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Some formulas of Santal6 type in Finsler geometry
and its applications

By LIXIA YUAN (Shanghai) and WEI ZHAO (Shanghai)

Abstract. In this paper, we establish two Santal6 type formulas for general Finsler
manifolds. As applications, we derive a universal lower bound for the first eigenvalue
of the nonlinear Laplacian, two Croke type isoperimetric inequalities, and a Yamaguch
type finiteness theorem in Finser geometry.

1. Introduction

In [16], [17], SANTALO considered the kinematic measure and established a
formula which describes the Liouville measure on the unit sphere bundle of a
Riemannian manifold in terms of the geodesic flow and the measure of a hyper-
surface. This formula plays an important role in global Riemannian geometry.
Some of its applications are universal bounds for the first eigenvalue [5], CROKE’s
isoperimetric inequality [9] and a generalization of Berger’s theorem [8]. More-
over, with Santald’s formula, CROKE in [7] solved a famous isoperimetric problem
in dimension 4. See [5], [7], [8], [10], [9], [11], [16], [17] for more details.

A Finsler manifold is a differentiable manifold, on which every tangent space
is endowed a Minkowski norm instead of a Euclidean norm. There is only one
reasonable notion of the measure for Riemannian manifolds (cf. [4]). However,
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the measure on a Finsler manifold can be defined in various ways and essentially
different results may be obtained, e.g., [1], [2], [18]. Hence, it is interesting to ask
whether an analogue of Santalé’s formula still holds for Finsler manifolds.

Let (M, F) be a Finsler manifold. Denote by m1 : SM — M the unit sphere
bundle. If F(y) = F(—y) for any y € SM, then F is reversible. In a reversible
Finsler manifold, the reverse of a geodesic is still a geodesic (see [3], [18]). In [23],
SHEN and ZHAO considered the problem above and established a Santald type
formula for reversible Finsler manifolds.

There are infinitely many nonreversible Finsler metrics. For example, a Ran-
ders metric in the form F' = a + ( is non-reversible, where « is a Riemannian
metric and § is a 1-form. The reverse of a geodesic in a non-reversible Finsler
manifold is in general not a geodesic. Moreover, in a non-reversible Finsler man-
ifold, the measure of a hypersurface induced by the inward normal vector field
may be different from the one induced by the outward normal vector filed (see
Example 1 in Section 5 below). The purpose of this paper is to establish some
Santal6 type formulas for general Finsler manifolds.

Let (M,0M, F,du) be a compact Finsler manifold with the boundary, where
F' is possibly non-reversible and dp is a measure on M. Denote by ny and n_
the unit inward and outward normal vector fields along M, respectively. The
measures on OM induced by ny are defined by d Ay := i*(ny |dp). Let STOM
and STIM be the bundles of inwardly and outwardly pointing unit vectors along
OM, ie., STOM = {y € SM|onr : gn,.(ns,y) > 0}. The measures on STOM
are the product measures dx+(y) := dvy, (y)(y)d Ax(m1(y)), where dv,(y) is the
Riemannian measure on S, M := 77 *(z) induced by F. For each y € STOM, set
t(y) :=sup{t > 0:7y,(s) € M, 0 < s <t} and I(y) := min{i(y), t(y)}, where i(y)
is the cut value of y.

Since I’ may be non-reversible, to investigate the asymmetry of the Finsler
manifold, we introduce the reverse of F, which is defined by F(y) := F(—y).
Clearly, F is a Finsler metric as well. Let £(-), i(-) and I(-) be defined as above in
(M, 0M, F ). Then we have the following Santalé type formulas.

Theorem 1.1. For all integral function f on SM, we have

U(y)
Ve = [ g megde) [ e 6
Vi, yESHOM 0

I(~y)
/ | fdVsa = / e Wgn (n_,y)dx_(y) / flo—i(y))dt, (i)
% yeS—OM 0

M

where dVgps is the canonical Riemannian measure on SM, T is the distortion
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of du, ¢i(y) is the geodesic flow of F, Vy, := {y € SM : t(—y) < i(~y)} and
Viri={y € SM : t(y) <i(y)}-

One can easily see that Theorem 1.1 implies the Santalé type formulas for
reversible Finsler manifolds [23] and for Riemannian manifolds [16], [17]. Tt is
remarkable that, in a non-reversible Finsler manifold, A_(0M) # A, (0M) and
the formulas (1) and (2) contain information about A} (0M) and A_(OM), re-
spectively.

