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Geometry of space-time and
generalised Lagrange gauge theory

By R. MIRON (Iaşi), R.K. TAVAKOL (London),
V. BALAN (Bucharest) and I. ROXBURGH (London)

Dedicated to Professor Lajos Tamássy on his 70th birthday

Abstract. In §1 and §2 the authors present the Einstein and Maxwell equations
for the generalised Lagrange space

GLn = (M, gij(x, y) = e2σ(x,y)γij(x)),

and characterize the case of vanishing mixed curvature tensor field of the canonical linear
d-connection. The Lagrangian gauge theory — in G.S. Asanov’s sense [1] is developed
in §3 for the tangent bundle endowed with (h, v)-metrics, obtaining the generalised
Einstein - Yang Mills equations with respect to the metric gauge tensor fields and to
the gauge field σ(x, y) for three remarkable cases in which the metrics are derived from
the fundamental tensor field gij(x, y). Proofs are, in most cases, mechanical but rather
tedious calculations. They are omitted.

Introduction

In a previous paper [6] it was shown that the EPS conditions can
be satisfied in a more general frame than that of Finsler spaces, namely
for convenient generalised Lagrange spaces. More precise, was examined
the space GLn = (M, gij(x, y)), where M is a n-dimensional differentiable
manifold and

(A1) gij(x, y) = e2σ(x,y)γij(x),

γij(x) being a metric tensor field on M , and σ : TM → R a function of
class C∞ on T̃M = TM \{0}, continuous on the null section of the tangent
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bundle. The space was endowed with the non-linear connection

(A2) N i
j(x, y) =

{
i

kj

}
yk,

where
{

i
kj

}
are the Christoffel symbols for γij(x). Under these assump-

tions, GLn represents a convenient relativistic model, since it has the
same conformal and projective properties as the Riemannian space V n =
(M, γij(x)).

§1. Einstein equations for GLn

Developing the formalism presented in [3,4], we remind that the ca-
nonical h- and v-symmetrical d-connection of GLn has the coefficients

(1.1)
Ljk

i =
{

i

jk

}
+ Λi

jk

Cbc
a = δa

b σ̇c + δa
c σ̇b − γbcσ̇

a

where we used the notations

(1.1’)
Λi

jk = δi
jσk + δi

kσj − γjkσi

σk = δkσ, σ̇a = ∂̇aσ, σk = γksσs, σ̇a = γabσ̇b

and

(1.1”) δk = ∂k −Na
k (x, y)∂̇a, ∂̇b =

∂

∂yb
; ∂k ≡ ∂

∂xk
.

Then the torsion d-tensor fields of the canonical linear d-connection CΓ(N)
of GLn have the coefficients given by

(1.2)

{
Tjk

i = 0, Sa
bc = 0, Cja

i,

Ra
kl = rd

a
kly

d, P a
kb = −Λa

bk.

and the curvature d-tensor fields have the expressions

(1.3)





Rj
i
kl = rj

i
kl + δi

(kσjl) − γisγj(kσsl) + γjsσ̇
(sR

i)
kl

Pj
i
kc = δi

k

1
σjc − δi

c

2
σjk − γis ·

[
γjk

1
σsc − γjc

2
σsk

]
+ γisγckσ(sσ̇j)

Sa
bcd = δa

(cσ̇bd) − γasγb(cσ̇sd)
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where rj
i
kl is the curvature tensor field of γij(x), t(ij) = tij − tji, and we

considered the following d-tensor fields

(1.3’)

σsl = σs|l + σsσl − 1
2
γsl

H
σ = σs|◦l − σsσl +

1
2
γsl

H
σ

1
σsl = σs|l + σsσ̇l − 1

2
γsl

M
σ = ∂̇lσs − σ̇sσl +

1
2
γsl

M
σ

2
σsl = σ̇s|l + σ̇sσl − 1

2
γsl

M
σ = σ̇s|◦l − σsσ̇l +

1
2
γsl

M
σ

σ̇sl = σ̇s|l + σ̇sσ̇l − 1
2
γsl

V
σ = ∂̇lσ̇s − σ̇sσ̇l +

1
2
γsl

V
σ

with
H
σ = σsσ

s,
M
σ = σsσ̇

s,
V
σ = σ̇sσ̇

s.
We also used the covariant derivatives

(1.3”) σs|l = δlσs − Lt
slσt, σs|l = ∂̇lσs − Ct

slσt, σs|◦l = ∂lσs −
{

t

sl

}
σt.

