Publ. Math. Debrecen 87/1-2 (2015), 47–55 DOI: 10.5486/PMD.2015.7020

Group algebras with almost minimal Lie nilpotency index

By MEENA SAHAI (Lucknow)

Abstract. Let K be a field of characteristic p > 0 and let G be an arbitrary non-abelian group. It is well known that if KG is Lie nilpotent, then its upper as well as lower Lie nilpotency index is at least p + 1. Shalev investigated Lie nilpotent group algebras whose Lie nilpotency indices are next lower, namely 2p and 3p - 1 for $p \ge 5$ and obtained certain interesting results. The aim of this paper is to classify group algebras KG which are Lie nilpotent having Lie nilpotency indices 2p, 3p - 1 and 4p - 2. Our proofs are independent of Shalev and are valid for p = 2 and 3 as well.

1. Introduction

Let R be an associative ring with $1 \neq 0$. By defining the Lie product as [x, y] = xy - yx; $x, y \in R$, the ring R can be regarded as a Lie ring, called the associated Lie ring of R. This Lie ring is denoted by L(R). We set $[x_1, \ldots, x_n] = [[x_1, \ldots, x_{n-1}], x_n]$, where $x_1, \ldots, x_n \in R$. The *n*-th Lie power $R^{[n]}$ of R is the associative ideal generated by all the Lie commutators $[x_1, \ldots, x_n]$, where $x_1, \ldots, x_n \in R$ and $R^{[1]} = R$. By induction, we define the *n*-th strong Lie power $R^{(n)}$ of R as the associative ideal generated by all the Lie commutators [x, y], where $x \in R^{(n-1)}$, $y \in R$ and $R^{(1)} = R$. The ring R is called Lie nilpotent / strongly Lie nilpotent if there exists m such that $R^{[m]} = 0 / R^{(m)} = 0$. The ring R is called Lie hypercentral if for each sequence a_i of elements of R, there exists some n such that $[a_1, \ldots, a_n] = 0$. The minimal integers m, n such that $R^{[m]} = 0$ and $R^{(n)} = 0$ are called the Lie nilpotency index and the strong Lie nilpotency index of R and these are denoted by $t_L(R)$ and $t^L(R)$, respectively. If R = KG

Mathematics Subject Classification: Primary: 16S34; Secondary: 17B30.

Key words and phrases: group algebras, Lie nilpotency index.

is the group algebra of a group G over a field K of characteristic p, then L(KG) is the associated Lie algebra of the group algebra KG.

It is well known that the following statements are equivalent for a noncommutative group algebra KG (see [4], [12], [15]):

- (i) KG is Lie nilpotent;
- (ii) KG is strongly Lie nilpotent;
- (iii) KG is Lie hypercentral;
- (iv) U(KG) is nilpotent;
- (v) characteristic of K = p > 0, G is nilpotent and its commutator subgroup G' is a finite p-group.

Here U(R) denotes the unit group of R. It is important to note here that GUPTA and LEVIN [11] have given an example of an algebra R which is Lie nilpotent but not strongly Lie nilpotent. It is also proved in the same paper that if C denotes the nilpotency class of the unit group U(R), then $C + 1 \leq t_L(R)$. This gives an upper bound for C. For R = KG, where K is a field of characteristic p > 0, DU [10] showed that this bound is actually attained when G is a finite p-group. CATINO, SICILIANO and SPINELLI [7] proved that the same holds when KG is a Lie nilpotent group algebra of a torsion group G containing an element of order p. Many important developments on this topic are reported in BOVDI and KURDICS [5].

