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Geodesics and Jacobi fields of pseudo-Finsler manifolds

By MIGUEL ANGEL JAVALOYES (Murcia) BRUNO LEARTH SOARES (Santo André)

Abstract. In this paper, we derive the first and the second variation of the energy

functional for a pseudo-Finsler metric using the family of affine connections associated

to the Chern connection. This opens the possibility to accomplish computations with

coordinate-free methods. Using the second variation formula, we introduce the index

form and present some properties of Jacobi fields.

1. Introduction

Geodesics and Jacobi fields are probably the most important geometrical

elements associated to a Finsler metric. Even though they can be defined with-

out using any connection, choosing an appropriate connection associated to the

Finsler metric can make it easier to get some properties of them. In particu-

lar, the main goal of this paper is to use the Chern connection to deduce some

of these properties under the approach developed by H.-H. Matthias in [21,

Definition 2.5], where the Chern connection is interpreted as a family of affine

connections, namely, for every vector field V in an open subset Ω ⊂ M , non-zero

everywhere, we get an affine connection ∇V . This affine connection is torsion-free

and almost g-compatible, meaning that the derivative of the fundamental tensor
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is an expression in terms of the Cartan tensor (see Subsection 2.3). Both proper-

ties allow one to compute the first and second variation of the energy functional

in a coordinate-free manner. In this process, we will also use the further develop-

ments given in [15], [16], where a satisfactory relation between the curvature of

the affine connection and the Chern curvature is obtained.

As one of our intentions is to promote the study of Finsler geometry between

researchers of Riemannian background, we have included many details, with the

purpose of providing in some cases index-free proofs or establishing the results in

the very general setting of pseudo-Finsler metrics, apparently, the most general

case where the Chern connection can be defined (see Remark 2.7). In partic-

ular the square of a Finsler metric is a pseudo-Finsler metric and the notions

of indefinite Finsler metrics [5], [6] and Finsler spacetimes [26] can fit into this

definition.

The fundamental objective of this paper is to provide a computation of the

first and the second variation of the energy functional of a pseudo-Finsler metric

(Propositions 3.1 and 3.2). As a first step, we prove that geodesics are the critical

points of the energy functional when we consider curves with fixed endpoints,

or, more generally, with endpoints in two submanifolds P and Q (Corollary 3.7).

Moreover, the second variation formula allows us to define the index form and

the Jacobi fields (Subsection 3.7), and with our approach to the Chern connec-

tion we can straightforwardly deduce some basic properties of Jacobi fields (see

Subsection 3.4) and characterize the kernel of the index form as the (P,Q)-Jacobi

fields along γ (Proposition 3.11).

The paper is structured as follows. Section 2 contains some basic results about

pseudo-Finsler metrics including some properties of its fundamental tensor, the

Cartan tensor and the Chern connection. We also introduce several basic notions:

parallelism of a vector field along a curve, geodesics, namely, curves having parallel

tangent vector fields, and the exponential map. In the last subsection we recall

some properties concerning the curvature of the Chern connection obtained in

[15], [16], in particular its relation to the Chern curvature.

In Section 3 we compute the first and the second variation of the energy

functional (Propositions 3.1 and 3.2) and then we get the index form when the

boundary conditions are given by two submanifolds. As a preparatory step,

in Subsection 3.1 we collect some definitions and properties of submanifolds of

pseudo-Finsler manifolds. Then, in Subsection 3.4, we give some properties of

Jacobi fields.
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2. Pseudo-Finsler metrics and the Chern connection

2.1. Preliminaries on pseudo-Finsler metrics. Let M be an n-dimensional

manifold and denote by π : TM → M the natural projection of the tangent

bundle TM into M . Let A ⊂ TM \ 0 be an open subset of TM which is conic,

that is, such that π(A) = M and λv ∈ A, for every v ∈ A and λ > 0. We say

that a smooth function L : A → R is a (conic, two homogeneous) pseudo-Finsler

metric if

(i) L is positive-homogeneous of degree 2, that is, L(λv) = λ2L(v) for every

v ∈ A and λ > 0,

(ii) for every v ∈ A, the fundamental tensor gv of L at v defined by

gv(u,w) :=
1

2

∂2

∂t∂s
L(v + tu+ sw)|t=s=0,

for any u,w ∈ Tπ(v)M , is nondegenerate.

Clearly, the fundamental tensor is bilinear and symmetric. We will refer to the

pair (M,L), being M a manifold and L a pseudo-Finsler metric on M , as a

pseudo-Finsler manifold.

Remark 2.1. In the following we shall omit the adjectives two-homogeneous

and conic whenever there is no danger of misunderstanding. In [18] the same

name of pseudo-Finsler metrics is used for a somewhat different concept. In the

cited reference, a pseudo-Finsler metric is not allowed to be non-positive away

from the zero section and it is positive homogeneous of degree one. Moreover, its

fundamental tensor is not necessarily nondegenerate. Nevertheless, if F : A1 ⊂
TM → [0,+∞) is a conic pseudo-Finsler metric on M as in [18] and

Ã1 = {v ∈ A1 \ 0 : the fundamental tensor gv of F 2 is nondegenerate},

then L = F 2|Ã1
: Ã1 → (0,+∞) fits in our definition of pseudo-Finsler metric.

Moreover, if L : A2 ⊂ TM \ 0 → R is a pseudo-Finsler metric on M as defined

above and Ã2 = {v ∈ A2 : L(v) ̸= 0}, then F =
√
|L|
∣∣
Ã2

: Ã2 → (0,+∞) is

a conic pseudo-Finsler metric on M as in [18] (extending F continuously to the

zero section if necessary). Note finally that the concept of pseudo-Finsler met-

rics in [18] is particularly convenient when one is interested in studying distance

properties.

We mention some particular cases of pseudo-Finsler metrics:
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(i) if A = TM \ 0 and the fundamental tensor is positive definite, then L is

positive away from the zero section and F =
√
L is what traditionally has

been called a Finsler metric;

(ii) if A ( TM \ 0, but the fundamental tensor is positive definite, then the

square root F =
√
L is called a conic Finsler metric in [18];

(iii) if the fundamental tensor has index one, then L is called a Lorentzian Finsler

metric (see [1], [12], [19]). This is also the case of Finsler spacetimes where

some authors ask L to be defined in the whole TM [5], [6], [26].

Remark 2.2. Even though sometimes the domain of definition can change

(see Remark 2.1), from now on, by abuse of notation, we omit the subset A when

fixing a (conic) pseudo-Finsler manifold (M,L), assuming that L is defined in A.

