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The amalgamatic curvature and the orthocurvatures
of three dimensional hypersurfaces in the Euclidean space
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Abstract. The amalgamatic curvature A(p) is a natural geometric quantity whose

construction parallels that of classical scalar curvature. Its role in a ladder of curvatures

corresponds to the role of harmonic mean in the classical ladder of power means, i.e.

to the mean of power −1. In the present work we determine lower and upper bounds

for the range of the absolute mean curvature in function of the amalgamatic curvature.

Then, we introduce the orthocurvatures of a three-dimensional hypersurface in Euclidean

ambient space and study several inequalities for some of these new curvature invariants.

1. Introduction

A classical result in differential geometry states that any three-dimensional

Einstein manifold must have constant sectional curvature. The argument in the

proof uses the interplay between the properties of the Riemann–Christoffel tensor,

the Ricci tensor, and the dimension of the manifold. In [1], p. 67, Brendle points

out that the three dimensional case “is quite special: for example, in dimension 3,

the Riemann curvature tensor is uniquely determined by the Ricci tensor.” Other

elementary properties of real numbers, e.g. Nesbitt’s inequality, contribute to the

special geometric properties that the dimension 3 objects have.
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There are many reasons why the three-dimensional geometric objects deserve

a special study. This is our main motivation in pursuing the present work.

First, we present some classical notations in the differential geometry of

smooth hypersurfaces. Let σ : U ⊂ Rn → Rn+1 be a hypersurface given by

the smooth map σ. Let p be a point on the hypersurface. Denote σk(p) =
∂σ
∂xk

,

for all k from 1 to n. Consider {σ1(p), σ2(p), . . . , σn(p), N(p)}, the Gauss frame of

the hypersurface, where N denotes the normal vector field. We denote by gij(p)

the coefficients of the first fundamental form and by hij(p) the coefficients of the

second fundamental form. Then we have

gij(p) = ⟨σi(p), σj(p)⟩, hij(p) = ⟨N(p), σij(p)⟩.

The Weingarten map Lp = −dNp ◦ dσ−1
p : Tσ(p)σ → Tσ(p)σ is linear. Denote

by (hi
j(p))1≤i,j≤n the matrix associated to Weingarten’s map, that is:

Lp(σi(p) = hk
i (p)σk(p),

where the repeated index and upper script above indicates Einstein’s summation

convention. Weingerten’s operator is self-adjoint, which implies that the roots of

the algebraic equation

det(hi
j(p)− λ(p)δij) = 0

are real. The eigenvalues of Weingarten’s linear map are called principal cur-

vatures of the hypersurface. They are the roots k1(p), k2(p), . . . , kn(p) of this

algebraic equation. The mean curvature at the point p is

H(p) =
1

n
[k1(p) + · · ·+ kn(p)],

and the Gauss–Kronecker curvature is

K(p) = k1(p)k2(p) . . . kn(p).

Additionally, we consider H̄, the absolute mean curvature, i.e.

H̄ =
1

n
(|k1|+ |k2|+ · · ·+ |kn|) .

Recently, in [12], a new curvature invariant for hypersurfaces was introduced: the

amalgamatic curvature.
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Definition 1.1. Let σ : U ⊂ Rn → Rn+1 be a hypersurface given by the

smooth map σ. In the general case, the amalgamatic curvature at point p is

A(p) = (n2 )
−1

∑
1≤i<j≤n

2|ki||kj |
|ki|+ |kj |

.

Observe that A(p) is defined everywhere on the hypersurface. Suppose |ki|+
|kj | vanishes at some point p. The inequality

2|ki||kj |
|ki|+|kj | ≤ |ki| + |kj | insures the

existence of the limit of the function A(p) at p. For a hyperplane in Rn+1, we

have A(p) ≡ 0, for all p.

We can describe the amalgamatic curvature as the arithmetic mean of the

harmonic means of all the pairs of absolute values of principal curvatures. How-

ever, there is a deeper reason to consider this quantity: it is a construction similar

to the construction of the classical scalar curvature. In [3] it is included a discus-

sion of the original argument employed by Riemann when he introduced for the

first time sectional curvature in 1854. Additionally, from the study in [12], a new

class of hypersurfaces was obtained: the absolutely umbilical hypersurfaces.