According to [18, 19] if G is a non-abelian nilpotent group with $|G'| = p^n$, then $p+1 \leq t_L(KG) \leq t^L(KG) \leq p^n+1$. Therefore p+1 is the minimal and $p^n + 1$ is the maximal Lie nilpotency index. Lie nilpotent group algebras of maximal and almost maximal Lie nilpotency index, that is, $p^n - p + 2$ have been described in [6] and [2], [3] respectively. A complete description of Lie nilpotent group algebras of minimal Lie nilpotency index is given in [19]. If KG is Lie nilpotent and $p \ge 5$, then $t_L(KG) = t^L(KG) = 2 + (p-1) \sum_{m \ge 1} m d_{(m+1)}$ where $p^{d_{(m)}} = |D_{(m),K}(G) : D_{(m+1),K}(G)|, m \ge 2 \text{ and } D_{(m),K}(G) = G \cap (1 + KG^{(m)}),$ $m \geq 1$, see [1], [16]. Thus 2p, 3p-1 and 4p-2 are the next possible minimal values of $t_L(KG)$. We say that a Lie nilpotent group algebra KG has almost minimal Lie nilpotency index if $t_L(KG) = 2p$. In this article we determine group algebras having almost minimal Lie nilpotency index. We also give a complete characterization of group algebras with Lie nilpotency indices 3p-1 and 4p-2. We remark that Lie nilpotent group algebras with $t_L(KG) = 2p$ and 3p - 1 have been described by SHALEV [17] for $p \geq 5$. We give here a characterization which is valid for p = 2 and 3 as well.

2. Preliminaries

Our notations are standard. C_n denotes the cyclic group of order n and $\gamma_i(G)$ is the *i*-th term of the lower central series of the group G. If G is a finite p-group, then the nilpotency index of the augmentation ideal $\Delta(G)$ of KG is denoted by t(G). The *m*-th Lie dimension subgroup $D_{(m),K}(G) = G \cap (1 + KG^{(m)})$, $m \geq 1$. If KG is Lie nilpotent, then according to Jennings' theory [16], $t^L(KG) = 2 + (p-1) \sum_{m \geq 1} m d_{(m+1)}$. Here $p^{d_{(m)}} = |D_{(m),K}(G) : D_{(m+1),K}(G)|, m \geq 2$ and if $|G'| = p^n$, then it is clear that $\sum_{m \geq 2} d_{(m)} = n$. Explicit expressions for the Lie dimension subgroups $D_{(m),K}(G)$ are given in [14, p. 46], namely, $D_{(m),K}(G) = \prod_{(i-1)p^j \geq m-1} \gamma_i(G)^{p^j}$. Since according to [1] for $p \geq 5$, $t_L(KG) = t^L(KG)$, this gives a formula for calculating the Lie nilpotency index. However, for p = 2, 3, $t_L(KG)$ and $t^L(KG)$ may not be equal.

We begin with the following results:

Lemma 2.1 ([11]). Let R be an associative ring with $1 \neq 0$. Then for any $m, n \geq 1$

- (i) $R^{[m]}R^{[n]} \subset R^{[m+n-2]};$
- (ii) $\gamma_m(U(R)) \subseteq 1 + R^{[m]}$.

Lemma 2.2 ([13, Lemma 4]). Let R be an associative ring with $1 \neq 0$. Then for all $x, y, x_i, y_i, z_i \in U(R)$ and $m, k \geq 1$

- (i) $((x, y) 1)^k \in R^{[k+1]};$
- (ii) $\prod_{i=1}^{k} ((x_i, y_i, z_i) 1)^2 \in \mathbb{R}^{[2+3k]};$
- (iii) $\prod_{i=1}^{k} ((x_i, y_i) 1)^2 R^{[m]} \in R^{[m+2k]}.$

Lemma 2.3 ([18]). Let KG be a Lie nilpotent group algebra of a group G over a field K of characteristic p > 0 and let $n = t_L(KG)$. Then for

- (i) $p \ge n$, G is abelian;
- (ii) p < n, G is a nilpotent group of class at most c where, c is the least positive integer not less than
 - (a) $\sqrt{2(n-1)/(p-1)}$, if p > 3
 - (b) $1 + \sqrt{n-4}$, if p = 3.

Lemma 2.4 ([5, Theorem 3.2]). Let K be a field of characteristic p > 0 and let G be a nilpotent group such that G' is a finite abelian p-group with invariants $(p^{m_1}, p^{m_2}, \ldots, p^{m_s})$. Then

(i) $t_L(KG) \ge t(G') + 1 = 2 + \sum_{i=1}^{s} (p^{m_i} - 1);$

(ii)
$$t_L(KG) = t^L(KG) = t(G') + 1$$
, if $\gamma_3(G) \subseteq G'^p$.