Then, by contracting the indices, one can derive the four Ricci tensor fields,
expressed by

(1.4)

Rij = rij − γij σ̇ + (2− n) · σij + γisσ̇
(srt

a)
ja

1

P bk = (1− n)
2
σbk +

1
σbk − γbk

1
σ + σ(kσ̇b)

2

P bc = (1− n)
1
σbc − 2

σbc − γbc
2
σ + σ(cσ̇b)

Sbc = (2− n)σ̇bc − γbcσ̇

and then the curvature scalar fields

(1.5)





R = e−2σ[r + 2(1− n)
0
σ + 2rscy

sσ̇c]
1

P = −
2

P = e−2σ · 2(1− n)
1
σ, S = e−2σ · 2(1− n)σ̇,

where
0
σ = γijσij ,

1
σ = γij 1

σij ,
2
σ = γij 2

σij , σ̇ = γabσ̇ab, rbk = rs
bks, r = γbkrbk.

Regarding the mixed curvature tensor field, the following result ob-
tained by direct calculation holds true:

Theorem. The following assertions are valid:

a) P a
bkc − P a

bck = 0 iff
1
σbc +

1
σcb = 0

b) P a
bkc + P a

bck = 0 iff
1
σbc − 1

σcb = 2
nσ(bσ̇c) = 0.

c) Pb
a

kc = 0 implies
H
σ

V
σ =

M
σ 2 and

1
σ =

2
σ = 0
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d)
1

P bk =
2

P bk = 0 iff
1
σbk = 1

nσ(bσ̇k)

e)
1
σjk =

2
σkj .

Remark. Using a), b), and e) it becomes obvious that Pb
a

kc = 0

implies
1
σbk =

2
σbk = 0.

The Einstein equations of the space GLn have the generic form

(1.6)





Rij − 1
2Rgij = κ

H

T ij

Sab − 1
2Sgab = κ

V

T ab

where
H

T ij and
V

T ab are called the h- and the v-components of the energy-
momentum tensor field of the space GLn respectively, gab = δi

aδj
b · gij

and κ is the gravific constant. Using the expressions of the Ricci d-tensor
fields (1.4) and of the curvature scalars (1.5) we obtain that the Einstein
equations of the space GLn admit the equivalent form

(1.6’)





rij − 1
2rγij + tij = κ

H

T ij

(2− n)(σ̇ab − σ̇γab) = κ
V

T ab

where
tij = (n− 2)(γij

0
σ − σij) + γijrsty

sσ̇t + γisσ̇
(sr

a)
tjayt

We remark that in the first equation of the system (1.6’) the term tij is
complementary to the classical Einstein equations of the Riemannian space
V n = (M,γij(x)).

§2. Maxwell equations for GLn

Let the h- and v-deflection tensor fields be given respectively by

Di
j = yi|j , di

j = yi|j
and the corresponding ones having the indices lowered

Dij = gisD
s
j , dij = gisd

s
j .

Then we define the h- and v-electromagnetic tensor fields by

(2.1) Fij =
1
2
(Dij −Dji), fij =

1
2
(dij − dji)
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respectively, and infer the Maxwell equations

(2.2)





σ
ijk

Fij|k = σ
ijk

e2σr0
s
kjyiσ̇s

σ
ijk

Fij |k + σ
ijk

fij|k = 0

σ
ijk

fij |k = 0

where σ
ijk

denotes cyclic summation in the indices i, j, k and

r0
s
kj = rt

s
kjy

t, yi = γisy
s.

