1, X3, X4)

+g(X3, Y )C(S̃X, X4, X1, X2)− g(X3, X)C(S̃Y, X4, X1, X2)

−g(X4, Y )C(S̃X, X3, X1, X2) + g(X4, X)C(S̃Y, X3, X1, X2)).

Now, applying in this (3) and (8) we get (7), completing the proof.

3. Manifolds satisfying (∗) and (∗∗)

Theorem 3.1. Let (M, g), dimM ≥ 4, be a pseudosymmetric mani-
fold with pseudosymmetric Weyl tensor. Then the conditions (∗ ∗ ∗) and

(9) Q

(
S − (

κ

n− 1
− LR + LC)g, C − µ

n(n− 2)
G

)
= 0, µ ∈ R,

hold at every point of UC .

Proof. Let x be a point of UC . We can present (7) in the following
form

(10)

(
(n− 2)(LR − LC) +

κ

n− 1

)
Q(g, C)hijk`m = Q(S, C)hijk`m

+ghmSp
` Cpijk − gh`S

p
mCpijk − gimSp

` Cphjk + gi`S
p
mCphjk

+gjmSp
` Cpkhi − gj`S

p
mCpkhi − gkmSp

` Cpjhi + gk`S
p
mCpjhi.

Contracting this with ghm and using the identities

ghmQ(g, C)hijk`m = (n− 1)C`ijk,

ghmQ(S, C)hijk`m = κC`ijk + Sp
i Cp`jk + Sp

j Cpi`k + Sp
kCpij` − Sp

` Cpijk,

we obtain

(11)
(n− 1)(n− 2)(LR − LC)C`ijk = Sp

i Cp`jk + Sp
j Cpi`k

+Sp
kCpij` + (n− 2)Sp

` Cpijk + gj`Aki − gk`Aij ,
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where

(12)
Aij = SpqCipqj = SpqRipqj +

2
n− 2

S2
ij −

nκ

(n− 1)(n− 2)
Sij

+
1

n− 2

(
κ2

n− 1
− SpqSpq

)
gij .

But (11), in view of Lemma 2.1, reduces to

(13)
(n− 1)(n− 2)(LR − LC)C`ijk = Sp

i Cp`jk

+(n− 1)Sp
` Cpijk + gj`Aki − gk`Aij .

Symmetrizing this in `, i we find

(14) Sp
i Cp`jk + Sp

` Cpijk =
1
n

(gk`Aij + gkiAj` − gj`Aik − gijAk`).

Thus (13) turns into

(15)
(n− 1)(n− 2)(LR − LC)C`ijk = (n− 2)Sp

` Cpijk + gj`Aki

−gk`Aij +
1
n

(gk`Aij + gkiAj` − gj`Aik − gijAk`).

It is easy to check that the identity

−Sp
i Cpjk` − Sp

j Cpik` =
1

n− 2
(gjkS2

i` − gj`S
2
ik + gikS2

j` − gi`S
2
jk)

+R · Sijk` − κ

(n− 1)(n− 2)
(gjkSi` − gj`Sik + gikSj` − gi`Sjk),

by making use of the relation R·S = LRQ(g, S), which follows immediately
from (2), turns into

−Sp
i Cpjk` − Sp

j Cpik` = gj`Bik − gjkBi` + gi`Bjk − gikBj`,(16)

Bjk = LRSjk +
κ

(n− 1)(n− 2)
Sjk − 1

n− 2
S2

jk.(17)

Moreover, contracting the equality

−Sp
i Rpj`m − Sp

j Rpi`m = LR(gimSj` + gjmSi` − gi`Sjm − gj`Sim)

with g`m we obtain

SpqRjpq` = S2
j` − nLR

(
Sj` − κ

n
gj`

)
.

Substituting this in (12) and using (17) we get

(18) Aij = −nBij + tr(B)gij .
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Next, transvecting (15) with Sij we find

(19)
(

(n− 2)(LR − LC) +
κ

n(n− 1)

)
A`k = E`k − 1

n
tr(E)g`k,

where E`k = Sp
` Apk. On the other hand, transvecting (13) with Sk

m and
symmetrizing the resulting equality in j,m we obtain

(n− 1)(n− 2)(LR − LC)(Sp
mCpji` + Sp

j Rpmi`) = Sk
i (Sp

mCpj`k + Sp
j Cpm`k)

+(n− 1)Sk
` (Sp

mCpjik + Sp
j Cpmik) + g`mEij + gj`Eim − Sj`Aim − S`mAij .