Definition 1.2. Let σ : U ⊂ Rn → Rn+1 be a hypersurface given by the

smooth map σ. The point p on the hypersurface is called absolutely umbilical if

all the principal curvatures satisfy |k1| = |k2| = · · · = |kn|. If all the points of a

hypersurface are absolutely umbilical, then the hypersurface is called absolutely

umbilical.

In [12] is proved the following result.

Theorem 1.1. Let σ : U ⊂ Rn → Rn+1 be a hypersurface given by the

smooth map σ. Let k1, k2, . . . , kn be the principal curvatures at p. Denote by H̄

its absolute mean curvature, i.e.

H̄ =
1

n
(|k1|+ |k2|+ · · ·+ |kn|) .

Then the absolute mean curvature and the amalgamatic curvature satisfy

H̄(p) ≥ A(p),

with equality being satisfied at all the points where the hypersurface is absolutely

umbilical.

We can view this inequality in the spirit of the ladder of power means, see

e.g. [15]. Let a1, a2, a3, . . . , an be strictly positive numbers. Denote by cs the

mean of order s, given by

cs =

(
as1 + as2 + · · ·+ asn

n

)1/s

.
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The mean of order zero is associated to the geometric mean of the n positive

numbers. The Ladder of Power Means theorem states that if s < t, then cs ≤ ct.

The equality cs = ct holds if and only if the numbers a1, a2, a3, . . . , an are all

equal. Note that c−1 is the harmonic mean of the strictly positive numbers

a1, a2, a3, . . . , an; this quantity will play an important part in the present paper.

Recently, Brzycki et al. [3] introduced the following geometric curvature

invariants.

Definition 1.3. For every integer r≥ 2 the curvature of degree r at the point p

of the hypersurface is

Qr(p) =
2

n(n− 1)

∑
1≤i<j≤n

|ki|r + |kj |r

|ki|r−1 + |kj |r−1
.

Additionally, in [3] we consider the following.

Definition 1.4. For every integer α ≤ −2 the amalgamatic curvature of de-

gree α at the point p of the hypersurface is

Aα(p) =
2

n(n− 1)

∑
1≤i<j≤n

(
|ki|α + |kj |α

2

)1/α

.

With these quantities, in [3] it is proved the following.

Theorem 1.2. Let σ : U ⊂ Rn → Rn+1 be a hypersurface given by the

smooth map σ. Let p be a point on the hypersurface. Denote by k1(p), k2(p), . . . ,

kn(p) the principal curvatures of the hypersurface at the point p. Let s ≥ r ≥ 2

be two integers and −2 ≥ α ≥ β be two other integers. The we have the following

ladder of curvatures:

Qs(p) ≥ Qr(p) ≥ Q2(p) ≥ H̄(p) ≥ A(p) ≥ Aα(p) ≥ Aβ(p).

Equality holds if and only if p is an absolutely umbilical point.

The proof of Theorem 1.2 follows in several steps. The claim H̄(p) ≥ A(p)

is proved in [12]. The assertion Qr(p) ≥ Q2(p) ≥ H̄(p) relies on the following.

Lemma 1.1. [2] Prove that for a1, . . . , an > 0, and for any integer r ≥ 2 we

have: ∑
1≤i<j≤n

ari + arj

ar−1
i + ar−1

j

≥ n− 1

2
(a1 + a2 + · · ·+ an).

Equality holds true if and only if a1 = a2 = · · · = an.

This present development is a natural continuation of the study of new cur-

vature invariants, as it was inspired by the ideas considered by B.-Y. Chen in [5],

[6], [8], [9]. For the whole vision of this research direction, the most comprehensive

surveys are in [10], [11].
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2. A study of the amalgamatic curvature

for three-dimensional hypersurfaces

In this section we use the fact that the dimension of the hypersurface is

three. The sectional mean curvatures defined below make a lot of geometric sense

in dimension three. For further developments of the geometry of hypersurfaces of

dimension three in an Euclidean ambient space see e.g. [17].

Theorem 2.1. Let M3 ⊂R4 be a smooth hypersurface and k1, k2, k3 be its

principal curvatures in the ambient space R4 endowed with the canonical metric.

Let p ∈ M be an arbitrary point. Suppose that at p none of the principal curva-

tures vanish. Denote by A the amalgamatic curvature, by H the mean curvature,

H̄ the absolute mean curvature, K the Gauss–Kronecker curvature. Introduce

the sectional absolute mean curvatures defined by

H̄ij(p) =
|ki(p)|+ |kj(p)|

2
.