Indeed, (2.2) takes place since Dij and dij satisfy the relations




Dij|k −Dik|j = R0ijk − disR
s
jk

Dij |k − dik|j = P0ijk −DisC
s
jk − disP

s
jk

dij |k − dik|j = S0ijk

and the Bianchi identities lead to (2.2). Also, the same equations come up
clearly if we consider the expressions

Fij = e2σ(yiσj − yjσi), fij = e2σ(yi · σj − γjσi)

using direct computation.
In the following we examine the Maxwell equations for some remark-

able particular examples of spaces GLn:
1. If σ(x, y) = 1

2γrsy
rys, then the Maxwell equations are trivially satis-

fied, since as σk = 0 and σ̇k = yk, we infer that
Fij = fij = 0.

2. If GLn is locally Minkowskian, i.e. at any point (x, y) ∈ TM there
exists a domain of a local map in which

gij(x, y) = e2σ(y)γij with ∂kγij = 0,

then Fij = 0 and fij = e2σ(y)y(iσ̇j), and the Maxwell equations

σ
ijk

fij |k = 0

take place.
3. For a dispersive medium [7] (M, V i(x), n(x, V (x))) where V i(x) is the

speed of the particle and n(x, V (x)) is the refraction index, we can consider

σ(x, y) = α ·
(

1− 1
n2(x, y)

)
, α ∈ R, α > 0.

Remark that for yi = V i(x) the Maxwell equations have to be computed
directly, being not implied by (2.2).
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§3. Generalized Einstein - Yang Mills equations

Let TM be endowed with a (h, v)-metric G∗ [3] given by

(3.1) G∗ = gijdxi ⊗ dxj + habδy
a ⊗ δyb

where {dxi, δya | i, a = 1, n1, n} is the adapted basis for the cotangent
bundle, dual to (1.1”), and gij(x, y), hab(x, y) are symmetric d-tensor fields
of rank n.

Let the coordinate transform on TM be given by

(3.2)

{
xi = xi(xj), det(∂xi/∂x̄j) 6= 0,

ya = ∂xa

∂x̄b ȳb, i, j, a, b = 1, n.

A generalized gauge transformation on TM is a diffeomorphism of
TM compatible with the tangent bundle structure, given locally by

(3.3)

{
xi = Xi(x̃j), det(∂Xi/∂x̃j) 6= 0,

ya = Y a
b (x̃)ỹb, det (Y a

b (x̃)) 6= 0.

A gauge d-tensor field is a d-tensor field which obeys tensor-type transfor-
mation rules with respect to (3.3); e.g. the gauge d-tensor field {wi

j
a
b (x, y)}

transforms relative to (3.2) and (3.3) according to

(3.4)





w̄i
j
a
b (x̄, ȳ)∂xk

∂x̄i
∂xc

∂x̄a = wk
l

c
d(x, y) ∂xl

∂x̄j
∂xd

∂x̄b ,

w̃ia
jb(x̃, ỹ)∂Xk

∂x̃i
∂Y c

∂ỹa = wk
l

c
d(x, y)∂Xl

∂x̃j
∂Y d

∂ỹb .

Let TM be endowed with the nonlinear connection N = {Na
i (x, y)}.

If δk given by (1.1) yields d-covector fields when acting on gauge scalar
fields (i.e. functions f ∈ F (TM) which obey f̄(x̄, ȳ) = f(x, y), f̃(x̃, ỹ) =
f(x, y)), then N is called a generalized gauge non-linear connection. Fur-
ther, if |k and |c are the h- and v-covariant derivations associated with a
linear d-connection D on TM (i.e. a connection that preserves by paral-
lelism the distributions N and V TM [3]), having the coefficients

DΓ(N) =
{
Li

jk(x, y), La
bk(x, y), Ci

ja(x, y), Ca
bc(x, y)

}

given by the relations

(3.5)





Dδj δi = Lk
ijδk, D∂̇a

δj = Ci
jaδi

Dδk
∂̇b = La

bk∂̇a, D∂̇c
∂̇b = Ca

bc∂̇a

then we say that D is a gauge linear d-connection iff |k and |c preserve the
gauge tensorial character.
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In the following we suppose that N is given by (A2), that gij and hab

in (3.1) are gauge d-tensor fields, that γij and σ in (A1) are gauge fields
(tensor, respectively scalar), and we fix the coefficients

Ci
ja = 0, La

bk = ∂̇bN
a
k =

{
a

bk

}
.

