
Publ. Math. Debrecen

87/1-2 (2015), 23–33

DOI: 10.5486/PMD.2015.6092

Generating iterated function systems for a class of self-similar
sets with complete overlap

By YUANYUAN YAO (Shanghai) and WENXIA LI (Shanghai)

Abstract. It is an interesting topic to find all generating iterated function systems

(IFSs) for a given self-similar set. Previous results on this topic require some separation

condition. In this paper, we discuss all generating IFSs for a class of self-similar sets with

complete overlap. We prove that the IFS {ρx, ρx+ ρ, ρx+ 1} with 0 < ρ < (3−
√
5 )/2

is a minimal presentation, i.e. every other generating IFS with the same attractor is an

iteration of this one.

1. Introduction

Let F = {fi = rix+bi}Ni=1 be a family of distinct functions with 0 < |ri| < 1.

Hutchinson [6] proved that there exists a nonempty compact set F ⊆ R such

that

F =

N∪
i=1

fi(F ).

We say that F is a self-similar set generated by the iterated function system (IFS)

F or F is the attractor of F . F is said to satisfy the open set condition (OSC)

if there exists a nonempty bounded open set O such that
∪N

i=1 fi(O) ⊆ O with a
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disjoint union on the left side. F is said to satisfy the strong separation condition

(SSC) if fi(F ) ∩ fj(F ) = ∅ for all i ̸= j.

Let Φ = {ϕi}Mi=1 and Ψ = {ψj}Nj=1 be two IFSs for F , we say that Ψ is an

iteration of Φ if ∀1 ≤ j ≤ M,ψj = ϕi1 ◦ · · · ◦ ϕik for some 1 ≤ i1, · · · , ik ≤ N . A

generating IFS for F is call a minimal presentation if any IFS for F is an iteration

of this one.

Finding a minimal presentation is important in applications, e.g. in the theory

of tiling and image compression (see [1], [2], [7]). However, few studies have been

reported on this topic. Recently, Feng and Wang [5] studied the existence of

a minimal presentation for some self-similar sets in R. Deng et al. [3], [8], [11]

discussed the form of the IFSs for self-similar sets produced by intersecting the

linear homogeneous Cantor sets with their translations. Yao [10] explored the

form of orthogonal matrices in generating IFSs for certain planar self-similar sets.

Elekes, Keleti and Mathe [4] gave an example of a self-similar set which

satisfies the SSC but has no minimal presentation.

All the above mentioned results were obtained under the requirement of some

separation properties, such as OSC and SSC. We will focus on a class of self-similar

sets for which the separation properties are violated.

We consider the IFS {f1, f2, f3} where

f1(x) = ρx, f2(x) = ρx+ ρ, f3(x) = ρx+ 1 with 0 < ρ <
3−

√
5

2
.

Let E ⊆ R be the self-similar set generated by this IFS, i.e.

E = f1(E) ∪ f2(E) ∪ f3(E). (1)

Note that f1 ◦ f3 = f2 ◦ f1, the IFS {f1, f2, f3} is of complete overlap. As one

knows, E can be expressed as

E =

{ ∞∑
k=1

xkρ
k : xk ∈ {0, 1, 1/ρ}

}
.

This gives a way to encode elements in E by digits from {0, 1, 1/ρ}. Let N be the

set of positive integers. We call (xk)
∞
k=1 ∈ {0, 1, 1/ρ}N a (0, 1, 1/ρ)-code of x if

x =
∑∞

k=1 xkρ
k. Because of complete overlap, typical elements in E have multiple

(0, 1, 1/ρ)-codes. We use EU to denote the elements of E whose (0, 1, 1/ρ)-code

is unique.

The set E has some curious properties previously explored by others. Firstly,

for each ρ ∈ (0, (3−
√
5 )/2), the IFS {f1, f2, f3} is of finite type so that dimH E
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can be determined. In fact, we have dimH E = dimB E = log(3+
√
5 )−log 2

− log ρ := s

and 0 < Hs(E) < ∞ (see Example 5.4 in [9]). Secondly, we have dimH EU =

dimB EU = log qc
− log ρ =: γ and 0 < Hγ(EU ) < ∞ where qc = 2.32472 . . . is the

positive solution of the equation x3 − 3x2 + 2x − 1 = 0 (see Theorem 1.1(c)

in [12]).

The following theorem tells us that the IFS {f1, f2, f3} is a minimal presen-

tation of E.