We end this subsection with a proposition that describes the positive ho-

mogeneity of the fundamental tensor of a pseudo-Finsler metric as well as some

relations between the fundamental tensor and the metric. It is a simple conse-

quence of basic properties of homogeneous functions.

Proposition 2.3. Given a pseudo-Finsler metric L and v ∈ A, the funda-

mental tensor gv is positive homogeneous of degree 0, that is, gλv = gv for λ > 0.

Moreover gv(v, v) = L(v) and gv(v, w) =
1
2

∂
∂zL (v + zw) |z=0.

2.2. Cartan tensor. In Finsler geometry, unlike the Riemannian setting, we

need to consider the third derivatives of the metric in order to define a connection.

This information is contained in the Cartan tensor, which is defined as the trilinear

form

Cv(w1, w2, w3) =
1

4

∂3

∂s3∂s2∂s1
L

(
v +

3∑
i=1

siwi

)∣∣∣
s1=s2=s3=0

, (1)

for v ∈ A and w1, w2, w3 ∈ Tπ(v)M . Observe that Cv is symmetric, that is, its

value does not depend on the order of w1, w2 and w3.

Remark 2.4. Let πA : A → M be the restriction to A of the natural projection

π : TM → M . Now let π∗
A(T

∗M) be the fiber bundle over A induced by the

natural projection of the cotangent bundle π∗ : T ∗M → M through πA. Observe

that the fundamental tensor is a symmetric section of the fiber bundle π∗
A(T

∗M)⊗
π∗
A(T

∗M). Moreover, the Cartan tensor is a symmetric section of the fiber bundle

π∗
A(T

∗M)⊗ π∗
A(T

∗M)⊗ π∗
A(T

∗M).

Furthermore, the Cartan tensor can be obtained from the fundamental ten-

sor as

Cv(w1, w2, w3) =
1

2

∂

∂z
gv+zw1(w2, w3)

∣∣∣
z=0

.
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If g is an arbitrary symmetric section of π∗
A(T

∗M) ⊗ π∗
A(T

∗M) that is positive

homogeneous of degree zero (gv = gλv for λ > 0) we define its Cartan tensor as

above.

The following is another simple consequence of basic properties of homoge-

neous functions:

Proposition 2.5. The Cartan tensor is homogeneous of degree −1, that is,

Cλv = 1
λCv for any v ∈ A and λ > 0. Moreover, Cv(v, w1, w2) = 0 for every

w1, w2 ∈ Tπ(v)M .

To conclude this subsection, we state a well-known result that appears, for

example, in [3, Theorem 3.4.2.1].

Proposition 2.6. An arbitrary (non-degenerate) symmetric section g of

π∗
A(T

∗M)⊗ π∗
A(T

∗M) that is positive homogeneous of degree zero comes from a

pseudo-Finsler metric if and only if its Cartan tensor is symmetric.

Remark 2.7. An arbitrary symmetric section g of π∗
A(T

∗M)⊗π∗
A(T

∗M) that

is positive homogeneous of degree zero is usually known as a generalized metric.

It was introduced by A. Moor in 1956 [24] and studied in detail by J. R. Van-

stone [29], M. Hashiguchi [14], R. Miron [23] and others. For a quite recent

survey, we refer to [20]. Unfortunately, the Chern connection is not well-defined

for generalized metrics unless they come from a pseudo-Finsler metric. This is be-

cause the following remark is essential to prove existence of a connection which is

torsion-free and almost metric compatible (see for example [15, Proposition 2.3]).

Remark 2.8. In the case of a pseudo-Finsler manifold (M,L), the Cartan ten-

sor is symmetric. This together with Proposition 2.5 means that Cv(v, w1, w2) =

Cv(w1, v, w2) = Cv(w1, w2, v) = 0 for any v ∈ A and w1, w2 ∈ Tπ(v)M .

2.3. Chern connection and covariant derivative. Assume that (M,L) is a

pseudo-Finsler manifold with domain A ⊂ TM , and denote by X(Ω) the module

of smooth vector fields on an open subset Ω ⊂ M . We say that V ∈ X(Ω) is

L-admissible if V (p) ∈ A for every p ∈ Ω. Then the mapping{
gV : (X,Y ) ∈ X(Ω)× X(Ω) 7→ gV (X,Y ) ∈ C∞(Ω),

gV (X,Y )(p) := gV (p)(X(p), Y (p)) (p ∈ Ω)

is a pseudo-Riemannian metric on Ω. We construct in the same way a type (0, 3)

tensor field CV on Ω from the Cartan tensor.

It can be associated to any L-admissible vector field V ∈ X(Ω) an affine

connection

∇V : X(Ω)× X(Ω) → X(Ω)
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such that

(i) ∇V
XY −∇V

Y X = [X,Y ] for all X,Y ∈ X(Ω) (torsion freeness);

(ii) X(gV (Y,Z)) = gV (∇V
XY,Z)+gV (Y,∇V

XZ)+2CV (∇V
XV, Y, Z) for allX,Y, Z ∈

X(Ω) (almost g-compatibility).

We say that ∇V is the Chern connection of (M,L) associated to the L-admissible

vector field V ∈ X(Ω). It is easy to see that ∇V is positive homogeneous of

degree 0 in V , i.e., ∇V = ∇λV for all positive λ.

Now we suppose that Ω is a chart domain with coordinate system

x = (x1, . . . , xn) : Ω → x(Ω) ⊂ Rn.

The Christoffel symbols of ∇V with respect to the chart (Ω, x) are the smooth

functions Γk
ij(V ) : Ω → R such that

∇V
∂

∂xi

(
∂

∂xj

)
=
∑

Γk
ij(V )

∂

∂xk
; i, j ∈ {1, . . . , n}.

In fact, Γk
ij(V ) = Γk

ij ◦V where Γk
ij : π

−1(Ω)∩A → R are the Christoffel symbols

of the Chern connection (see [15, Proposition 2.6]).