Then we can infer the following

Proposition. If gij|k = 0 and hab|c = 0, Li
jk = Li

kj and Ca
bc = Ca

cb,
then

(3.6)





Li
jk = 1

2gis(δjgsk + δkgsj − δsgjk)

Ca
bc = 1

2has(∂̇bhsc + ∂̇chsb − ∂̇shbc).

We remark that if gij is given by (A1) and hab = δi
aδj

b · gij , then Li
jk

and Ca
bc are those given by (1.1).

It can be shown by direct calculation that the torsion and curvature
d-tensor fields of DΓ(N) are gauge d-tensor fields, and we have [3,4]

(3.7) T i
jk = 0, Sa

bc = 0, P a
kb = 0, Ci

ja = 0, Ra
kl = ra

skly
s

and

(3.8)
Ra

bkl = ra
bkl + Ca

bdR
d
kl, P i

jkc = ∂̇cL
i
jk

P a
bkc = −Ca

bc|k, Si
jbc = 0,

with Ri
jkl and Sa

bcd given by (1.3) for Li
jk and Ca

bc given by (1.1). So that
DΓ(N) admits one torsion and five curvature non-trivial gauge d-tensor
fields. It is obvious that the mixed Lagrangian

(3.9) L = l1R + l5S + L̂

is a gauge scalar field. Here

(3.10)
L̂ = l0L0 + l2R̂ + l3

h

P + l4
v

P , L0 = Ra
klR

kl
a ,

v

R = Ra
bklR

bkl
a

h

P = P i
jkcP

jkc
i ,

v

P = P a
bkcP

bkc
a , l0, l1, l2, l3, l4, l5 ∈ R

and R, S are given by (1.5), the raising/lowering of the indices being
performed using gij(x, y) and hab(x, y) for the corresponding index-types.
We remark that the Lagrangian (3.9) depends functionally on the gauge
fields gij(x, y), hab(x, y) and their derivatives, by means of (3.8) and (3.6).
So that applying the gauge variational principle

δ

∫
Ldxndyn = 0
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for the Lagrangian density

(3.11) L = LG, G = |det(gij)|1/2 · | det(hab)|1/2,

we infer the generalized Einstein-Yang Mills equations for L, obtained by
vanishing of the Euler-Lagrange derivatives

δL
δφ

≡ ∂k

(
∂L

∂(∂kφ)

)
+ ∂̇a

(
∂L

∂(∂̇aφ)

)
− ∂L

∂φ
= 0, φ ∈ {gij(x, y), hab(x, y)}.

By direct calculation, we obtain the following equivalent expressions for
these equations:

(3.12)
Rij − 1

2
Rgij =

1
l1

gilgjm { ∂L̂

∂glm
+ gst ∂Rst

∂glm
−

− 1
G

[
∂k

(
G

∂L

∂(∂kglm)

)
+ ∂̇a

(
G

∂L

∂(∂̇aglm)

)]
}+

1
2l1

gij(L̂ + l5S),

(3.13)

Sab − 1
2
Shab =

1
l5

haehbf · { ∂L̂

∂hef
+ huv ∂Suv

∂hef
−

− 1
G

[
∂k

(
G

∂L

∂(∂khef )

)
+ ∂̇d

(
G

∂L

∂(∂̇dhef )

)]
}+

1
2l5

hab(L̂ + l1R).