Lemma 2.5 ([7], [10], [12]). Let KG be a Lie nilpotent group algebra of a torsion group G containing an element of order p over a field K of characteristic p > 0. Then U(KG) is nilpotent of class $C = t_L(KG) - 1$.

Lemma 2.6. For any associative ring R with $1 \neq 0$

- (i) $R^{[3]}R^{[3]} \subseteq R^{[5]}$;
- (ii) For all $a_i \in \gamma_3(U(R)), \prod_{i=1}^k (a_i 1)^2 \in R^{[2+3k]}$.

Proof. (i) Let $a, b, c, d, e, f \in \mathbb{R}$. Then

$$[a,b,c][d,e,f]+[a,b,f][d,e,c] \\$$

$$= [a, b, [d, e, cf]] - c[a, b, [d, e, f]] - [a, b, [d, e, c]]f + [[a, b, f], [d, e, c]] \in \mathbb{R}^{[5]}$$

Also by [13, Lemma 2(a)]

$$[a, b, c][d, e, f] - [b, c, a][d, e, f] \in \mathbb{R}^{[5]}.$$

Thus

$$\begin{split} [c,a,b][d,e,f] &\equiv -[c,a,f][d,e,b] \equiv -[a,f,c][d,e,b] \equiv -[a,f,c][e,b,d] \\ &\equiv [a,f,d][e,b,c] \equiv [f,d,a][e,b,c] \equiv [f,d,a][b,c,e] \\ &\equiv -[f,d,e][b,c,a] \equiv -[d,e,f][b,c,a] \\ &\equiv -[b,c,a][d,e,f] \mod R^{[5]}. \end{split}$$

So $[a, b, c][d, e, f] \in R^{[5]}$.

(ii) Proof is by induction on k and Lemma 2.1.

Lemma 2.7. Let K be a field of characteristic 3 and let G be a nilpotent group of class 3 such that G' is an elementary abelian 3-group of order 3^n and $|\gamma_3(G)| = 3^m$, $m \ge 1$. Then $t_L(KG) \ge 3 + m + 2n$. In particular if m = 1, then $t_L(KG) = 4 + 2n$.

PROOF. Let a_1, a_2, \ldots, a_m be independent generators of $\gamma_3(G)$ and let commutators $b_1, b_2, \ldots, b_{n-m} \in G'$ be such that

$$\{b_1\gamma_3(G), b_2\gamma_3(G), \ldots, b_{n-m}\gamma_3(G)\}$$

form a basis of $G'/\gamma_3(G)$. Then

$$0 \neq \prod_{i=1}^{m} (a_i - 1)^2 \prod_{i=1}^{n-m} (b_i - 1)^2 \in KG^{[2+3m+2(n-m)]}$$

by Lemma 2.2 and Lemma 2.6. So $t_L(KG) \ge 3 + m + 2n$. Also $d_{(2)} = n - m$ and $d_{(3)} = m$. Hence $t^L(KG) = 2 + 2n + 2m$. Thus if m = 1, then $t_L(KG) = 4 + 2n$. \Box

3. Lie nilpotent group algebras of almost minimal index

Throughout this section G is a non-abelian group and K is a field of positive characteristic p such that KG is Lie nilpotent. We first give classification of Lie nilpotent group algebras of small Lie nilpotency index. Such Lie algebras of index upto 6 have been described in [9].

Theorem 3.1. Let KG be a Lie nilpotent group algebra of a non-abelian group G over a field K of characteristic p > 0 such that $t_L(KG) = 7$ or 9. Then p = 2.

PROOF. Let p = 3 and $t_L(KG) = 7$. If $|G'| \leq 5$, then $t_L(KG) \leq 6$. So |G'| > 5. By Lemma 2.3, G is nilpotent of class at most 3. Thus $\gamma_4(G) = 1$ and G' is abelian. Also the exponent of G' is at most 3. By Lemma 2.4, $G' \cong C_3 \times C_3$. But then by Lemma 2.4 and Lemma 2.7, $t_L(KG) = 6$ or 8.