Theorem 1.1. Let E be defined by (1). Let g(x) = λx+ b with 0 < |λ| < 1

and b ∈ R. If g(E) ⊆ E, then there exist n ∈ N and i1, . . . , in ∈ {1, 2, 3} such

that g(x) = fi1 ◦ · · · ◦ fin(x).

One more interesting phenomenon is that the set E is a subset of a self-

similar set satisfying the SSC when 0 < ρ < 1
3 . We consider the self-similar set F

generated by the IFS {h1, h2, h3} where

h1(x) = ρx, h2(x) = ρx+ 1 and h3(x) = ρx+ 2.

Then

F = h1(F ) ∪ h2(F ) ∪ h3(F ) and F =

{ ∞∑
k=1

xkρ
k : xk ∈ {0, 1/ρ, 2/ρ}

}
. (2)

Let (xk)
∞
k=1 ∈ {0, 1, 1/ρ}N be a code of x ∈ E. For each xk = 1, by rewriting

xkρ
k = ρk = 1

ρρ
k+1, we get a (yk)

∞
k=1 ∈ {0, 1/ρ, 2/ρ}N such that

∑∞
k=1 xkρ

k =∑∞
k=1 ykρ

k. This induces E ⊆ F .

When 0 < ρ < 1
3 , the IFS {h1, h2, h3} does satisfy the SSC. So this provides

us an example that a (nontrivial) self-similar set satisfying the SSC can contain

a self-similar set with complete overlap. Hence we can describe E by means

of (0, 1/ρ, 2/ρ)-codes instead of (0, 1, 1/ρ)-codes. More precisely, there exists a

unique E ⊆ {0, 1/ρ, 2/ρ}N such that

E =

{ ∞∑
k=1

ykρ
k : (yk)

∞
k=1 ∈ E

}
.

Let q be a symbol. For all n ∈ N we denote q∗n the word by repeating q

for n times. Similarly, let q∗∞ and q∗0 be the infinite word by repeating q for

infinite times and the empty word, respectively. The following theorem gives a

description of E .
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Theorem 1.2. Let 0 < ρ < 1
3 . Let

E =

{
(yk)

∞
k=1 ∈ {0, 1/ρ, 2/ρ}N :

∞∑
k=1

ykρ
k ∈ E

}
.

Then for a (yk)
∞
k=1 ∈ {0, 1/ρ, 2/ρ}N, (yk)∞k=1 ∈ E if and only if for any m,n, p ∈ N

we have

y1 · · · ym ̸= (1/ρ)∗(m−1)(2/ρ)∗1 and yn · · · yn+p ̸= (2/ρ)∗1(1/ρ)∗(p−1)(2/ρ)∗1.

The rest of this paper is arranged as follows. Theorem 1.1 is proved in Sec-

tion 2. The third Section is devoted to the proof of Theorem 1.2.

2. Proof of Theorem 1.1

The following lemma tells that f1(E) and f2(E) share the same points in the

interval [ρ, ρ/(1− ρ)].

Lemma 2.1. Let E be defined by (1). Then f1(E)∩ [ρ, ρ/(1−ρ)] = f2(E)∩
[ρ, ρ/(1− ρ)] = f1(E) ∩ f2(E).

Proof. We only need to prove that (A) f1(E) ∩ f2([0, 1/(1 − ρ)]) ⊆ f2(E)

and (B) f2(E) ∩ f1([0, 1/(1− ρ)]) ⊆ f1(E).

Part (A) can be checked directly. In fact, we have

f1(E) ∩ f2([0, 1/(1− ρ)]) = (f11(E) ∪ f12(E) ∪ f13(E)) ∩ f2([0, 1/(1− ρ)])

= f13(E) ∩ f2([0, 1/(1− ρ)]) = f21(E) ∩ f2([0, 1/(1− ρ)]) ⊆ f2(E).

Now we move to part (B). Note that for n ∈ N

f2∗n1∗1(E) = f1∗13∗n(E) ⊆ f1(E) and f2∗n3∗1(E) ∩ f1([0, 1/(1− ρ)]) = ∅,

where the second statement is deduced from the fact that

f2∗n3∗1(0) =
ρ+ρn−2ρn+1

1−ρ > f1
(

1
1−ρ

)
= ρ

1−ρ .