Remark that, for the case hab = δi
aδj

b ·gij , the equations (3.12, 3.13) contain
explicitly the Einstein h- and v-gauge tensor fields considered in (1.6)

(3.14)

{
Eij = Rij − 1

2Rgij

Eab = Sab − 1
2Shab

and that the right-hand terms of these equations stand for the energy-
momentum h- and v-tensor fields, respectively.

In order to obtain solutions {gij(x, y), hab(x, y)} for (3.12) and (3.13)
having the predefined form (A1), a necessary condition will be (as L will
depend on σ(x, y) and its derivatives) the vanishing of the corresponding
Euler-Lagrange derivative

(3.15)
δL

δσ
≡ 1

G

{
∂k

[
∂L

∂(∂kσ)

]
+ ∂̇a

(
∂L
∂σ̇a

)
− ∂L

∂σ

}
= 0.

We shall describe the generalised Einstein-Yang Mills equation (3.15)
for the gauge Lagrangian L given in (3.9) for three special cases.
1◦. If gij(x, y) = e2σ(x,y)γij(x) and hab = δi

aδj
b gij , then we obtain the

case of the almost Hermitian model H2n = (TM, G∗, F ) [3] given by the
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N -lift of the generalized Lagrange metric (A1) to TM , and the almost
complex structure F on TM given in the local adapted frame (1.1”) by

F (δi) = −∂̇i, F (∂̇i) = δi.

In this case, we remark that Li
jk and Ca

bc are given by (1.1), R and S are
described in (1.5), and (3.15) becomes

(3.16)
δL

δσ
=

1
G

[
∂k

(
l1H

∂
0
σ

∂βk
− 2l4G

∂(Ca
bc|l)

∂βk
P blc

a

)
+ ∂̇a

(
G

∂L̄

∂σ̇a

)]
+

+ 2(1− n)L̄ + 2(L̄− l5S) = 0

where H = Ge−2σ, βk = ∂kσ, and

(3.17) L̄ = l2
v

R + l3
h

P + l4
v

P + l5S.

2◦. For gij = γij(x), hab = e2σ(x,y)γab(x), we have Li
jk =

{
i

jk

}
, R = r,

Ca
bc given by (1.1-2), and

(3.18)

δL

δσ
=

1
G

[
−2l4∂k

(
GP blc

a

∂(Ca
bc|l)

∂βk

)
+ ∂̇a

(
G

∂L̄

∂σ̇a

)]
+

+ 2(l4
v

P + l5S − l0L0)− nL = 0.

3◦. For gij(x, y) = e2σ(x,y)γij(x), hab = γab(x), we have Li
jk given by

(1.1-1), P = S = 0, and

(3.19)

δL

δσ
=

1
G
{ l1∂k

(
H

∂
o
σ

∂βk

)
+

+ 2 [ l2
∂

∂ya

(
GRbkl

f Rd
kl(δ

f
b δa

d + δf
d δa

b − γbdγ
af )

)

+ l3
∂

∂ya

(
GP jkc

i (γkjγ
isNa

s − δi
jN

a
k − δi

kNa
j )

)
] }+

+ 2(2l0L0 + l1R + 2l2
v

R + l3
h

P )− nL̄ = 0.

An open problem is the one of the one of determining valid solutions σ(x, y)
for the equation (3.15), for suitable constants l◦, . . . , l5 in the Lagrangian
field (3.9).

Conclusions. The space GLn, as a model for the geometry of space-
time [6] can be examined from the point of view of determining its Einstein
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and Maxwell equations, using for the first ones two approaches: the theory
of d-object fields for generalised Lagrange spaces and the generalized gauge
theory for vector bundles endowed with (h, v)-metrics. Explicit forms for
these equations are obtained, as a preliminary step for determining their
solutions. The Einstein-Yang Mills equation with respect to the scalar
gauge field σ(x, y) is also derived for three cases of (h, v)-metrics related
to the fundamental metric of GLn.
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FACULTY OF MATHEMATICS,
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