Given a smooth curve γ : [a, b] → M , we denote by X(γ) the C∞([a, b])-

module of vector fields along γ. We say that W ∈X(γ) is L-admissible if W (t)∈A

for all t ∈ [a, b]. For every L-admissible vector field W ∈ X(γ), the Chern con-

nection induces a covariant derivative DW
γ : X(γ) → X(γ) along γ, given locally,

when γ is contained in the chart domain Ω, by

DW
γ X =

n∑
i=1

(
Ẋk +

n∑
i,j=1

Xiγ̇j(Γk
ij ◦W )

)(
∂

∂xk
◦ γ
)
, (2)

where X =
∑n

i=1 X
i( ∂

∂xi ◦ γ), γ̇ =
∑n

i=1 γ̇
i( ∂

∂xi ◦ γ) (see, again, [15, Proposi-

tion 2.6]). The induced covariant derivative is also almost g-compatible in the

sense that

(gW (X,Y ))′ = gW (DW
γ X,Y ) + gW (X,DW

γ Y ) + 2CW (DW
γ W,X, Y ), (3)

for all X,Y ∈ X(γ).

2.4. Parallel vector fields. Having been defined the induced covariant deriva-

tive, we can introduce the concept of parallelism along a (piecewise) smooth curve

γ : [a, b] → M . Then, of course, we have to assume that γ is also L-admissible in

the sense that γ̇(t) ∈ A for all t ∈ [a, b]. (At break points, both velocity vectors of

γ must belong to A.) For simplicity, we may assume that Im(γ) is in the domain

of a chart (Ω, x); this assumption is clearly not restrictive.
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Definition 2.9. Let (M,L) be a pseudo-Finsler manifold and γ a smooth

L-admissible curve in M . A vector field X ∈ X(γ) is called parallel if Dγ̇
γX = 0.

Proposition 2.10. Hypotheses and notation as above. Given a vector w ∈
Tγ̇(a)M , there is a unique parallel vector field X along γ such that X(a) = w.

The proof is routine.

2.5. Geodesics and the exponential map.

Definition 2.11. A smooth L-admissible curve γ of a pseudo-Finsler manifold

(M,L) is called a geodesic if its velocity vector field γ̇ is parallel along γ.

In terms of local coordinates, the geodesic equation is of the form

γ̈k +
n∑

i,j=1

γ̇iγ̇j(Γk
ij ◦ γ̇) = 0, k ∈ {1, . . . , n}. (4)

As in the pseudo-Riemannian case, we have:

Proposition 2.12. Let (M,L) be a pseudo-Finsler manifold. For every v ∈A,
there exists a unique (maximal) geodesic γv : [a, b) → M such that γ̇v(0) = v,

b ∈ (0,+∞].

Remark 2.13. If γ : [a, b] → M is a geodesic of (M,L), then the function L◦γ̇ :

[a, b] → R is constant. Indeed, taking into account the almost g-compatibility of

the induced covariant derivative and Remark 2.9, we have (L◦γ̇)′=2gγ̇(D
γ̇
γ γ̇,γ̇)=0.

If L ◦ γ̇ = 0, then γ is called a lightlike geodesic.

Definition 2.14. Let (M,L) be a pseudo-Finsler manifold. If p ∈ M , let

Dp be the set of vectors v in A ∩ TpM satisfying the following condition: if

γv : [0, b) → M is the maximal geodesic such that γ̇v(0) = v, then b > 1. The

exponential map of (M,L) at p is the mapping

expp : Dp → M, v 7→ expp(v) := γv(1).

Proposition 2.15. The domain of the exponential map expp : Dp → M is

an open subset of A∩TpM , and expp is smooth on Dp. If A∩TpM = TpM \ {0},
then expp is defined in an open subset of 0p, putting expp(0p) = p.

Proof. The first statement is a consequence of the theorem on smooth de-

pendence on the initial data of ODEs. To see the second statement, observe that

the functions

v ∈ TpM \ {0} 7→
∑

vivjΓk
ij(v) ∈ R; k ∈ {1, . . . , n}
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are positive-homogeneous of degree 2, so they can be extended to C1 functions

at zero. Indeed, homogeneous functions of positive degree can be extended con-

tinuously to zero as zero, and the derivative of a homogeneous function of degree

2 is a homogeneous function of degree 1 (see also Proposition 2.3). In fact, the

extensions will be of class C1 on π−1(Ω). �

2.6. Jacobi operator and flag curvature. If we fix an L-admissible vector

field V in Ω ⊂ M , the Chern connection ∇V is an affine connection on Ω, whose

curvature tensor is given by

RV (X,Y )Z = ∇V
X∇V

Y Z −∇V
Y ∇V

XZ −∇V
[X,Y ]Z; X,Y, Z ∈ X(Ω).

The∇V -covariant derivative of the Cartan tensor CV is the (0, 4) tensor defined by

∇V
XCV (Y, Z,W ) = X(CV (Y, Z,W ))− CV (∇V

XY, Z,W )

− CV (Y,∇V
XZ,W )− CV (Y, Z,∇V

XW ).

It is straightforward to check that ∇V
XCV is trilinear, symmetric and

∇V
XCV (V, Z,W ) = −CV (∇V

XV, Z,W ). (5)

Moreover, for every X,Y, Z,W ∈ X(Ω), the curvature tensor has the following

symmetries (see [15, Proposition 3.1]):

(i) RV (X,Y ) = −RV (Y,X);

(ii) gV (R
V (X,Y )Z,W ) + gV (R

V (X,Y )W,Z) = 2BV (X,Y, Z,W ),

where

BV (X,Y, Z,W ) = ∇V
Y CV (∇V

XV,Z,W )

−∇V
XCV (∇V

Y V, Z,W ) + CV (R
V (Y,X)V,Z,W );

(iii) RV (X,Y )Z +RV (Y,Z)X +RV (Z,X)Y = 0;

(iv) gV (R
V (X,Y )Z,W )− gV (R

V (Z,W )X,Y ) = BV (Z, Y,X,W )

+BV (X,Z, Y,W ) +BV (W,X,Z, Y ) +BV (Y,W,Z,X)

+BV (W,Z,X, Y ) +BV (X,Y, Z,W ). (6)
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We can also define the Jacobi operator Rγ along an L-admissible curve γ :

[a, b] ⊂ R → M . Recall that the curve γ is L-admissible if γ̇ belongs to A and

consider a smooth variation Λ : [a, b] × (−ε, ε) → M , which is a two-parameter

map. Given s0 ∈ (−ε, ε) and t0 ∈ [a, b], we will denote by γs0 : [a, b] → M the

curve defined as γs0(t) = Λ(t, s0) for every t ∈ [a, b] and by βt0 : (−ε, ε) → M the

curve defined as βt0(s) = Λ(t0, s) for every s ∈ (−ε, ε), which are the longitudinal

and the transverse curves of the variation, respectively. Moreover, we will use the

notation Λt(t, s) = γ̇s(t) and Λs(t, s) = β̇t(s) and we will denote by Λ∗(TM) the

vector bundle over [a, b] × (−ε, ε) induced by π : TM → M through Λ. Then

the space of smooth sections of Λ∗(TM) will be denoted as X(Λ). Observe that

a vector field V ∈ X(Λ) induces vector fields in X(γs0) and X(βt0) for every

s0 ∈ (−ε, ε) and t0 ∈ [a, b]. We will say that V is L-admissible if V (t, s) ∈ A for

every (t, s) ∈ [a, b] × (−ε, ε). When Λ lies in the domain of a coordinate system

x1, . . . , xn, we will denote Λi = xi ◦ Λ. Notice that when we have a variation of

curves (or more generally a two parameters map), as the Chern connection is free

of torsion, we have the following property:

DV
γs
β̇t = DV

βt
γ̇s, (7)

(see also [15, Proposition 3.2]). We say that the variation Λ is L-admissible if

γs is L-admissible for every s ∈ (−ε, ε). Moreover, we will denote by W the

variational vector field of Λ along γ, namely, W (t) = Λs(t, 0) for every t ∈ [a, b].

If Λ is L-admissible and Z ∈ X(Λ), we can define

RΛ(Z) := DΛt
γs
DΛt

βt
Z −DΛt

βt
DΛt

γs
Z,

which is a smooth vector field along Λ. Now observe that given an L-admissible

curve γ : [a, b] → M , and an arbitrary smooth vector field W along γ there always

exists a (non-unique) L-admissible variation Λ of γ with W as variational vector

field. In fact, it is well-known that we can choose a variation Λ : [a, b]×(−ε, ε)→M

of γ having W as a variation vector field. As Λ is at least C1, being A an open

subset and [a, b] compact, we can choose a smaller ε if necessary in such a way

that Λ is L-admissible. Moreover, following [16], we can define

Rγ(γ̇,W )Z := RΛ(Z̃), (8)

where Z is a smooth vector field along γ and Z̃ is a smooth extension of Z to Λ.

As was proven in [16], the operator Rγ is well-defined because it does not depend

on the choice of the variation Λ neither on the extension of Z.
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In general, Rγ(γ̇,W )Z is not tensorial in W , since it is not C∞([a, b])-linear

in W , but as a consequence of [16, Corollary 1.3], it is when Z = γ̇. Moreover,

when γ is a geodesic

Rγ(γ̇,W )γ̇ = Rγ̇(γ̇,W )γ̇,

where we denote by Rv the Chern curvature (see [16] or [4, Formula (3.3.2) and

Exercise 3.9.6]). Finally, for any v ∈ A and w ∈ Tπ(v)M , the flag curvature can

be computed as

Kv(w) =
gv(R

γv (γ̇v,W )W (t0), v)

L(v)gv(w,w)− gv(v, w)2
,

where γv is the geodesic such that γ̇v(t0) = v and W is a smooth vector field

along γ such that W (t0) = w (see [16, Remark 2.3]).

3. Variation of the energy

Given a pseudo-Finsler manifold (M,L), we shall denote by CL(M, [a, b]) the

space of L-admissible piecewise smooth curves in M defined on the closed interval

[a, b]. We write TγCL(M, [a, b]) for the set of all L-admissible, piecewise smooth

continuous vector fields along γ ∈ CL(M, [a, b]) with the same breaks as γ. The

energy functional on CL(M, [a, b]) is the function

E : γ ∈ CL(M, [a, b]) 7→ E(γ) :=
1

2

∫ a

b

L ◦ γ̇ dt ∈ R. (9)

We are going to show that the geodesics of (M,L) are the critical points of E.

To do this, we calculate the first and second variation formula for E.

Let γ ∈ CL(M, [a, b]), and consider the piecewise smooth variation Λ : [a, b]×
(−ε, ε) → M , (t, s) 7→ Λ(t, s) of γ with breaks t0 := a < t1 < t2 < · · · < th <

th+1 := b and recall the notation for variations of the last section. Let us recall

the definition of the Legendre transformation of a pseudo-Finsler metric, namely,

the map LL : A → TM∗, where LL(v) is defined as the one-form given by

LL(v)(w) = gv(v, w) for every w ∈ Tπ(v)M and g is the fundamental tensor of L.

Proposition 3.1. Keeping the notation introduced above, let Λ be an L-

admissible piecewise smooth variation of γ. Then we have the first variation

formula

E′(0) :=
d(E(γs))

ds
|s=0 = −

∫ b

a

gγ̇(W,Dγ̇
γ γ̇) dt+ gγ̇(W, γ̇)|ba

+
h∑

i=1

(
LL(γ̇(t

+
i ))(W (ti))− LL(γ̇(t

−
i ))(W (ti))

)
, (10)
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where γ̇(t+i ) (resp. γ̇(t
−
i )) denote the right (resp. left) velocity at the breaks.

Proof. As the variation is piecewise smooth, we get

d

ds
E(γs) =

1

2

∫ b

a

d

ds
gγ̇s(γ̇s, γ̇s) dt =

∫ b

a

(
gγ̇s(D

γ̇s

βt
γ̇s, γ̇s) + Cγ̇s(D

γ̇s

βt
γ̇s, γ̇s, γ̇s)

)
dt

=

∫ b

a

gγ̇s(D
γ̇s
γs
β̇t, γ̇s) dt, (11)

where we have used first that the Chern connection is almost g-compatible and

then Remark 2.8 and (7). Moreover, applying again that the Chern connection

is almost g-compatible, we find that

gγ̇(D
γ̇
γW, γ̇) =

d

dt

(
gγ̇(W, γ̇)

)
− gγ̇(W,Dγ̇

γ γ̇), (12)

because Cγ̇(D
γ̇
γ γ̇,W, γ̇) = 0 (again by Remark 2.8). Substituting (12) in (11) with

s = 0 and integrating, we get finally (10). �

Proposition 3.1 allows us to define formally the differential of E in γ as the

map dEγ : TγC(M, [a, b]) → R given by

dEγ(W ) = −
∫ b

a

gγ̇
(
W,Dγ̇

γ γ̇
)
dt+

[
gγ̇(W, γ̇)

]b
a

+
h∑

i=1

(
LL(γ̇(t

+
i ))(W (ti))− LL(γ̇(t

−
i ))(W (ti))

)
,

for any W ∈ TγCL(M, [a, b]).

From now on, given a smooth L-admissible curve γ : [a, b] → M and W ∈
X(γ), we write W ′ = Dγ̇

γW . As we shall see later, the critical points of the energy

functional are geodesics when some boundary conditions are imposed. Now we

compute the second variation formula.