If $t_L(KG) = 9$, let $x_i \in G$ such that $(x_1, x_2, \ldots, x_i) \in \gamma_i(G) \setminus \gamma_{i+1}(G)$. Then by Lemma 2.1 and Lemma 2.2, $((x_1, x_2) - 1)^2((x_1, x_2, x_3) - 1)^2((x_1, x_2, x_3, x_4) - 1)^2 \in KG^{[11]} = 0$. So again $\gamma_4(G) = 1$ and G' is abelian. Also the exponent of G' is at most 3 and |G'| is at least 8. Now by Lemma 2.4, $G' \cong C_3 \times C_3$ or $G' \cong C_3 \times C_3 \times C_3$. In the first case $t_L(KG) = 6$ or 8. In the second case, let $\gamma_3(G) \neq 1$. Then by Lemma 2.7, $t_L(KG) \geq 10$. So $\gamma_3(G) = 1$, but then $t_L(KG) = 8$ by Lemma 2.4.

For $p \ge 5$, $t_L(KG) = t^L(KG)$ is always even by [1, Theorem 1].

Theorem 3.2. Let KG be a Lie nilpotent group algebra of a non-abelian group G over a field K of characteristic $p \ge 3$ such that $t_L(KG) = 8$. Then $t^L(KG) = 8$.

PROOF. Let p = 3. If $t_L(KG) = 8$, then by Lemma 2.3, $\gamma_4(G) = 1$. Also in this case KG is Lie solvable of derived length at most 3. So by [8, Theorem 2.4] $G' \cong C_3 \times C_3 \times C_3$; $\gamma_3(G) = 1$ or $G' \cong C_3 \times C_3$; $\gamma_3(G) \cong C_3$. In both the cases $t^L(KG) = 8$, see [9, Theorem 3.6].

For $p \ge 5$, $t_L(KG) = t^L(KG)$ by [1, Theorem 1].

Theorem 3.3. Let KG be a Lie nilpotent group algebra of a non-abelian group G over a field K of characteristic $p \ge 3$ such that $t_L(KG) = 10$. Then $t^L(KG) = 10$.

PROOF. Let p = 3 and $t_L(KG) = 10$. Let $x_i \in G$ such that $(x_1, x_2, ..., x_i) \in \gamma_i(G) \setminus \gamma_{i+1}(G)$. Then by Lemma 2.1 and Lemma 2.2, $((x_1, x_2) - 1)^2 ((x_1, x_2, x_3) - 1)^2 ((x_1, x_2, x_3, x_4) - 1)^2 \in KG^{[11]} = 0$. So $\gamma_4(G) = 1$ and G' is abelian. Also $|G'| \ge 9$ and the exponent of G' is at most 9. By Lemma 2.4, $G' \cong C_9$ or $C_3 \times C_3$ or

 $C_3 \times C_3 \times C_3$ or $C_3 \times C_3 \times C_3 \times C_3$. In the second case, $t_L(KG) = 6$ or 8. In the third case, if $|\gamma_3(G)| = 9$, then as has been shown in Lemma 2.7, $t_L(KG) \ge 11$ and if $\gamma_3(G) = 1$, then $t_L(KG) = 8$. Therefore, in this case, $\gamma_3(G) \cong C_3$. In the fourth case, if $\gamma_3(G) \ne 1$, then by Lemma 2.7, $t_L(KG) \ge 12$. Therefore, in this case $\gamma_3(G) = 1$. Thus we have either $G' \cong C_9$ or $G' \cong C_3 \times C_3 \times C_3$; $\gamma_3(G) \cong C_3$; $\gamma_4(G) = 1$ or $G' \cong C_3 \times C_3 \times C_3 \times C_3 \times C_3$; $\gamma_3(G) = 1$. In the first and the third case, $t^L(KG) = 10$ by [6, Theorem 1] and Lemma 2.4. In the second case, $d_{(2)} = 2$, $d_{(3)} = 1$ and $d_{(k)} = 0$ for all $k \ge 4$ so again $t^L(KG) = 10$. For $p \ge 5$, $t_L(KG) = t^L(KG)$ by [1, Theorem 1].