Thus for any n ∈ N

f2(E) ∩ f1([0, 1/(1− ρ)]) = (f21(E) ∪ f22(E) ∪ f23(E)) ∩ f1([0, 1/(1− ρ)])

⊆ f1(E) ∪ (f22(E) ∩ f1([0, 1/(1− ρ)]))

= f1(E) ∪ ((f221(E) ∪ f222(E) ∪ f223(E)) ∩ f1([0, 1/(1− ρ)]))
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= f1(E) ∪ (f222(E) ∩ f1([0, 1/(1− ρ)]))

= · · · = f1(E) ∪ (f2∗n(E) ∩ f1([0, 1/(1− ρ)])).

Since f2∗n(E) ∩ f1([0, 1/(1 − ρ)]) ⊆
[ρ(1−ρn)

1−ρ , ρ
1−ρ

]
and ρ

1−ρ ∈ f1(E), we get the

desired result. �

For a nonempty compact set D of R we use Dmin and Dmax to denote its

smallest and largest number, respectively. For 0 < |λ| < 1 and b ∈ R, the

following fact about E is important and will be frequently used:

if λE + b ⊆ E then, [(λE + b)min, (λE + b)max]

⊇ [ρ+ ρ/(1− ρ), 1] will never happen. (3)

Otherwise, this forces E = [0, 1/(1− ρ)], a contradiction!

Remark 2.2. Let λE + b ⊆ E with (λE + b)max < 1. From Lemma 2.1 and

the above fact we can draw that if (λE + b)max ≤ ρ
1−ρ , then λE + b ⊆ ρE; if

(λE + b)min ≥ ρ, then λE + b ⊆ ρE + ρ.

Lemma 2.3. Let E be defined by (1). If λE+ b ⊆ E with 0 < |λ| < 1, then

0 < |λ| ≤ ρ.

Proof. Firstly we have b ≥ 0 since b ∈ E. Below we argue by contradiction

and divide the proof into two cases.

Case 1. ρ < |λ| < 1 and b = 0.

Since λ = λ · 1 ∈ E we have λ > 0 . We claim that λ ≤ ρ(2− ρ).

Otherwise, if λ > ρ(2 − ρ), then λ
1−ρ > ρ + ρ

1−ρ . As λ
1−ρ ∈ E, we have

λ
1−ρ ∈

[
1, 1

1−ρ

)
. According to (3), λE ⊆ E could not happen.

Let k ≥ 2 be the positive integer such that λk ≤ ρ < λk−1.

Subcase 1-1. If k ≥ 3 or ρ = λ2, then
√
ρ = mink≥3{ρ

1
k−1 ,

√
ρ} ≤ λ ≤

ρ(2 − ρ), which is equivalent to t3 − 2t + 1 ≤ 0 by letting t =
√
ρ. Define

f(t) = t3−2t+1, then f ′(t) = 3t2−2 and so f(t) is strictly deceasing for 0 < t <
√
5−1
2 =

√
3−

√
5

2 <
√

2
3 . Hence for t ∈

(
0,

√
5−1
2

)
we have f(t) > f

(√
5−1
2

)
= 0,

leading to a contradiction.

Subcase 1-2. If λ2 < ρ < λ, then λ2E ⊆ ρE ∪ (ρE + ρ) as (λ2E)max <
ρ

1−ρ .

It follows from Remark 2.2 that λ2E ⊆ ρE, which is equivalent to λ2

ρ E ⊆ E.

Let λ1 = λ2

ρ , then ρ < λ1 < 1 and λ1E ⊆ E. Running the same argument

as above yields

0 < λ1 =
λ2

ρ
≤ ρ(2− ρ),

λ21
ρ
E ⊆ E and ρ <

λ21
ρ
< 1.
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One can continue this process again and again. After n times we can derive

0 < λn =
λ2

n

ρ2n−1
≤ ρ(2− ρ),

λ2n
ρ
E ⊆ E and ρ <

λ2n
ρ
< 1.

Since λ > ρ, the first statement could not happen if n is large enough.

Case 2. ρ < |λ| < 1 and b > 0.

For this case we claim that

λE + b ⊆ f1(E) ∪ f2(E) = ρE ∪ (ρE + ρ),

This follows by (3) and the fact that λE + b ⊆ ρE + 1 implies 0 < |λ| ≤ ρ.

Subcase 2-1. λ > 0.

Note that λ(ρE) + b ⊆ λE + b ⊆ ρE ∪ (ρE + ρ) and (λ(ρE) + b)max =
λρ
1−ρ + b =

(
λ

1−ρ + b
)
+ λρ

1−ρ − λ
1−ρ ≤ ρ + ρ

1−ρ − λ < ρ
1−ρ . Then λ(ρE) + b ⊆ ρE

by Remark 2.2, which is equivalent to λE + b
ρ ⊆ E.