Before giving some applications of Theorem 1.1, we shall recall some notions
and basic facts of the first eigenvalue in the Finsler setting. The first eigenvalue
A (M, dp) in (M, F,dp) is defined as the smallest positive eigenvalue of the non-
linear Laplacian Ay, introduced by SHEN (cf. [14], [18], [19]). It should be noted
that both Ag, and A\ (M,dp) are dependent on the choice of the measure dp.
Theorem 1.1 now yields the following

Theorem 1.2. Let (M,0M, F) be a compact Finsler n-manifold with the
boundary such that every geodesic ray in (M, F) minimizes distance up to the
point that it intersects OM. Then

Ap(Sp) ,
Adn dp is the Busemann—Hausdorff measure,
MMdp) 2
D2( Dl), dy is the Holmes—Thompson measure,
AT
where D := diam(M), Ar is the uniform constant of F, and S}, denotes the

n-dimensional Riemannian hemisphere of the constant sectional curvature sphere
having diameter equal to D. The equality holds if and only if (M, F') is isometric
to S5.
Note that a Finsler metric F' is Riemannian if and only if Ap = 1. Hence, The-
orem implies CROKE’s sharp universal lower bound for the first eigenvalue [5], [9].
Let (M,0M, F) be as above. For each x € M, set

e . . + p—
w:= inf min{w, w
inf minfu, ),

x

where wl := ¢, !, Jor e™Wdu,(y), UF = 7r|;i (x) and ¢,_; = Vol(S*1). Then
* M
Theorem 1.1 furnishes the following inequalities.
Theorem 1.3. Let (M,0M, F,du) be a compact Finsler n-manifold with the

boundary, where dyu is either the Busemann—Hausdorff measure or the Holmes—
Thompson measure. Then

Ay (OM (n—1)ep_1w
o 1) 5 (= Do,
:U‘( ) Cn—2 ‘DAF 2
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where D := diam(M).

Ai(aM) S Cn,1w1+%

(2) 1- = 1,2n4+32")
(M)~ (¢, /2) m AT

with equality if and only if (M, F) is a Riemannian hemisphere of a constant
sectional curvature sphere.

If F is reversible, then w; = w_ and A (OM) = A_(0M). Hence, Theo-
rem 1.3 implies Croke type isoperimetric inequalities for reversible Finsler mani-
folds [23, Theorem 1.6] and for Riemannian manifolds [9].

As an application of Theorem 1.3, we obtain a Finslerian version of Yam-
aguchi’s finiteness theorem.

Theorem 1.4. For any n and positive numbers i,V,d, the class of closed
Finsler n-manifolds (M, F') with injectivity radius ip;>4, Ap<6 and p(M) <V,
contains at most finitely many homotopy types. Here, u(M) is either the Buse-
mann—Hausdorff volume or the Holmes—Thompson volume of M.

2. Preliminaries

In this section, we recall some definitions and properties about Finsler man-
ifolds. See [3], [18] for more details.

Let (M,F) be a (connected) Finsler n-manifold with Finsler metric F :
TM — [0,00). Let (z,y) = (2%, y") be local coordinates on TM. Define

1 92°F2(z,y : 1, dg; g, j
gij(z,y) = 5 &/i(ayj)’ G'(y) :== 19 l(y) {26;;5(9) - a;zk (y)} yjyk7

where G? are the geodesic coefficients. A smooth curve v(¢) in M is called a
(constant speed) geodesic if it satisfies

24,0
T g <‘”> = 0.

dit? dt

We always use 7, (¢) to denote the geodesic with 4, (0) = y.
The Ricci curvature is defined by Ric(y) := >, R%(y), where

, oG* - 02GE - 9%G! 0G* 0GY
’ =2— — 17 - 2GY - -
Riy) oz Y OxI Oyk +2d Oyidyk  Oyi Oyk
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Let m; : SM — M be the unit sphere bundle, i.e., S;M := {y € T, M :
F(z,y) =1} and SM := Uz S; M. The measure on SM is defined by
det gij(z,y)dz' A Ada™ A dug(y)

dVS’]V[|(w,y) =
= "W (du(z)) A dvy(y).