This, by an application of (14), yields

(n− 1)(n− 2)
n

(LR − LC)(g`mAij + gj`Aim − gijA`m − gimAj`)

= − 1
n

(g`mEij + gj`Eim − SijA`m − SimAj`) +
n− 1

n
(S`mAij

+Sj`Aim − gijE`m − gimEj`) + g`mEij + gj`Eim −AijS`m −AimSj`

which, after antisymmetrization in `, i, turns into

(n− 1)(n− 2)(LR − LC)Q(g, A) = −Q(S, A) + (n− 1)Q(g,E).

Now, in virtue of (19), we have

(20) Q(S − κ

n
g, A) = 0.

It is clear that if the tensor S − κ
ng vanishes at x then also (∗ ∗ ∗) and

(21) A = µ(S − κ

n
g), µ ∈ R,

are satisfied at x. Further, in view of Lemma 2.4(i) [15], we can conclude
from (20) that if the tensor S− κ

ng is nonzero at x then also (21) is fulfilled
at x. Now (18), by (17) and (21), leads to (∗ ∗ ∗). Finally, we prove that
(9) holds at x. In fact, the relation (15), in virtue of (21), turns into

Sp
` Cpijk = (n− 1)(LR − LC)C`ijk − 1

n2
µκG`ijk +

µ

n− 2
(g`kSij − gj`Sik)

− µ

n(n− 2)
(gikSj` + g`kSij − gj`Sik − gikS`k).(22)

Applying this in (10) we get

Q

((
κ

n− 1
− LR + LC

)
g, C

)
= Q

(
S,C − µ

n(n− 2)
G

)
,
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which turns immediately into (9), completing the proof.

Combining Theorem 3.1 with Lemma 1.2 of [4] we get immediately
the following corollary.

Corollary 3.1. Let (M, g), dim M ≥ 4, be a pseudosymmetric man-

ifold with pseudosymmetric Weyl tensor. Then the tensors S2 − tr(S2)
n g

and S − κ
ng are linearly dependent at every point of M .

Theorem 3.2. Let (M, g), dim M ≥ 4, be a pseudosymmetric mani-
fold with pseudosymmetric Weyl tensor. Moreover, let V be a vector at
x ∈ UC such that the scalar % = a(V ) is nonzero, where a is a covector
defined by

a(X) = S(X, V )−
(

κ

n− 1
− LR + LC

)
g(X, V ),

X ∈ Tx(M) and let F be a (0, 2)-tensor defined by

F (X, Y ) = C(V,X, Y, V )− µ

n(n− 2)
G(V,X, Y, V ), X, Y ∈ TxM,

and µ is the real number given in (9).

(i) If the tensor S− ( κ
n−1 −LR +LC)g− 1

%a⊗a vanishes then the relations:

(23)
C(X, Y, Z, W ) =

=
1
%2

(F ((X ∧a⊗a Y )Z, W )− F ((X ∧a⊗a Y )W,Z)),

a(X)C̃(Y,Z) + a(Y )C̃(Z, X) + a(Z)C̃(X, Y ) = 0,(24)

C · C = 0, LC = 0,(25)

LR =
κ

n(n− 1)
,(26)

S =
κ

n
g +

1
%
a⊗ a,(27)

hold at x, where X, Y, Z, W ∈ Tx(M).
(ii) If the tensor S−( κ

n−1−LR+LC)g− 1
%a⊗a is nonzero then the equality

%C(X, Y, Z,W ) =(
µ%

(n− 1)(n− 2)
+ λ

(
κ

n− 1
− LR + LC

)2
)

G(X,Y, Z, W )
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+λS((X ∧S Y )Z, W )− λ

(
κ

n− 1
− LR + LC

)
(g(X,W )S(Y,Z)

+g(Y, Z)S(X,W )− g(X, Z)S(Y, W )− g(Y, W )S(X, Z))

holds at x, where X, Y, Z,W ∈ Tx(M).

Proof. We will use notations of Proposition 4.1 of [2].
(i) Applying Proposition 4.1(i) of [2] we get

(28) %2

(
C − µ

n(n− 2)
G

)

`ijk

= a`akFij + aiajF`k − a`ajFik − aiakF`j .