We now give characterizations of Lie nilpotent group algebras of Lie nilpotency indices 2p, 3p - 1 and 4p - 2.

Theorem 3.4. Let KG be a Lie nilpotent group algebra of a group G over a field K of characteristic p > 0. Then the following are equivalent:

- (i) $t_L(KG) = 2p;$
- (ii) $t^L(KG) = 2p;$
- (iii) $G' \cong C_p \times C_p$ and $\gamma_3(G) = 1$.

PROOF. Let $t^L(KG) = 2p$. Then $d_{(2)} + 2d_{(3)} = 2$ and $d_{(k)} = 0$ for all $k \ge 4$. If $d_{(3)} \ne 0$, then |G'| = p and $t^L(KG) = p + 1$. So $d_{(3)} = 0$, $d_{(2)} = 2$ and $|G'| = p^2$. Now if G' is cyclic, then $t^L(KG) = p^2 + 1$. So $G' \cong C_p \times C_p$. Also $D_{(3),K}(G) = D_{(4),K}(G) = \cdots = D_{(2p),K}(G) = 1$. Hence $\gamma_3(G) = 1$. Conversely, if $G' \cong C_p \times C_p$ and central, then $D_{(3),K}(G) = \gamma_3(G)G'^p = 1$. Hence $t^L(KG) = 2 + 2(p-1) = 2p$. Thus statements (ii) and (iii) are equivalent. If p = 2 or 3, then $t^L(KG) = t_L(KG)$ follows easily from [9, Theorem 3.7] and for $p \ge 5$ this is a simple consequence of [1, Theorem 1].

Theorem 3.5. Let KG be a Lie nilpotent group algebra of a group G over a field K of characteristic p > 0. Then $t^L(KG) = 3p - 1$ if and only if one of the following conditions holds:

- (i) $G' \cong C_p \times C_p \times C_p$ and $\gamma_3(G) = 1$;
- (ii) $G' \cong C_p \times C_p$, $\gamma_3(G) \cong C_p$ and $\gamma_4(G) = 1$;
- (iii) $p = 2, G' \cong C_4$.

Moreover, $t^L(KG) = 3p - 1$ if and only if $t_L(KG) = 3p - 1$.

PROOF. Let $t^{L}(KG) = 3p - 1$. Then $d_{(2)} + 2d_{(3)} + 3d_{(4)} = 3$ and $d_{(k)} = 0$ for all $k \ge 5$. If $d_{(4)} \ne 0$, then |G'| = p and $t^{L}(KG) = p + 1$. So $d_{(4)} = 0$ and $D_{(4),K}(G) = D_{(5),K}(G) = \cdots = D_{(3p-1),K}(G) = 1$. Thus G' is a nilpotent group of class at most 3. If $d_{(3)} = 0$, then $d_{(2)} = 3$ and $D_{(3),K}(G) = 1$. So, in this case,

the exponent of G' is $p, \gamma_3(G) = 1$ and hence $G' \cong C_p \times C_p \times C_p$. If $d_{(3)} \neq 0$, then $d_{(2)} = d_{(3)} = 1$ and $|G'| = p^2$. Now if G' is cyclic, then $t^L(KG) = p^2 + 1 = 3p - 1$. So p = 2, $\gamma_3(G) \subseteq G'^2$ and $\gamma_4(G) = 1$. If G' is not cyclic, then $G' \cong C_p \times C_p$, $\gamma_3(G) \cong C_p$ and $\gamma_4(G) = 1$. Conversely, if condition (i) holds, then $d_{(2)} = 3$ and $d_{(k)} = 0$ for all $k \ge 3$, so $t^L(KG) = 2 + 3(p - 1) = 3p - 1$. In case of condition (ii), $d_{(2)} = d_{(3)} = 1$ and $d_{(k)} = 0$ for all $k \ge 4$. So $t^L(KG) = 2 + (p - 1)(1 + 2) = 3p - 1$. For condition (iii), $t^L(KG) = 5 = 3p - 1$ by [6, Theorem 1].