Proposition 3.2. Let γ : [a, b] → M be a geodesic of (M,L) and consider

an L-admissible smooth variation Λ. Then with the above notation

E′′(0) =
d2

ds2
E(γs) |s=0 =

∫ b

a

(
− gγ̇(R

γ(γ̇,W )W, γ̇)

+ gγ̇(W
′,W ′)

)
dt+

[
gγ̇(D

γ̇
βt
β̇t|s=0, γ̇)

]b
a
, (13)

where Dγ̇
βt
β̇t|s=0 is the transverse acceleration vector field (cf. [25, p. 266]) of the

variation.
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Proof. We will use Remark 2.8 along the proof without further comment.

Using (11) and the almost g-compatibility of the Chern connection, we get

d2

ds2
E(γs) =

d

ds

∫ b

a

gγ̇s(D
γ̇s
γs
β̇t, γ̇s)dt =

∫ b

a

d

ds
gγ̇s(D

γ̇s
γs
β̇t, γ̇s)dt

=

∫ b

a

(
gγ̇s(D

γ̇s

βt
Dγ̇s

γs
β̇t, γ̇s) + gγ̇s(D

γ̇s
γs
β̇t, D

γ̇s

βt
γ̇s)
)
dt.

Since Dγ̇s

βt
Dγ̇s

γs
β̇t = Dγ̇s

γs
Dγ̇s

βt
β̇t −Rγs(γ̇s, β̇t)β̇t (see (8)),

d2

ds2
E(γs) =

∫ b

a

gγ̇s(D
γ̇s
γs
Dγ̇s

βt
β̇t −Rγs(γ̇s, β̇t)β̇t, γ̇s)dt

+

∫ b

a

gγ̇s(D
γ̇s
γs
β̇t, D

γ̇s

βt
γ̇s)dt. (14)

Finally, as γ0 = γ is a geodesic, we have gγ̇s(D
γ̇s
γs
Dγ̇s

βt
β̇t, γ̇s) =

d
dt (gγ̇s(D

γ̇s

βt
β̇t, γ̇s))

for s = 0, and using this in (14), integrating and recalling (7), we get (13). �

Observe that the transverse acceleration Dγ̇
βt
β̇t|s=0 depends not only on the

vector field W along γ, but also on the variation Λ. We will see later that the

dependence on the variation disappears when we put certain boundary conditions.

3.1. Submanifolds and second fundamental form. We refer the reader to

[25] for the basic notions and notation on submanifolds in semi-Riemannian man-

ifolds. Let us assume that (M,L) is a pseudo-Finsler manifold and P ⊂ M a sub-

manifold of M . We denote the tangent bundle of P as TP and define the normal

bundle TP⊥ of P as the set of vectors v ∈ A such that π(v) ∈ P and gv(v, w) = 0

for every w ∈ Tπ(v)P . We write TpP
⊥ = TP⊥ ∩ TpM for every p ∈ P . This is a

conic subset, namely, if v ∈ TpP
⊥, then λv ∈ TpP

⊥ for every λ > 0. Notice that

even though TP⊥ is not necessarily a fiber bundle over P , it admits a structure of

submersion. By abuse of notation, we write also π for the restriction to TP⊥ of

the natural projection π : TM → M . Let P0 := {p ∈ P : ∃v ∈ TP⊥, π(v) = p},
r := dimP , and recall that n = dimM .

Lemma 3.3. If TP⊥ is not empty, then it is an n-dimensional submanifold

of TM . The subset P0 is open in P , and the map π : TP⊥ → P0 is a submersion.

In particular, for every p ∈ P , TpP
⊥ is a submanifold of TpM of dimension n−r.

Proof. Assume that E1, . . . , Er is a local frame field over an open subset Ξ

of P , and observe that A ∩ π(Ξ)−1 is a submanifold of TM of dimension n + r.

Define φ : A ∩ π(Ξ)−1 → Rr as φ(v) = (gv(v,E1), . . . , gv(v,Er)). Observe that
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if h : (−ϵ, ϵ) → TpM is a curve such that h(0) = v and ḣ(0) = u and w ∈ TpM ,

then using the covariant derivative along the constant curve equal to p, (3) and

Remark 2.8, we get

d

dt
gh(t)(h(t), w)|t=0 = gv(u,w) + 2Cv(u, v, w) = gv(u,w)

and then the fiber derivative of φ is given by Dfφv(u) = (gv(u,E1), . . . , gv(u,Er))

for every u ∈ Tπ(v)M . As gv is a non-degenerate scalar product and (E1, . . . , Er)

is linearly independent, this ensures that the map φ is a submersion. Then

TP⊥∩π−1(Ξ) = φ−1(0), which, if not empty, is an n-dimensional submanifold of

TM , and TP⊥ ∩ TpM is a submanifold of TpM of dimension n− r. This implies

that P0 = π(TP⊥) is open in P and that π : TP⊥ → P0 is a submersion. �

We denote by F(P ) the space of smooth real functions on P , by X(P ) the

F(P )-module space of smooth sections of the fiber bundle TP over P and by

X(P )⊥ the space of smooth sections of π : TP⊥ → P0. Given N ∈ X(P )⊥, we

denote by X(P )⊥N the subset of smooth sections W of π : i∗(TM) → P (where

i∗(TM) is the pull-back of TM along the inclusion i : P → M) such that, for every

p ∈ P , W (p) is gN -orthogonal to TpP . Observe that in particular N ∈ X(P )⊥N .

Then if gN |TpP×TpP is nondegenerate, we have the decomposition

TpM = TpP ⊕ (TpP )⊥N , (15)

where (TpP )⊥N is the subspace of TpM consisting of gN -orthogonal vectors to TpP .

Then for every smooth section V of π : TM → P , we can define tanN (V ) (resp.

norN (V )) as the vector field in X(P ) obtained by projecting V (p) to TpP (resp.

(TpP )⊥N ), for every p ∈ P , through the decomposition (15).

Definition 3.4. Fix N ∈ X(P )⊥ and suppose that gN |TpP×TpP is nondegen-

erate for every p ∈ P . Then

(i) the second fundamental form of P in the direction of N is the map SP
N :

X(P )× X(P ) → X(P )⊥N given by SP
N (U,W ) = norN ∇N

U W ,

(ii) the normal second fundamental form S̃P
N : X(P ) → X(P ) is given by S̃P

N (U) =

tanN ∇N
U N .