Let b1 = b
ρ , then λE + b1 ⊆ E and b1 > 0. Replacing b by b1 in the above

process yields λE + b2 ⊆ E with b2 = b
ρ2 . Adopting the above procedure for n

times gives rise to λE + b
ρn ⊆ E. Recall that ρ < 1 and b > 0, this is impossible

if n is large enough.

Subcase 2-2. λ < 0.

As before, we have λ(ρE) + b ⊆ λE + b ⊆ ρE ∪ (ρE + ρ). Besides,

(λ(ρE) + b)min =
λρ

1− ρ
+b ≥ λρ

1− ρ
− λ

1− ρ
= −λ > ρ

(
note that

λ

1− ρ
+ b ∈ E

)
.

Thus λ(ρE) + b ⊆ ρE + ρ by Remark 2.2. In other words,

λE + b1 ⊆ E with b1 =
b− ρ

ρ
> 0.

Otherwise, b1 = 0 induces λ > 0. We continue this process inductively to obtain

λE + bn ⊆ E with bn =

(
b− ρ

1− ρ

)
1

ρn
+

ρ

1− ρ
.

Note that b + λ
1−ρ ≥ 0, so b ≥ −λ

1−ρ > ρ
1−ρ , giving limn→∞ bn = +∞. This is

impossible. �

Lemma 2.4. Let E be defined by (1). If λE+ b ⊆ E, then λ = ρn for some

n ∈ N.
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Proof. By Lemma 2.3 we have 0 < |λ| ≤ ρ. Suppose first that λ > 0 and

λ ̸= ρn for all n ∈ N, then there exists k ∈ N such that ρk+1 < λ < ρk. We will

show a contradiction by the following two cases:

Case 1. b ∈ ρE + 1.

Then λE + b ⊆ ρE + 1 and so

λ

ρ
E +

b− 1

ρ
⊆ E. (4)

Case 2. b ∈ ρE ∪ (ρE + ρ).

Then λ
1−ρ + b ≤ ρ+ ρ

1−ρ by (3).

(I) If λ
1−ρ + b ≤ ρ

1−ρ , then λE + b ⊆ ρE follows by Remark 2.2, i.e.

λ

ρ
E +

b

ρ
⊆ E. (5)

(II) If ρ
1−ρ <

λ
1−ρ + b ≤ ρ+ ρ

1−ρ , then λ+ b > ρ and λ(ρE + 1) + b ⊆ λE + b ⊆
ρE ∪ (ρE + ρ), so λρE + λ+ b ⊆ ρE + ρ according to Remark 2.2. Thus

λE +
λ+ b− ρ

ρ
⊆ E and

λ+ b− ρ

ρ
> b.

Define f(x) = λ+x−ρ
ρ , note that

fn(b) =
b

ρn
+

(ρ− λ)(1− 1
ρn )

1− ρ
=

(
b− ρ− λ

1− ρ

)
1

ρn
+
ρ− λ

1− ρ
↗ +∞,

there must exist a positive integer N such that fN (b) ∈ ρE+1. This means that

by repeating the above process for N times one can get λE + fN (b) ⊆ E with

fN (b) ∈ ρE + 1. Then the case is reduced to Case 1.

It follows from (4) and (5) that one can always get λ
ρE + b1 ⊆ E for some

b1 ∈ R. By carrying out the above procedure for k times one can establish

λ

ρk
E + bk ⊆ E for some bk ∈ R.

In the case when λ < 0, we can assume −ρk ≤ λ < −ρk+1 for some k ∈ N.
Applying nearly the same process as above also yields λ

ρkE + bk ⊆ E for some

bk ∈ R.
In a word, we have ρ <

∣∣ λ
ρk

∣∣ < 1 or λ = −ρk for some k ∈ N. The first case

contradicts Lemma 2.3, while the latter one is contrary to the fact that E is not

symmetric. The lemma is thus proved. �
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Proof of Theorem 1.1. By Lemma 2.4, we have λ = ρn for some positive

integer n. The proof of Therem 1.1 is by induction on n.

When λ = ρ1, we claim that b ∈ {f1(0), f2(0), f3(0)}.
(I) If b ∈ ρE + 1, then ρE + b ⊆ ρE + 1, which leads to b = 1 = f3(0).

(II) If b ∈ ρE ∪ ρE + ρ, then b ≤ ρ+ ρ
1−ρ .