dvy(y) = y/det gi;(z,y) (2:(—1)"‘11/%1 A Adyi A A dy”) :
=1

is the Riemannian measure on S, M induced by F.
The reversibility A\p and the uniformity constant Ap of (M, F') are defined

where

by Ap :=sup,cps Ar(z) and Ap := sup, ¢, Ap(z), where
gx (Y.Y)

Ap(z) = sup F(x,—y), Ar(x) := su
F() yESFM @ =y), Ar(2) X,Y,Zepst 9z(Y,Y)

Clearly, Ap > )\% > 1. Ap = 1 if and only if F is reversible, while Ap = 1 if and

only if F' is Riemannian.
The dual Finsler metric F* on M is defined by

X
") e oM.

F*(n):= sup ——=,
R FX)
The Legendre transformation £ : T'M — T*M is defined as
X,) X #0,
£(X) = 9x(X;) 7
0 X =0.

In particular, F*(£(X)) = F(X). Now let f : M — R be a smooth function on M.
The gradient of f is defined by Vf = £71(df). Thus, df (X) = gv;(Vf, X).
Let du be a measure on M. In a local coordinate system (z?), express du =
o(x)dx' A--- Adz™. In particular, the Busemann—Hausdorff measure dugg and
the Holmes—Thompson measure dugr are defined by
Vol(B") 1 n
= Vol({y € LM : Fz,y) <1 % /7 N

1
/ \/det g5 (z, y)dl/z(y)) dz' A Adax™.
Sy M

d,uHT = O’HT({L‘)dLL' = (
Cn—1
For y € T, M\0, define the distorsion of (M, F,du) as
det g;;(x,y)
= log Y— W
7(y) :=log o)

d,UBH = O'BH(x)diE

By the same argument in [21], one can show the following lemma.
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Lemma 2.1. Let (M, F) be a Finsler n-manifold with finite uniform con-
stant Ap. Let du denote either the Busemann—Hausdorff measure or the Holmes—
Thompson measure on M. Then the distortion T of dy satisfy Az" < e™W) < A%,
for ally € SM.

The reverse of a Finsler metric F' is defined by ﬁ(y) := F(—y). It is not hard
to see that G(y) = Gi(—y) and dji = dp, where G* (resp. G') are the geodesic
coefficients of F' (resp. F), and dji (vesp. du) denotes the Busemann—Hausdorff
measure or the Holmes—Thompson measure of F (resp. F). In particular, if 7 is
a geodesic of F', then the reverse of 7 is a geodesic of F.

3. Santal6 type formulas

Let (M,0M, F') be compact Finsler manifold with the boundary. Denote by
n; (resp. n_) the unit inward (resp. outward) normal vector field along oM.
Define Ny :={k-ny(z) : 2 € OM, k € R}. The exponential map Exp, of N is
defined by
Exp, : Ny — M, k-ny(z) — exp,(kni(x)).

We always identify M with the zero section of N;. The same arguments as in
[23, Lemma 5.1, Remark 5.1] show the following lemma.

Lemma 3.1. Exp, maps a neighborhood of 0M C N} C L_diffeomorphically
onto a neighborhood of &M C M. Hence, there exists a small 6 > 0 such that
Exp, : Ms — Exp, (Ms) is C'-diffeomorphic, where Ms := {k -ny(z) : = €
OM, 0 <k <d}.

Define p : M — R by p(x) = d(OM, z). Lemma 3.1 together with the proofs
of [23, Lemma 5.2-5.3, Corollay 5.1] and [18, Lemma 3.2.3] yields

Lemma 3.2. Let o(t), 0 < t < ¢, be a C'-curve with o(0) € OM and
o((0,€)) C M. Then

d .
0= & poo(t)=gn,(ni,d(0)).
=0+

Hence, Vpi(z) = ny(x), for any x € OM.

Set STOM = {y € SM|asrs : gny (n+,y) > 0}. By the Legendre transforma-
tions, one can show that STOM are two submanifolds of SM.
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Remark 1. In general, ny # —n_. However, by the Legendre transforma-
tions, one can easily show that S*OM = {y € SM|aps : gn- (n5,y) < 0}.