Moreover, if p = 2 or 3 and $t^L(KG) = 3p - 1$, then $t_L(KG) = 3p - 1$ follows easily from [9, Theorem 3.3 and Theorem 3.6]. Conversely, if $t_L(KG) = 3p - 1$ and p = 2 or 3, then $t^L(KG) = 3p - 1$ by [9, Theorem 3.7] and Theorem 3.2. For $p \ge 5$ this is a simple consequence of [1, Theorem 1].

Theorem 3.6. Let KG be a Lie nilpotent group algebra of a group G over a field K of characteristic p > 0. Then $t^L(KG) = 4p - 2$ if and only if one of the following conditions holds:

- (i) $G' \cong C_p \times C_p \times C_p \times C_p$ and $\gamma_3(G) = 1$;
- (ii) $G' \cong C_p \times C_p \times C_p$, $\gamma_3(G) \cong C_p$ and $\gamma_4(G) = 1$;
- (iii) p = 3 and $G' \cong C_9$;
- (iv) $p = 2, G' \cong C_4 \times C_2, \gamma_3(G) = G'^2$ and $\gamma_4(G) = 1$. Moreover, $t^L(KG) = 4p - 2$ if and only if $t_L(KG) = 4p - 2$.

PROOF. Let $t^L(KG) = 4p - 2$. Then $d_{(2)} + 2d_{(3)} + 3d_{(4)} + 4d_{(5)} = 4$ and $d_{(k)} = 0$ for all $k \ge 6$. If $d_{(5)} \ne 0$, then |G'| = p and $t^L(KG) = p + 1$. So $d_{(5)} = 0$ and $D_{(5),K}(G) = D_{(6),K}(G) = \cdots = D_{(4p-2),K}(G) = 1$. Thus G' is a nilpotent group of class at most 4. If G' is a cyclic group of order p^2 , then $t^L(KG) = p^2 + 1 = 4p - 2$ and so p = 3. If $d_{(4)} \ne 0$, then $d_{(2)} = 1$ and $|G'| = p^2$. So, in this case, $t^L(KG) = 2p$ or 3p - 1 by Theorem 3.4 and Theorem 3.5. Thus $d_{(4)} = 0$ and $D_{(4),K}(G) = 1$. For the same reason $d_{(3)} \ne 2$. Now we have two possibilities. Either $d_{(2)} = 4$, $d_{(3)} = 0$ or $d_{(2)} = 2$, $d_{(3)} = 1$. In the first case $G' \cong C_p \times C_p \times C_p \times C_p$ and $\gamma_3(G) = 1$. In the second case $|D_{(3),K}(G)| = p$. Now if $p \ne 2$, then $D_{(4),K}(G) = 1$ leads to $G'^p = 1$. So $G' \cong C_p \times C_p \times C_p \times C_p$, $\gamma_3(G) \cong C_p$ and $\gamma_4(G) = 1$. But if p = 2, then $t^L(KG) = 6$ and we have case (iv) by [9, Theorem 3.4]. Conversely, if case (i) holds, then $d_{(2)} = 4$ and $d_{(k)} = 0$ for all $k \ge 4$ so again $t^L(KG) = 4p - 2$. In cases (iii) and (iv) [6, Theorem 1] and [9, Theorem 3.4] apply, respectively.

Moreover, if p = 2 and $t^L(KG) = 4p - 2$, then $t_L(KG) = 4p - 2$ follows easily from [9, Theorem 3.4]. If p = 3 and $t^L(KG) = 4p - 2$, then in case (i) we

can use Lemma 2.4 and in case (ii) Lemma 2.7 applies. In case (iii) we have [6, Theorem 1]. Conversely, if $t_L(KG) = 4p-2$ and p = 2 or 3, then $t^L(KG) = 4p-2$ by [9, Theorem 3.7] and Theorem 3.3. For $p \ge 5$ this is a simple consequence of [1, Theorem 1].