(II-1) When ρ ≤ b ≤ ρ+ ρ
1−ρ , we have ρE + b ⊆ ρE + ρ, hence b = ρ = f2(0).

(II-2) When 0 ≤ b < ρ, we will prove that b = 0 = f1(0). Otherwise, note

that ρ2E + b = ρ(ρE) + b ⊆ E and (ρ2E + b)max = ρ2

1−ρ + b < ρ
1−ρ , we

have ρ2E + b ⊆ ρE by Remark 2.2, i.e. ρE + b
ρ ⊆ E. Then b

ρ ≤ ρ+ ρ
1−ρ

follows from b
ρ < 1.

If ρ ≤ b
ρ ≤ ρ+ ρ

1−ρ , then we have b = ρ2 by (II-1).

If 0 < b
ρ < ρ, repeating the above process yields ρE + b

ρ2 ⊆ E with b
ρ2 < 1.

By induction, one can find a positive integer n ≥ 2 such that ρE + b
ρn ⊆ E and

ρ ≤ b
ρn ≤ ρ+ ρ

1−ρ . So we have b = ρn+1 by (II-1). Consequently,

ρE + ρm ⊆ ρE ∪ (ρE + ρ) for some m ≥ 2.

Note that ρ(ρE+ρ)+ρm ⊆ ρE∪(ρE+ρ) and (ρ(ρE+ρ)+ρm)max = ρ2

1−ρ+ρ
2+ρm ≤

ρ2

1−ρ + 2ρ2 ≤ ρ
1−ρ . This gives that ρ(ρE + ρ) + ρm ⊆ ρE by Remark 2.2. Hence

ρE + ρ+ ρm−1 ⊆ E. However, since

(ρE + ρ+ ρm−1)min = ρ+ ρm−1 ≤ 2ρ < 1

and

(ρE + ρ+ ρm−1)max =
ρ

1− ρ
+ ρ+ ρm−1 >

ρ

1− ρ
+ ρ,

we have E = [0, 1/(1− ρ)], this could not happen.

Suppose that b ∈ {fi(0) : i ∈ {1, 2, 3}n} if λ = ρn. We will prove that

b ∈ {fi(0) : i ∈ {1, 2, 3}n+1} if λ = ρn+1.

(I) If b ∈ ρE + 1, then ρn+1E + b ⊆ ρE + 1 and so ρnE + b−1
ρ ⊆ E. Thus we

have b−1
ρ = fi(0) for some i ∈ {1, 2, 3}n, which gives rise to b = f3(fi(0)).

(II) If b ∈ ρE ∪ ρE + ρ, then
(
ρn+1E + b

)
max

= ρn+1

1−ρ + b ≤ ρ+ ρ
1−ρ . Otherwise,

we have E = [0, 1
1−ρ ].

(II-1) If ρn+1

1−ρ +b ≤ ρ
1−ρ , then ρ

n+1E+b ⊆ ρE by Remark 2.2. Thus ρnE+ b
ρ ⊆

E and so b
ρ = fi(0) for some i ∈ {1, 2, 3}n, which yields b = f1(fi(0)).
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(II-2) If ρn+1

1−ρ +b > ρ
1−ρ , then (ρn+1E+b)min = b > ρ−ρn+1

1−ρ ≥ ρ−ρ2

1−ρ = ρ. Hence

ρn+1E + b ⊆ ρE + ρ by Remark 2.2. This gives that ρnE + b−ρ
ρ ⊆ E

and so b−ρ
ρ = fi(0) for some i ∈ {1, 2, 3}n, which leads to b = f2(fi(0)).

�

3. Proof of Theorem 1.2

We adopt the convention that x0 ∈ {0, 1/ρ}. Let (xk)
∞
k=1 ∈ {0, 1, 1/ρ}N be

a {0, 1, 1/ρ}-code of x ∈ E. We call (xℓ, . . . , xℓ+k) a 1-block of length k + 1

with k + 1 ∈ N if (xℓ, . . . , xℓ+k) = 1∗(k+1) and xℓ−1, xℓ+k+1 ∈ {0, 1/ρ}. We call

(xℓ, xℓ+1, . . . ) a 1-block of length ∞ if (xℓ, xℓ+1, . . . ) = 1∗∞ and xℓ−1 ∈ {0, 1/ρ}.
Recall that E ⊆ F .