Set Z := {y € SOM : 3t > 0 such that v,((0,¢)) C M}. Define a function
t: SMUSTOMUZ — Ry by t(y) :=sup{t > 0:v,(s) € M, 0 < s < t}, which is
called the t-function. By the same argument as in [23, Lemma 5.4], one can show
that t-function is low semi-continuous on SM U STOM.

Since (M, 0M, F') is compact, we can define a map

U {(ty):yeSTOM, 0<t<t(y)} = SM,(t,y) — ¢:(y),

where ¢, is the geodesic flow of F. Let t (resp. i) denote the t-function (resp. the
cut value function) defined on (M, 9M, F'), where F(y) := F(—y). Set

Upr = {y € SM : {(—y) < i(-y)}.

Since y € SM implies that F(—y) = 1, U,, is well-defined. In particular, we have
the following

Lemma 3.3. ¥|yn, : Ny — U,,\Uz is a one-one map. Here, M, := {(t,y) :
y € STOM, t € (0,i(y)}, Uz = {oi(y) -y € Z, t € (0,l(y))}, and I(y) =
min{i(y), (y)}.

PROOF. Since M is compact, for each y € Uy;, 0 < t(—y) < i(—y) < oo.

Thus, _,(t), 0 < ¢t < t(—y) is a unit speed minimal geodesic in (M, F). Set
Y :=—5_,(t(~y)). Thus,

It follows from Lemma 3.2 that gy, (n4,Y) > 0. Hence, Y € STOM U Z.

Let d (resp. d) denote the distance function induced by F (resp. F). Let
p:=m(y) and g := m(Y). Then Lr(vy ([0,1(~y)])) = t(~y) = d(p,q) = d(q.p),
which implies that i(Y) > t(—y). We claim that ¢(Y) > t(—y). If not, then p
is the cut point of ¢ along ~y. If p is also a conjugate point of ¢, then there
exists a non-vanishing Jacobi field J(t) along 7y (¢) such that J(0) = 0 and
J(t(—y)) = 0. Tt is easy to check that J(t) := J(t{(—y) — t) is a Jacobi field along
Y_y in (M, ﬁ) Hence, ¢ is a conjugate point of p along y_, in (M, f), which
contradicts t(—y) < i(—y). Since p is not a conjugate point of g, by the proof of
[3, Proposition 8.2.1], one can show that there exists another minimal geodesic
from ¢ to p. Thus, there exist two distinct minimal geodesic from p to ¢ with the
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length (—y) in (M, F), which also contradicts ¥(—y) < i(—y). Hence, the claim
is true, which implies that t(—y) < min{t(Y),i(Y)} = (V).

From above, we show that for each y € U,,, there exist Y € STOM U Z and
t :=t(—y) < I(Y) such that y = ¥(¢,Y). Let Nz := {(t,y) : y € Z,t € (0,1(y))}.
Then ¥lp, un, : My UNz — Uy, is subjective. Since W is injective, we are done
by \I/(Nz) = UZ' O

Given any measure du on M, the induced volume forms on M by ni are
defined by d Ay :=i*(ng |du), where i : OM — M is the inclusion map (cf. [18]).
Now we have the following Santalé formula.

Theorem 3.4. Let (M,0M, F,du) be a compact Finsler manifold with the
boundary. Thus, for all integral function f on SM, we have

1(y)
[ fave - g, (o)) [ Sl ()
v yeStoM 0

U(~y)
/ FdVsar = / @y, (n_,y)dx_(y) / fooi()dt,  (2)
v yES—OM 0

where Vy; = {y € SM : {(—y) < i(—y)}, Vi, := {y € SM : t(y) < i(y)} and
dx+(y) = dAL(m(y)) A dvr, () (y)-

PROOF. (1). Given any y € STOM. We identify T,,(STOM) with its image
in T(O)y)(R X S+8M) Since \IJ*(07y) (X) =X,VX € Ty(S+8M), we have

U (dx+ (y)) = dxslioy)  (mod db). (3.1)