Proposition 3.5. With the above notation, SP
N is F(P )-bilinear and sym-

metric and S̃P
N is F(P )-linear. Moreover,

gN (SP
N (U,W ), N) = −gN (S̃P

N (U),W ) (16)

for every U,W ∈ X(P ).
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Proof. First we show that SP
N is F(P )-bilinear. This is immediate for the

first variable. As to the second one, let f ∈ F(P ) and U,W ∈ X(P ). Then

SP
N (U, fW ) = norN ∇N

U (fW ) = norN (U(f)W + f∇N
U (W )) = f norN (∇N

U W ),

since W is tangent to P . For the symmetry,

SP
N (U,W )− SP

N (W,U) = norN (∇N
U W −∇N

WU) = norN [U,W ] = 0,

since [U,W ] is tangent to P . Again it is straightforward to check that S̃P
N is

F(P )-linear. For (16), using that the Chern connection is almost g-compatible,

gN (N,W ) = 0 and Remark 2.8, we get

gN (SP
N (U,W ), N) = gN (∇N

U W,N) = −gN (W,∇N
U N)− 2CN (∇N

U N,W,N)

= −gN (S̃P
N (U),W ),

as required. �

Remark 3.6. Observe that from the homogeneity of the Chern connection it

follows that SP
λN = SP

N , and then from (16), that S̃P
λN = λS̃P

N . Moreover, we shall

interpret SP
N and S̃P

N as maps SP
N : TpP × TpP → (TpP )⊥N and S̃P

N : TpP → TpP ,

respectively, even when X(P )⊥ is empty (think that P could be non-orientable),

since if TpP
⊥ is not empty, then there is some open subset Ξ ⊂ P such that

X(Ξ)⊥ is not empty.

3.2. The endmanifold case. Consider now the space of curves

CL(P,Q) ⊂ CL(M, [a, b])

joining two submanifolds P and Q of M , namely,

CL(P,Q) := {γ ∈ CL(M, [a, b]) : γ(a) ∈ P, γ(b) ∈ Q}.

When we consider a piecewise smooth (P,Q)-variation of γ ∈ CL(P,Q) by curves

in CL(P,Q), the variational vector field is tangent to P and Q at the endpoints.

Indeed, we define

TγCL(P,Q) = {W ∈ TγCL(M, [a, b]) : W (a) ∈ Tγ(a)P, W (b) ∈ Tγ(b)Q}.

Moreover, we say that γ is a critical point of E|CL(P,Q) if dEγ(W ) = 0 for every

W ∈ TγCL(P,Q).
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Corollary 3.7. Let γ ∈ CL(P,Q) and assume that the Legendre transforma-

tion LL is injective. Then γ is a critical point of the energy functional E|CL(P,Q)

if and only if γ is a geodesic gγ̇-orthogonal to P and Q.

Proof. Let t0 ∈ (a, b) an instant where γ is smooth. As the scalar product

gγ̇ is nondegenerate, if we assume that Dγ̇
γ γ̇ ̸= 0, using bump functions, we

can find a vector field W such that gγ̇(D
γ̇
γ γ̇,W ) > 0 in a neighborhood of t0

that does not contain breaks and is zero everywhere. Then using (10), we get a

contradiction. Thus γ must be a piecewise geodesic. Assume that γ̇(t+i ) ̸= γ̇(t−i )

for some i = 1, . . . , h. As LL is assumed to be injective, we can find a variational

vector field Wi such that LL(γ̇(t
+
i ))(Wi) − LL(γ̇(t

−
i ))(Wi) ̸= 0 and it is zero at

the other breaks. This gives a contradiction in (10), since γ is a critical point.

Therefore, γ is a geodesic. Finally given w ∈ Tγ(a)P , construct a vector field W

such that W (a) = w and W (b) = 0. Then (10) implies that gγ̇(a)(γ̇(a), w) = 0.

Analogously, we can show that for any v ∈ Tγ(b)Q, gγ̇(b)(γ̇(b), v) = 0. The converse

is trivial. �

Corollary 3.8. Let γ ∈ CL(P,Q) be a geodesic of (M,L) that is gγ̇-

orthogonal to P and Q at the endpoints and such that gγ̇(a)|P×P and gγ̇(b)|Q×Q

are nondegenerate. Consider a smooth L-admissible (P,Q)-variation. Then

E′′(0) =

∫ b

a

(
− gγ̇(R

γ(γ̇,W )W, γ̇) + gγ̇(W
′,W ′)

)
dt

+ gγ̇(b)(S
P
γ̇(b)(W,W ), γ̇(b))− gγ̇(a)(S

Q
γ̇(a)(W,W ), γ̇(a)),

where W is the variational vector field of the variation along γ.

Proof. It is a straightforward consequence of the definition of the second

fundamental form in Definition 3.4 and (13). �

3.3. The index form. When γ is a geodesic of a pseudo-Finsler manifold (M,L)

such that it is gγ̇-orthogonal to P and Q at the endpoints and such that gγ̇(a)|P×P

and gγ̇(b)|Q×Q are nondegenerate, we can define the (P,Q)-index form of γ as

IγP,Q(V,W ) =

∫ b

a

(−gγ̇(R
γ(γ̇, V )W, γ̇) + gγ̇(V

′,W ′)) dt

+ gγ̇(b)(S
P
γ̇(b)(V,W ), γ̇(b))− gγ̇(a)(S

Q
γ̇(a)(V,W ), γ̇(a)),

where V,W ∈ TγCL(P,Q).

Remark 3.9. Observe that when P (resp. Q) is a hypersurface of M and γ

is orthogonal to P (resp. to Q), the nondegeneracy condition on gγ̇(a)|P×P (resp.

gγ̇(b)|Q×Q) is equivalent to L(γ̇(a)) ̸= 0 (resp. L(γ̇(b)) ̸= 0).
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Let us now give a useful property of the tensor BV defined in Subsection 2.6.

Lemma 3.10. Let (M,L) be a pseudo-Finsler manifold and Ω some open

subset of M and V an L-admissible vector field in Ω. Then for every X,Y, Z,W ∈
X(Ω), BV satisfies

(i) If Z = V or W = V , then

BV (X,Y, Z,W ) = 0.

(ii) If at least two of the vector fields X, Y , Z, W are equal to V , then

BV (X,Y, Z,W ) = 0.

(iii) For any curve γ and U,P ∈ X(γ),

gγ̇(R
γ(γ̇, U)γ̇, P ) = −gγ̇(R

γ(γ̇, U)P, γ̇)

Proof. Since BV is symmetric in the last two arguments, to prove (i) it is

enough to show that BV (X,Y, V,W ) = 0.