Then the following inequalities hold true at every point p ∈ MV:

A · H̄12 · H̄23 · H̄13 ≥ H̄ · |K| ≥ A · |K|.

Equality holds for absolutely umbilical points.

Proof. The second inequality is a consequence of Theorem 1.1, proved

in [12]. To prove the first inequality, we show the following:

A · H̄12 · H̄23 · H̄13 ≥ c−1 · H̄12 · H̄23 · H̄13 ≥ H̄ · |K|.

The notation c−1 indicates the mean power of order −1, i.e. the harmonic mean of

the three principal curvatures. Because we are using c−1, we have incorporating

in the hypothesis the assumption that at p none of the principal curvatures vanish.

To simplify the notation, we denote |k1| = a, |k2| = b, |k3| = c.

We prove first that A ≥ c−1. This means we need to show:

1

3

(
2

1
a + 1

b

+
2

1
b + 1

c

+
2

1
c + 1

a

)
≥ 3

1
a + 1

b + 1
c

.

By using the substitutions 1
a = x, 1

b = y, 1
c = z, the inequality we need to

prove reduces to

2

(
1

x+ y
+

1

y + z
+

1

z + x

)
≥ 9

x+ y + z
.
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This inequality is a direct consequence of Engel’s Lemma:

1

x+ y
+

1

y + z
+

1

z + x
≥ (1 + 1 + 1)2

2(x+ y + z)
=

9

2(x+ y + z)
.

Next we prove c−1 · H̄12 · H̄23 · H̄13 ≥ H̄ · |K|. This can be rewritten as

3
1
a + 1

b + 1
c

· a+ b

2
· b+ c

2
· c+ a

2
≥ a+ b+ c

3
· abc.

This claim is equivalent to:

3abc

ab+ bc+ ca
· (a+ b)(b+ c)(c+ a) ≥ 8

3
(a+ b+ c) · abc.

By simplifying abc, we get:

9(a+ b)(b+ c)(c+ a) ≥ 8(a+ b+ c)(ab+ bc+ ca).

This last inequality reduces to

a(b− c)2 + b(c− a)2 + c(a− b)2 ≥ 0. �

This theorem is the first step in understanding the process we pursue in the

next section.

3. A pinching theorem for three-dimensional hypersurfaces

In Riemannian geometry, an important example are the Berger spheres,

whose study originates in the study of Hopf fibration (see e.g. [18]). Inspired

by the geometry of Berger spheres, we are interested to see how the amalgamatic

curvature behaves under the control of the principal curvatures. Note that the

warped product metric studied in [18], e.g. p. 99, yields the sectional curvatures

of the Berger spheres in the interval bounded by ε2 and 4− 3ε2. Due to the way

the amalgamatic curvature is constructed, we focus our study on the Weingarten

operator of the hypersurface and the bounds are considered for absolute values

of the principal curvatures.

Theorem 3.1. Let M3 ⊂ R4 be a smooth hypersurface and k1, k2, k3 be its

principal curvatures in the ambient space R4 endowed with the canonical metric.

Let p ∈ M be an arbitrary point. Suppose that |k1|, |k2|, |k3| ∈ [1, 1 + ε]. Denote



The amalgamatic curvature and the orthocurvatures. . . 41

by A the amalgamatic curvature, by H the mean curvature, H̄ the absolute mean

curvature. Then the following inequalities hold true at every point p ∈ M :

A ≤ H̄ ≤ 1

9

{
5 +

2

1 + ε
[1 + (1 + ε)2]

}
A.

Equality holds for absolutely umbilical points with the property |k1| = |k2| =
|k3| = 1.

Proof. The first inequality is from Theorem 1.1. For the second inequal-

ity, we plan to use the comparison with the harmonic mean c−1 and prove the

following:

H̄ ≤
{
5 +

2

1 + ε
[1 + (1 + ε)2]

}
c−1 ≤

{
5 +

2

1 + ε
[1 + (1 + ε)2]

}
A.

The inequality in the right is insured by c−1 ≤ A, a fact established in the proof

of Theorem 2.1. We use the notations |k1| = a, |k2| = b, |k3| = c.

We plan to prove the that H̄ ≤ L
9 · c−1, where L = 5+ 2

1+ε [1+(1+ε)2]. This

is due to the following fact:

a+ b+ c

3
≤ L · 3

1
a + 1

b + 1
c

.