(i1) We assume that µ vanishes. Then (28) reduces to (23). Thus (24) is
satisfied. Moreover, from (23), in view of Theorem 1 of [13], it follows that
(25) is fulfilled. Next, applying Theorem 4.2 of [2] we get (26). Now we
see that the Ricci tensor S takes the required form (27).
(i2) Suppose that µ is nonzero. Then (28), after contraction with gij ,
yields

(29) apapF`k = − n− 1
n(n− 2)

µ%2g`k + a`bk − aka`,

where bk = apF`k. We note that if apap vanishes then (29) reduces to

g`k = τ(a`bk + akb`), τ ∈ R− {0},
a contradiction. Thus apap must be nonzero. Multiplying now (28) by
apap and using (29) we get

apap

(
C − λ

n(n− 2)
G

)

`ijk

=

= − n− 1
n(n− 2)

µ(a`akgij + aiajg`k − aiakg`j − a`ajgik).

Contracting this with g`k we get

gij = τ̃aiaj , τ̃ ∈ R− {0},
a contradiction.
(ii) The second assertion is an immediate consequence of Proposition 4.1(ii)
of [2]. Our theorem is thus proved.

4. Examples

In this section we present some examples of four-dimensional Rie-
mannian manifolds with pseudosymmetric Weyl tensor.
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Let (M, g) be the four-dimensional manifold defined in [6] (Lemme
1.1). As it was proved in [6] (see Lemme 1.1 and Remarqué 1.5), (M, g)
is a non conformally flat and non semisymmetric, Weyl-semisymmetric
manifold, i.e. the tensors C and R·R are nonzero and the condition R·C =
0 holds on M . Furthermore, using formulas for the local components of
the Ricci tensor and the Riemann-Christoffel tensor of the manifold (M, g)
obtained in [6] (Lemme 1.1), we can easily verify that (M, g) is a non Ricci-
pseudosymmetric manifold satisfying at every point the condition (∗ ∗ ∗).

Let V be a connected subset of the set U = {x ∈ M : u(x) 6= 0 },
where u is the function defined in [6] (Lemme 1.1). By formula (10) of [6]
we have U = UC . Let on V be given the conformal deformation g → ḡk =

1
(u+k)2 g of the metric g, where k is a constant such that k ≥ 0 when u > 0
on V or k ≤ 0 when u < 0 on V .

First we consider the deformation g → ḡ0 = 1
u2 g. The manifold (V, ḡ0)

is an Einstein manifold ([6], Lemme 1.1(viii)). Moreover, as it was stated
in [8] (Example 3) the relation

R̄ · R̄ = − 1
12

(u3 − pq)Q(ḡ0, R̄)

holds on (V, ḡ0), where R̄ is the Riemann-Christoffel curvature tensor of
ḡ0 and p, q are some constants. Now, in view of Theorem 3.1 of [3], the
equality

C̄ · C̄ = − 1
12

(u3 − pq + κ̄)Q(ḡ0, C̄)

holds on V , where C̄ is the Weyl conformal curvature tensor of ḡ0 and the
constant κ̄ is the scalar curvature of ḡ0. From this we get easily

C · C = −u3 − pq + κ̄

12u2
Q(g, C).

Thus we see that the condition (∗∗) is fulfilled on (M, g), i.e. (M, g) is a
manifold with pseudosymmetric Weyl tensor.

Now we consider on V the conformal deformation g → ḡk = 1
(u+k)2 g,

where k is a positive or negative constant. Since (V, g) is a manifold with
pseudosymmetric Weyl tensor, then (V, ḡk), k 6= 0, is also a manifold
with pseudosymmetric Weyl tensor. Moreover, as it was stated in [8]
(Example 2) this manifold is a non Ricci-pseudosymmetric manifold.

Finally, we state that (M, g) is a Riemannian manifold which cannot
be realized as a hypersurface immersed isometrically in a 5-dimensional
Euclidean space. This is an immediate consequence of Corollary 3.1 of
[15] and the fact that the tensor R · R − Q(S, R) is a nonzero tensor on
M . More generally, (M, g) cannot be realized as a hypersurface immersed
isometrically in a 5-dimensional space of constant curvature. This state-
ment follows immediately from Proposition 3.1 of [15] and the fact that
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the tensors R ·R−Q(S, R) and Q(g, C) are not linearly dependent at every
point of M .
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