We claim that [¥*7{dp]|,,) =0 (mod dt). In fact, for each X € T}, (SToM),
there exists a curve € : [0, +¢) — STOM with £(0) = y and £(0) = X. Thus,

k% d
<X7 v 7Tldp>|(0,y) = <771* (\I]*(O,y)X) 7dp> = <7T1*X’ dp> = o

= pm(Es) =0

s=0
The claim is true. Lemma 3.2 now yields
* % 8 * ok
[(U*nidp] |(0,y) = a,\ll widp dt
(0,9)
d
== poYy(t) ) dt = gn, (ny,y)dt. (32)

dt |—o+

Define a function n € C*°(R x STOM) by ¥*(dVsar) = n- (3, where () =
dtAdx 1 (y)isa (2n—1) form on Rx STOM. Tt is easy to check that n(t,y) = (0,y)
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(cf. [23, Lemma 5.6]). By the co-area formula (see [18, Theorem 3.3.1]), (3.1)
and (3.2), we have
[ndt A dx+]l(0.5) = ¥ (@Verr(y)) = W™ (dp) (y) A dvg, ) (9)]
= U [e"Wri(dp A d Ay ) (Y) A dve, () (y)]

= [ Wgn, (g, y)dt Adx]l(0.),

that is, 7(0,y) = e gn, (ny,y). It follows from the definition of 7 that

U (Vs (@e(y))) = € Vg, (np,y)dt A dx, (3.3)

which implies that ¥ is of maximal rank. Hence, Lemma 3.3 yields that W]y, is
a diffeomorphism.

Let A :={y € SM : t(—y) = i(~y)}. Thus, V;; = U,;U4". By an argument
similar to the proof of Lemma 3.3, one has A" C {¢y,)y :y € STOMUZ, I(y) =
i(y)}, which implies that .#” has measure zero with respect to dVg,s. Also note
that Vear (U \¥(N4)) = Vem (Uz) = 0. Hence, by (3.3), we have

Mwsziwmwm

N%sz FdVisas =
Vi M Ny

v(Ny)
I(y)

- / W ga (ny,m)dx(y) / Flei(y))dt.

S+toM 0

(2). By considering (M, M, F) and using the formula (1), we have

— 5 I(y)
[ tendanw = [ g anpita) [ o)
yeEV,, yeStoM 0

where the quantities * denote the quantities * defined by F. Note that n, =-n_

and —@:(y) = ¢—t(—y), 0 < t < I(y). The formula (2) now follows from the
transformation y — —y. (|

4. A universal lower bound for the first eigenvalue
of the nonlinear Laplacian

Definition 4.1 ([14], [19]). Let (M, F,du) be a compact Finsler manifold.
Denote % (M,du) by

{f eWz(M): [, fdu=0}, OM =90,

(M, dp) := {{fGWQI(M):ﬂaMO}, OM # .
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Define the canonical energy functional Egq, on (M, dw) — {0} by

* U 2
B () = W

A is an eigenvalue if there is a function u € (M, du) — {0} such that
dyEq, = 0 with A = Eg,(u). In this case, u is called an eigenfunction corre-
sponding to A. The first eigenvalue A\ (M, dp) is defined by

A (M, dp) = inf  E
1Md0) = B oy Bse)

which is the smallest positive critical value of Fg,.

Remark 2. u is an eigenfunction corresponding to A if and only if
Agpu~+ Au =0 (in the weak sense),

where Ay, is the nonlinear Laplacian introduced by SHEN [14], [18], [19]. It
should be noted that Ag, is dependent on the choice of dj.

Proposition 4.2. Let (M, F') be a Finsler n-manifold. Then for any p € M
and f € C*°(M), we have

F(df],)? > —2 /S<y7df>2dup<y>, (4.1)

B Cn71A7]3“+1(p) p M

with equality if and only if F(p,-) is a Eucildean norm.

ProOOF. Without loss of generality, we may suppose df|, # 0. Set B,M :=
{y € T,M : F(p,y) < 1}. By [21], one can choose a gy s-orthnormal basis {e;} of
T,M such that e, = Vf/F(Vf) and det g;;(p,y) < A%(p). Let {y’} denote the
corresponding coordinates. By Stokes’ formula, we have

/ (s df2duy(y) < AR (R)F(V )
Sy M

></ (2> (DR gyt A AdyE A A dy”
S,M P

—

)

— (n+2DAE(P)F (V) /B Py ey

AP [t

AR ) FA(V ) (42)
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If equality holds in (4.1), then it follows from (4.2) that B,M = B"(\/Ar(p) ).
Namely, F(y) = 1 if and only if gvs(y,y) = Ar(p). In particular, 1 = F(e,) =
gvf(en,en) = Ap(p), which implies that F'(p,-) is a Eucildean norm. O

Theorem 4.3. Let (M,0M,F) be a compact Finsler n-manifold with the
boundary such that every geodesic ray in (M, F) minimizes distance up to the
point that it intersects OM. Then

A\ (ST
Alfnfl)’ dp = dupn,

A (M, dp) > M(SE) (4.3)

A2 dp = dpgrT,
F

where D := diam(M) and S}, denotes the n-dimensional Riemannian hemisphere
of the constant sectional curvature sphere having diameter equal to D. The
equality holds if and only if (M, F) is isometric to S},.