Lemma 3.1. Let 0 < ρ < 1/3. Let E and F be defined by (1) and (2),

respectively. Let (xk)
∞
k=1 ∈ {0, 1, 1/ρ}N be a {0, 1, 1/ρ}-code of x ∈ E. Then x,

as a point of F , has a unique {0, 1/ρ, 2/ρ}-code (yk)
∞
k=1 ∈ {0, 1/ρ, 2/ρ}N defined

as follows.

For each finite 1-block (xℓ, . . . , xℓ+k) with k ∈ N ∪ {0},

(yℓ, . . . , yℓ+k, yℓ+k+1) =

{
(0(1/ρ)∗(k+1)) if xℓ+k+1 = 0

(0(1/ρ)∗k(2/ρ)) if xℓ+k+1 = 1/ρ,

where (1/ρ)0 denotes the empty word. For each infinite 1-block (xℓ, xℓ+1, . . . ),

(yℓ, yℓ+1, . . . ) = 0(1/ρ)∗∞,

and yk = xk for all remaining k.

Proof. Note that if (xℓ, . . . , xℓ+k) is a finite 1-block of x, then

ℓ+k+1∑
n=ℓ

xnρ
n =

ℓ+k∑
n=ℓ

1

ρ
ρn+1 + xℓ+k+1ρ

ℓ+k+1 =
ℓ+k+1∑
n=ℓ

ynρ
n

and if (xℓ, xℓ+1, . . . ) is an infinite 1-block of x, then

∞∑
n=ℓ

xnρ
n =

∞∑
n=ℓ

1

ρ
ρn+1 =

∞∑
n=ℓ

ynρ
n.

This finishes the proof. �
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Proof of Theorem 1.2. The necessity is an immediate consequence of

Lemma 3.1.

Blow we prove the sufficiency. Obviously (yk)
∞
k=1 ∈ E if all yk ∈ {0, 1/ρ}, so

in the following we assume that {k : yk = 2/ρ} ̸= ∅.
Let n1 = min{k : yk = 2/ρ} and let ℓ1 = max{1 ≤ i ≤ n1 : yi = 0}. Then

y1y2 · · · yn1 can be written as

y1y2 · · · yn1 = y1 · · · yℓ1−10(1/ρ)
∗(n1−ℓ1−1)(2/ρ)

with (y1, · · · , yℓ1−1) ∈ {0, 1/ρ}ℓ1−1.

By letting x1 . . . xℓ1−1 = y1 . . . yℓ1−1 and xℓ1 . . . xn1 = 1∗(n1−ℓ1)(1/ρ) we have

(x1, . . . , xn1) ∈ {0, 1, 1/ρ}n1 and

n1∑
k=1

xkρ
k =

n1∑
k=1

ykρ
k.

Let n2 = min{k : k > n1 and yk = 2/ρ}. Note that yn1 = yn2 = 2/ρ. As

before, there exists a positive integer ℓ2 = max{n1 ≤ i ≤ n2 : yi = 0} such that

yn1+1 · · · yn2 can be written as

yn1+1 · · · yn2 = yn1+1 · · · yℓ2−10(1/ρ)
∗(n2−ℓ2−1)(2/ρ)

with (yn1+1, · · · , yℓ2−1) ∈ {0, 1/ρ}ℓ2−n1−1.

By letting xn1+1 . . . xℓ2−1 = yn1+1 · · · yℓ2−1 and xℓ2 . . . xn2 = 1∗(n2−ℓ2)(1/ρ)

we have

(xn1+1, . . . , xn2) ∈ {0, 1, 1/ρ}n2−n1 and

n2∑
k=n1+1

xkρ
k =

n2∑
k=n1+1

ykρ
k.

Thus one can finish the proof by repeating the above process. �

When ρ = 1
3 , we have F = [0, 3] and its generating IFS {h1, h2, h3} satisfies

the OSC. Then each point of F can be encoded by digits from {0, 3, 6}. If the

codes ended by 6∗∞ are prohibited, then each point of F has a unique {0, 3, 6}-
code and Theorem 1.2 is also true for ρ = 1/3. However, Theorem 1.2 is not

true when 1
3 < ρ < 3−

√
5

2 . For example, let ρ ∈
(
0, 3−

√
5

2

)
be the unique root of

2x3 + x2 + 2x − 1 = 0. Then ρ = 2ρ2 + ρ3 + 2ρ4 = 2
ρρ

3 + 1
ρρ

4 + 2
ρρ

5, i.e. ρ ∈ E

has a {0, 1/ρ, 2/ρ}-code 0∗2(2/ρ)(1/ρ)(2/ρ)0∗∞.
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