As a straightforward application of Lemma 2.5, we obtain:

Corollary 3.7. Let KG be a Lie nilpotent group algebra of a torsion group G containing an element of order p over a field K of characteristic p > 0. Let C be the nilpotency class of U(KG). Then

- (i) C = 2p 1 if and only if $G' \cong C_p \times C_p$ and $\gamma_3(G) = 1$;
- (ii) C = 3p-2 if and only if G and K satisfy one of the conditions of Theorem 3.5;
- (iii) C = 4p-3 if and only if G and K satisfy one of the conditions of Theorem 3.6.

ACKNOWLEDGEMENTS. The author thanks the referees for their suggestions that led to a better presentation of the paper.

References

- A. K. BHANDARI and I. B. S. PASSI, Lie nilpotency indices of group algebras, Bull. London Math. Soc. 24 (1992), 68–70.
- [2] V. BOVDI, Modular group algebras with almost maximal Lie nilpotency indices II, Sci. Math. Japan 65 (2007), 267–271.
- [3] V. BOVDI, T. JUHASZ and E. SPINELLI, Modular group algebras with almost maximal Lie nilpotency indices, Algebr. Represent. Theory 9 (2006), 259–266.
- [4] A. A. BOVDI and I. I. KHRIPTA, Generalized Lie nilpotent group rings, Math. USSR Sbornik 57 (1987), 165–169.
- [5] A. A. BOVDI and J. KURDICS, Lie properties of the group algebra and the nilpotency class of the group of units, J. Algebra 212 (1999), 28–64.
- [6] V. BOVDI and E. SPINELLI, Modular group algebras with maximal Lie nilpotency indices, *Publ. Math. Debrecen* 65 (2004), 243–252.
- [7] F. CATINO, S. SICILIANO and E. SPINELLI, A note on the nilpotency class of the unit group of a modular group algebra, *Math. Proc. R. Ir. Acad.* 108 (2008), 65–68.
- [8] H. CHANDRA and M. SAHAI, Lie solvable group algebras of derived length three in characteristic three, J. Algebra Appl. 11 (2012), 1250098 (12 pages).
- H. CHANDRA and M. SAHAI, Strongly Lie nilpotent group algebras of index at most 8, J. Algebra Appl. 13 (2014), 1450044, (9 pages).
- [10] X. Du, The centres of radical ring, Canad. Math. Bull. 35 (1992), 174–179.
- [11] N. GUPTA and F. LEVIN, On Lie ideals of a ring, J. Algebra 81 (1983), 225-231.
- [12] I. I. KHRIPTA, The nilpotence of the multiplicative group of a group ring, Mat. Zametki 11 (1972), 191–200, Math. Notes 11 (1972), 119–124.

- [13] F. LEVIN and S. K. SEHGAL, Lie nilpotent group rings, J. Pure Appl. Algebra 37 (1985), 33–39.
- [14] I. B. S. PASSI, Group Rings and their Augmentation Ideals, Lecture notes in Mathematics #715, Springer Verlag, Berlin, 1979.
- [15] I. B. S. PASSI, D. S. PASSMAN and S. K. SEHGAL, Lie solvable group rings, Canad. J. Math. 25 (1973), 748–757.
- [16] A. SHALEV, Applications of dimension and Lie dimension subgroups to modular group algebras, Proceedings of Amitsur Conference in Ring Theory, 1989, 84–95.
- [17] A. SHALEV, The nilpotency class of the unit group of a modular group algebra III, Arch. Math. 60 (1993), 136–145.
- [18] R. K. SHARMA and J. B. SRIVASTAVA, Lie ideals in group rings, J. Pure Appl. Algebra 63 (1990), 67–80.
- [19] R. K. SHARMA and V. BIST, A note on Lie nilpotent group rings, Bull. Austral. Math. Soc. 45 (1992), 503–506.

MEENA SAHAI DEPARTMENT OF MATHEMATICS AND ASTRONOMY LUCKNOW UNIVERSITY LUCKNOW, 226007 INDIA *E-mail:* meena_sahai@hotmail.com

(Received March 24, 2014; revised January 12, 2015)