The claim left to prove reduces to the following statement: if a, b, c ∈ [1, 1+ε],

then

(a+ b+ c)

(
1

a
+

1

b
+

1

c

)
≤ 5 +

2

1 + ε
[1 + (1 + ε)2].

By multiplying the terms in the left hand side of this expression, we obtain

that we need to prove the following:

3 +
a

b
+

b

c
+

c

b
+

b

a
+

c

a
+

a

c
≤ 5 +

2

1 + ε
[1 + (1 + ε)2]. (3.1)

Without any loss of generality, suppose that a ≥ b ≥ c. Then (a− b)(b− c) ≥
0. This yields ab+bc ≥ b2+ac. Dividing both sides by bc and by ab, respectively,

we obtain first:
a

c
+ 1 ≥ a

b
+

b

c
,

then

1 +
c

a
≥ c

b
+

b

a
.
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Adding term by term we get:

a

b
+

b

c
+

c

b
+

b

a
≤ 2 +

a

c
+

c

a
.

Thus it is always true that for a, b, c > 0, with a ≥ b ≥ c, we have

a

b
+

b

c
+

c

b
+

b

a
+

c

a
+

a

c
≤ 2 + 2

(a
c
+

c

a

)
. (3.2)

We estimate the right hand side term of this expression. Since 1 ≤ a ≤ 1 + ε,

we have 1
1+ε ≤ 1

a ≤ 1. From such estimates, by multiplying term by term double

inequalities with strictly positive terms, we obtain

1

1 + ε
≤ a

c
≤ 1 + ε.

Denote by x = a
c . Then

[x− (1 + ε)] ·
(
x− 1

1 + ε

)
≤ 0,

that is

x+
1

x
≤ 1 + ε+

1

1 + ε
.

This estimate yields the best upper bound in (3.2):

a

b
+

b

c
+

c

b
+

b

a
+

c

a
+

a

c
≤ 2 + 2

(
1 + ε+

1

1 + ε

)
.

Adding 3 both sides yields (3.1), which completes this proof. The equality case is

obtained when equality holds in all these inequalities, which yields a= b= c=1.

�

4. Orthocurvatures of order (a, b) of a three dimensional

hypersurface in Euclidean ambient space

Our motivation in pursuing the study of the concepts introduced in the re-

maining part of our present work resides in Sophie Germain’s words, [14], p. 25,

when she invites the study of the “l’idée complète de la manière dont la courbure

est distribuée autour du point donné, aussi bine que la connoissance de la distance

moyenne entre les points de la surface qui environnent le point de tangence et le

plan tangent [. . . ].” Furthemore, Sophie Germain writes that “La considération
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des courbures moyennes est nécessairement applicable à toutes les questions où

la courbure des surfaces joue le rôle d’une puissance.” In 1831, this approach,

inspired also from profound physical considerations, led to the definition of the

mean curvature.

Sophie Germain’s ideas inspire the following more general question: how is

curvature distributed around a point? What quantities best detect deformations

of the hypersurface around a point? Is this study related to various symmetric

expressions in three variables?

In the last two decades, several seminal works have explored the very foun-

dation of the concept of curvature. All the evolution started with B.-Y. Chen’s

construction of δ−invariants (nowadays called Chen invariants) in [5], [6], [8],

[9]. Two very useful surveys are available in [10], [11]. Besides the strings of

Chen curvature invariants, who have many applications, there are other curva-

ture invariants that can be explored and deserve attention, as they encode the

fundamental idea of curvature. Pursuing this research direction and viewing the

problem in this context, we propose the curvature invariants presented below.

We have seen in Theorem 2.1 that the absolute mean sectional curvatures play

a certain geometric part in understanding the geometry of a three-dimensional

hypersurface.

Definition 4.1. Let M3 ⊂ R4 be a smooth hypersurface and k1, k2, k3 be its

principal curvatures in the ambient space R4 endowed with the canonical metric.

Let p ∈ M be an arbitrary point. Suppose at p none of the principal curvatures

vanish. Then we define the absolute mean sectional curvatures by

H̄ij(p) =
|ki(p)|+ |kj(p)|

2
.

Additionally, we call the orthocurvature of order (a, b) of M at p the quantity:

Ba
b =

|k1|a

H̄b
23

+
|k2|a

H̄b
13

+
|k3|a

H̄b
12

.

This definition is inspired by Sophie Germain’s idea: how are the curvature

quantities distributed around a point?