Using the definition of BV and Remark 2.8, we get

BV (X,Y, V,W ) = ∇V
Y CV

(
∇V

XV, V,W
)
−∇V

XCV

(
∇V

Y V, V,W
)
.

Then, (i) follows from the symmetry of the tensors ∇V
Y CV and ∇V

XCV together

with relation (5), because

BV (X,Y, V,W ) = ∇V
Y CV

(
V,∇V

XV,W
)
−∇V

XCV

(
V,∇V

Y V,W
)

= −CV

(
∇V

Y V,∇V
XV,W

)
+ CV

(
∇V

XV,∇V
Y V,W

)
= 0.

Now, (ii) is a simple consequence of (i) and the antisymmetry of BV in the first

two arguments.

(iii), on its turn, is simply a generalization of [16, equation (14)], stating

that it is valid for any curve γ, not only for geodesics. The proof is exactly the

same. �

Proposition 3.11. The kernel of IγP,Q consists of the vector fields V ∈
TγCL(P,Q) satisfying

V ′′ = Rγ(γ̇, V )γ̇, tanγ̇ V
′(a) = S̃P

γ̇(a)(V (a)) and tanγ̇ V
′(b) = S̃Q

γ̇(b)(V (b)).
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Proof. Using the fact established in the above lemma, that

gγ̇(R
γ(γ̇, V )W, γ̇) = −gγ̇(R

γ(γ̇, V )γ̇,W ), and taking into account that, since the

Chern connection is almost g-compatible and γ is a geodesic,

gγ̇(V
′,W ′) =

d

dt
(gγ̇(V

′,W ))− gγ̇(V
′′,W ),

we may conclude that the index form can also be expressed as

IγP,Q(V,W ) =

∫ b

a

(
gγ̇(R

γ(γ̇, V )γ̇,W )− gγ̇(V
′′,W )

)
ds+

[
gγ̇(V

′,W )
]b
a

+ gγ̇(b)(S
P
γ̇(b)(V,W ), γ̇(b))− gγ̇(a)(S

Q
γ̇(a)(V,W ), γ̇(a)).

This means that V ∈ TγCL(P,Q) belongs to the kernel of the index form if

and only if V ′′ −Rγ(γ̇, V )γ̇ = 0 and

gγ̇(a)(V
′(a),W (a)) + gγ̇(a)(S

P
γ̇(a)(V,W ), γ̇(a)) = 0,

gγ̇(b)(V
′(b),W (b)) + gγ̇(b)(S

Q
γ̇(b)(V,W ), γ̇(b)) = 0,

at the endpoints. Using (16), we get that

gγ̇(a)(V
′(a)− S̃P

γ̇(a)(V (a)), u) = 0, gγ̇(b)(V
′(b)− S̃P

γ̇(b)(V (b)), w) = 0

for every u ∈ Tγ(a)P and w ∈ Tγ(b)Q. Thus tanγ̇ V
′(a) = S̃P

γ̇(a)(V (a)) and

tanγ̇ V
′(b) = S̃Q

γ̇(b)(V (b)) as required. �

3.4. Jacobi fields, conjugate and focal points.

Definition 3.12. Given a geodesic γ : [a, b] → M of (M,L), a Jacobi field of

γ is a vector field J along γ satisfying

J ′′ = Rγ(γ̇, J)γ̇.

Moreover, given a submanifold P such that γ(a) ∈ P and γ̇(a) is gγ̇(a)-orthogonal

to P , we say that a Jacobi field is P -Jacobi if J(a) is tangent to P and tanγ̇ J
′(a) =

S̃P
γ̇(a)(J(a)). An instant t0 ∈ (a, b] is called

(i) conjugate if there exists a Jacobi field J along γ such that J(a) = J(t0) = 0,

(ii) P -focal if there exists a P -Jacobi field J such that J(t0) = 0.
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Given a geodesic γ : [a, b] → M of a pseudo-Finsler manifold, we can con-

struct a parallel orthonormal frame field along γ. Indeed, fix an orthonormal ba-

sis e1, e2, . . . , en of (Tγ(a)M, gγ̇(a)), namely, a basis satisfying gγ̇(a)(ei, ej) = εiδij ,

where ε2i = 1, δij is the Kronecker’s delta and i, j = 1, . . . , n. Then define

the parallel vector fields E1, E2, . . . , En along γ such that Ei(a) = ei for every

i = 1, . . . , n. The fact that γ is a geodesic implies that gγ̇(Ei, Ej) = εiδij , since

(gγ̇(Ei, Ej))
′ = gγ̇(E

′
i, Ej) + gγ̇(Ei, E

′
j) + 2Cγ̇(D

γ̇
γ γ̇, Ei, Ej) = 0,

where we have used that the Chern connection is almost g-compatible, γ is a

geodesic and the frame field is parallel along γ.

We recall that a variation is called geodesic if its longitudinal curves are

geodesics. As in the pseudo-Riemannian case, we have

Proposition 3.13. In any pseudo-Finsler manifold, the variation vector field

of a geodesic variation is a Jacobi field.

We note that this is true also in the more general setting of spray manifolds,

see [28, Section 8.2.2].

Lemma 3.14. Let γ : [a, b] → M be a geodesic of (M,L) with γ(a) = p.

Then for any v, w ∈ TpM , there exists a unique Jacobi field such that J(a) = v

and J ′(a) = w.

Using a parallel orthonormal frame field along γ, the proof is the same as in

the pseudo-Riemannian case; see, e.g., [25, p. 217].

Proposition 3.15. Let p be a point of a pseudo-Finsler manifold (M,L). If

v ∈ TpM ∩A belongs to the domain of expp, then for any w ∈ Tv(TpM) we have

d expp(v)[w] = J(1),

where J is the unique Jacobi field on γv such that J(0) = 0 and J ′(0) = w.

Proof. Consider the variation Λ̃(t, s) = t(v+ sw) for 0 ≤ t ≤ 1 and s small

enough, and define

Λ(t, s) = expp(Λ̃(t, s)) = γv+sw(t).