PrROOF. Lemma 2.1 yields that

Cn1
ﬁ, dp = dppm,

/ "W du,(y) = cnIUI;(T()m > F (4.4)
SpM P Cn—1, dp=dpgr.

Since Vj; = SM, Theorem 3.4 together with Proposition 4.2 and (4.4) then
yields

/M F*2(df )dp > e AT /M d#(P)/S M<y’df>2dyp(y)

= — e "Wy, df)2dV:
o 1A”+1/5M y f> SM()

0

= 7[\ 1/ (lflf,y)dxf(y)/~ e Tt (04 (y), df)2dt
Cp—1 yES— aM —l(—y)
) ) ’ d ?
n e"Wgn_ (n_,y)dx_(y / <f7 t ) dt
o Az ] /EsaM ( Ydx—(y) iy N (74(1))

m /yesaM " Wgn (n_,y)dx-(y) /Oi(y) (Z(fy)ffr"(vy(t))dt

n (%)2 » F2(m(y)dVsn (y)

2n+1
CnflAF

Y%

Y

vV
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M (SH
A14(71+D1) fM f2d:u7 d/J, = dHBH,
= A IES*) (4.5)
A12nfl fM f2dﬂ, dp =dugr.
F

If we have equality in (4.3), then (4.5) together with Proposition 4.2 implies
Ap = 1. Hence, we obtain that A\;(M) = A\;(S})) and (M, F) is a Riemannian
manifold. By the standard argument (see [5, p.131] or [9]), one can show that
(M, F) is isometric to S}. O

In [19], SHEN shows that the first eigenvalue of a forward metric ball is
bounded from above by a constant depending only on the dimension and lower
bounds on the Ricci curvature and the S-curvature. From Theorem 4.3, we obtain
a lower bound for the first eigenvalue of a forward metric ball.

Corollary 4.4. Let (M, F,du) be a forward complete Finsler n-manifold of
injectivity radius ip;. For any 0 <7 <ip/(1++/Ap) and any p € M, we have
M (85 ap)

Aéll:‘nJrl ’
M (8] /ar)
AT

dp = dupm,

dp = dpnr.

with equality if and only if B (r) is isometric to S3,.

5. Croke type isoperimetric inequalities

In this section, we shall establish Theorem 1.3 and give some applications.

Lemma 5.1. For each x € OM, we have

T Cn— 2n+ 2
[, ommi)e ) < 2203 ),
stom n—1

with equality if and only if F(x,-) is a Euclidean norm. Here, “4” denotes either
“+7 or “=7, and SLOM = {y € SuM : gn,(ny,y) > 0}.

PROOF. Suppose § = +. By [21], one can choose a gy, -orthnormal basis
{e;} of T, M such that e, = ny and detg;j(z,y) < A%(z). Let {y'} be the
corresponding coordinates. Set || - || := \/gn, (-,-). Define

Bf ={yeT,M:F(y) <1, y" >0}, Bl :={yeT.M:F(y)=1, y"=r}
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By, (s) ={y e TuM:y" =r, |y%eal < s}, w:= gn+(n+,y)eT(y)dup(y).