In the present section we study the fundamental properties of some orthocur-

vatures. We obtain the following.

Theorem 4.1. Let M3 ⊂R4 be a smooth hypersurface and k1, k2, k3 be

its principal curvatures in the ambient space R4 endowed with the canonical

metric. Let p ∈ M be an arbitrary point. Suppose that at p none of the principal
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curvatures vanish. Denote by A the amalgamatic curvature, by H the mean

curvature, H̄ the absolute mean curvature, K the Gauss–Kronecker curvature.

Introduce the absolute mean sectional curvatures defined by

H̄ij(p) =
|ki(p)|+ |kj(p)|

2
.

Then the following inequalities hold true at every point p ∈ M :

3 ≤ |k1|
H̄23

+
|k2|
H̄13

+
|k3|
H̄12

= B1
1(p) (4.1)

2
√
2 <

√
|k1|
H̄23

+

√
|k2|
H̄13

+

√
|k3|
H̄12

= B0.5
0.5(p) (4.2)

3H̄ ≤ |k1|2

H̄23
+

|k2|2

H̄13
+

|k3|2

H̄12
= B2

1(p). (4.3)

3

H̄
≤ |k1|

H̄2
23

+
|k2|
H̄2

13

+
|k3|
H̄2

12

= B1
2(p). (4.4)

Proof. For a simpler notation, we denote |k1| = a, |k2| = b, |k3| = c. Note

that a, b, c > 0. To prove (4.1), we note that this inequality is equivalent to

Nesbitt’s inequality (see e.g. [4], p. 16, or [16]):

a

b+ c
+

b

c+ a
+

c

a+ b
≥ 3

2
,

which can be proved by a direct argument via Cauchy–Schwarz inequality.

To prove the inequality in (4.2), we use an idea suggested in [13]:√
a

b+ c
≥ 2a

a+ b+ c
.

We first prove this inequality for any a, b, c > 0. By squaring both sides, we get

a

b+ c
≥ 4a2

(a+ b+ c)2
.

Since a > 0, we are left to show that (a+ b+ c)2 ≥ 4a(b+ c), which is true since

(b+ c− a)2 ≥ 0. Equality holds true if and only if a = b+ c. By adding together

three such inequalities we obtain√
a

b+ c
+

√
b

c+ a
+

√
c

a+ b
≥ 2(a+ b+ c)

(a+ b+ c)
= 2.
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However, equality could take place if and only if we have simultaneously a = b+c,

b = c + a, c = a + b. That is not possible if a, b, c > 0. This shows that

B0.5
0.5(p) > 2

√
2.

We now prove (4.3). As assumed before, |k1| = a, |k2| = b, |k3| = c, with

a, b, c > 0. Without loss of generality we assume (by employing a classical tech-

nique, see e.g. [13], p. 333) that a ≥ b ≥ c, which implies immediately that

1

b+ c
≥ 1

c+ a
≥ 1

a+ b
.

A direct application of Chebyshev’s inequality (see e.g. [16]) yields:

2a2

b+ c
+

2b2

c+ a
+

2c2

a+ b
≥ 2

3
(a2 + b2 + c2)

(
1

b+ c
+

1

c+ a
+

1

a+ b

)
.

From the Cauchy–Schwarz inequality we get that 3(a2 + b2 + c2) ≥ (a+ b+ c)2,

which can be used in the right hand side term in the previous inequality to obtain:

2a2

b+ c
+

2b2

c+ a
+

2c2

a+ b
≥ 2

9
(a+ b+ c)2

(
1

b+ c
+

1

c+ a
+

1

a+ b

)
.

To estimate the second factor in the right hand side term, we use the AM-HM

inequality:

1

b+ c
+

1

c+ a
+

1

a+ b
≥ 9

(b+ c) + (c+ a) + (a+ b)
=

9

2(a+ b+ c)
.

This yields (4.3).

Finally, the argument to prove (4.4) is a direct application of Cauchy–Schwarz

inequality in:

(a+ b+ c)

(
a

(b+ c)2
+

b

(c+ a)2
+

c

(a+ b)2

)
≥

(
a

b+ c
+

b

c+ a
+

c

a+ b

)2

≥ 9

4
.

The last inequality is also due to Nesbitt’s inequality, used previously in the proof

of this theorem. �

The author thanks to Bryan Brzycki for his very useful feedback on The-

orem 3.1 and for the discussions related to [2].
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