By Proposition 3.13, the variation vector field J(t) = Λs(t, 0) (t ∈ [0, 1]) is a

Jacobi field. Moreover, as the curve s → Λ(0, s) = p is constant, J(0) = 0 and if

we denote by β the constant curve with value p and write γs = γv+sw, from (7)

we get

J ′(0) = Dγ̇s

β γ̇s(0) = w,

since γ̇s(0) = v + sw. �
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Given a geodesic γ : [a, b] → M of a pseudo-Finsler manifold, let γ̇⊥ := {v ∈
Tγ̇M : gγ̇(γ̇, v) = 0}. When L ◦ γ̇ ̸= 0, we have the decomposition

Tγ̇M = span(γ̇)⊕ γ̇⊥. (17)

Moreover, if Y ∈ X(γ), let us denote by tanγ(Y ) and norγ(Y ) the first and second

projection in the decomposition (17), respectively.

Lemma 3.16. With the above notation, if L ◦ γ̇ ̸= 0, then (tanγ(Y ))′ =

tanγ(Y
′) and (norγ(Y ))′ = norγ(Y

′).

Proof. It is enough to prove that (tanγ(Y ))′ = tanγ(Y
′), since the other

equality comes then from Y = tanγ(Y ) + norγ(Y ). Observe that gγ̇(Y, γ̇) =

gγ̇(tanγ(Y ), γ̇). Using that γ is a geodesic and the Chern connection is almost

g-compatible, we get that gγ̇(Y
′, γ̇) = gγ̇((tanγ(Y ))′, γ̇). This concludes the proof

because gγ̇(γ̇, γ̇) = L(γ̇) ̸= 0. �

Lemma 3.17. Consider a vector field J along a geodesic γ : [a, b] → M . If

J is a Jacobi field, then:

(i) J is tangent to γ if and only if J(t) = (a1t+ a2)γ̇(t) with a1, a2 ∈ R;

(ii) the following statements are equivalent:

(a) gγ̇(γ̇, J) = 0,

(b) there exist real numbers a, b such that

gγ̇(a)(γ̇(a), J(a)) = gγ̇(b)(γ̇(b), J(b)) = 0,

(c) there exists a real number a such that

gγ̇(a)(γ̇(a), J(a)) = gγ̇(a)(γ̇(a), J
′(a)) = 0.

Moreover, if γ is nonnull, that is, L(γ̇) ̸= 0, then J is a Jacobi field if and only if

norγ(J) and tanγ(J) are Jacobi fields.

Proof. For (i), observe that

Rγ(γ̇, γ̇)γ̇ = 0 (18)

(see [16, Theorem 2.2] and take into account that RV is antisymmetric in the first

two arguments). Then, for J = fγ̇, the Jacobi equation reduces to d2f
dt2 = 0. To

see (ii), observe that since γ is a geodesic,

(gγ̇(J, γ̇))
′′ = gγ̇(J

′′, γ̇) = gγ̇(R
γ(γ̇, J)γ̇, γ̇) = 0, (19)

by part (iii) of Lemma 3.10. Hence gγ̇(J, γ̇) = C1t + C2, where C1 and C2

are real constants, and gγ̇(J
′, γ̇) = C1, thus (ii) follows. For the last statement,
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observe that Rγ(γ̇, tanγ J)γ̇ = 0 and then Rγ(γ̇, J)γ̇ = Rγ(γ̇, norγ J)γ̇ (recall

that Rγ(γ̇,W )γ̇ is tensorial in W ). Using again that gγ̇(R
γ(γ̇, J)γ̇, γ̇) = 0 and

Lemma 3.16, the Jacobi equation splits into the two equations

(tanγ J)
′′ = 0 and (norγ J)

′′ = Rγ(γ̇, norγ J)γ̇.

Finally, applying part (i), we conclude the proof. �

Proposition 3.18. If J1 and J2 are Jacobi fields along a geodesic γ, then

the function gγ̇(J1, J
′
2)− gγ̇(J

′
1, J2) is constant.

Proof. Using that γ is a geodesic, that the Chern connection is almost

g-compatible and that both J1 and J2 satisfy the Jacobi equation, we obtain

(gγ̇(J1, J
′
2)− gγ̇(J

′
1, J2))

′ = gγ̇(J
′
1, J

′
2) + gγ̇(J1, J

′′
2 )− gγ̇(J

′
1, J

′
2)− gγ̇(J

′′
1 , J2)

= gγ̇(J1, R
γ(γ̇, J2)γ̇)− gγ̇(R

γ(γ̇, J1)γ̇, J2). (20)

Let us see that the last quantity is zero. If one of the vector fields J1, J2 is

proportional to γ̇ in some interval, then it follows from (18) and (19). Otherwise,

if both of them are linearly independent to γ̇ you can choose extensions V , U1

and U2 of γ̇, J1 and J2, respectively, such that [U1, V ] = [U2, V ] = 0 and

gγ̇(J1, R
γ(γ̇, J2)γ̇)−gγ̇(R

γ(γ̇, J1)γ̇, J2)=gV (U1,R
V (V,U2)V )−gV (R

V (V,U1)V,U2)

(see [16, Theorem 2.2]), but the last quantity is zero along γ because of (6) and

part (ii) of Lemma 3.10. By continuity, we conclude that (20) is zero everywhere.

�

3.5. Remarks about Morse theory. Let us observe that in principle, there

should not be further obstructions to prove that geodesics of a pseudo-Finsler

metric are critical points of the energy functional in a suitable infinite dimen-

sional H1-Sobolev space, for example, by generalizing the proof in [10, Propo-

sition 2.1]. But in order to make Morse theory available, we need to overcome

several problems. The first one is that the Palais–Smale condition only holds in

general when the pseudo-Finsler metric is in fact a Finsler metric (with positive

definite fundamental tensor), since it is well-known that Palais-Smale condition

fails for semi-Riemannian metrics. The second problem is the differentiability of

the energy function in the H1 Sobolev space, because it is C2 only when the

pseudo-Finsler metric is semi-Riemannian (see [2, Proposition 3.2] and [8]). This

has been overcome in the case of Finsler metrics using that the energy functional is

C2 in the C1-topology (see [9], [11]). The third problem is that when A is strictly
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contained in TM \0, the space of L-admissible curves can be non-complete, thus it

seems interesting to study conditions of completeness in the pseudo-Finsler metric

to guarantee the validity of the Morse theory as in [9], [11]. In [12] some results

of geodesic connectedness of conic Finsler metrics are deduced using causality of

spacetimes endowed with a Killing vector. In the general case, when the funda-

mental tensor is allowed to have any signature, Lemma 3.18 is the key point to

develop a relation between the spectral flow of a certain path of operators and the

Maslov index of conjugate points as in [27]. In the presence of a Killing vector

field, more precise results have been obtained in the Lorentzian realm [7], [13],

[17] and it is expectable to get similar results for Lorentzian Finsler metrics.
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