For each y € B}, y" = gn, (n4,y) < F(ny)F(y) < 1. Stokes’ formula together
with Lemma 2.1 then yields

n
/+r w < APz /+ y"z DFLybdyt A AdyF Ao A dy”
Sy OM Sy oM -1

= (n+ 1)A;7n (2) / N yrdyt A AN dy™ = (n+ 1)A? (x) Vol(Bzyn)y"dy"
Bi 0

/\/T(w)

0

Cpn—2 , 2n+1
— A 2
n—1 F ( )7

(n+ A2 (@)

IN

Vol (B (VAR(2) — (57)?)) y"dy”

with equality if and only if Ap(z) =1, i.e., F(x,-) is a Euclidean norm.
Suppose § = —. Note that Ap(z) = Az(z). Using the same method as in
Theorem 3.4, one can get the formula. O

Given any point x € M, let (r,y) denote the polar coordinates about x. Set
F(r,y) = W, (r,y), where du|(,,) =: 64(r,y)dr A dvy(y). Then we have
the following inequality of Berger—Kazdan type [23, Theorem 1.3]

Lemma 5.2 ([23]). Let (M, F) be a compact Finsler n-manifold. For each
ye€SM and 0 <t <[ <1i,, we have

l—r n+1
- l

/dr F(t,or(y)) dt > e ( ) ,
21 \ T

with equality if and only if

T\ 2

Ry (5 Ay () 4y (1) = (7) id, 0<t<l,

where R is the (Riemannian) curvature tensor acting on A, (t)*.
Now we have the following theorem.

Theorem 5.3. Let (M,0M, F,du) be a compact Finsler n-manifold with the
boundary, where dyu is either the Busemann—Hausdorff measure or the Holmes—
Thompson measure. Set

w = inf min{w], w, } = min{ inf w), inf w; }
zeM reM zeM
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where wE = ¢! [+ e"Wdy,(y) and UE := W‘;i (x). Then
* M

) A0l oo,
/U‘( ) Cp—o D AF 2
where D := diam(M).
AL (oM Cnqwlt®
(2) TM(' 1—2 - 11_L 2'rr|-%7 (51)
p(M)=n (¢, /2) % AL

with equality if and only if (M, F) is a Riemannian hemisphere of a constant
sectional curvature sphere.

PRrROOF. (1) Theorem 1.1 together with Lemma 5.1 furnishes

Cn—1wp(M) < Cn—l/

wFin(e) = [ duo) [ Oday) = Ve (V)
M rzeM Ut

<D W ga (g, y)dye (y) < DALOM) D=2 A2
StoM n—1

(2) For each y € STOM, I(pi(y)) > I(y) —t, for any 0 < ¢ < I(y). By
Theorem 1.1, Lemma 2.1, Theorem 5.2 and Hélder’s inequality, we have

w00 = [ duta) [ ) / o y)ir

I(y)
_ / Viar () / W, (r, y)dr > /
SM 0 Vur

1(y) pe(y)) .
B / eT(y)ng— (ny,y)dx+(y) / dt/ e_T(LPt(y))UI (1, pe(y))dr
StoM 0 0

l(y)
Vsar(y) / 0 (1, ) dr
0

, 1(y) I(y)—t
2a [ g el [ [ e
S+oM 0 0

Cn

™ ()" Te™@g. (n Ly)d
2 2o AT /SH)M (y) In, (04, y)dx+(y)

Cn

n+1
> l 7(y) d
= 2,1 AR ( /S+8M (v)e™ gn, (1, y) x+(y)>

< / e Wgn, (ns, y)dx+(y)>
S+oM

c n—1 "
> %VSM(VX/[)"—H ( )
2¢, 1 A% Coo A+(8M)A§7n+%

X
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(Cnil)nwn+1M(M)n+1

> — (5.2)
(cn/2)n=1 AT (DM)AT™ "
That is,
AL (OM it
+(a ) > Cn—1W (53)

PM) =% 7 (e, /2) 1 ATFE

Let A and @ be define as before on (M, F). It is easy to check that Ay (9M) =

AL (OM) and & = w. From above, we obtain

A_(OM) A (M) - Cno1witn

p(M)' = (M) T (g, 2R AT

(5.4)

(5.3) together with (5.4) yields (5.1).

Suppose that equality holds in (5.1). Then we have equality in (5.3) or
(5.4). It follows from (5.2) and Lemma 5.1 that 1 = Ap = Az. Hence, F is an
Riemannian metric and (5.1) becomes

A(OM) Cnoqw T

WOM)E (/2

Since Vy; = SM, t(y) < iy, for all y € SM. Hélder’s inequality implies I(y) is
constant, say, equal to [, on all of STOM. Hence, t(y) = [, for all y € STOM.
And Theorem 5.2 yields M has constant sectional curvature equal to (7/1)?, i.e.,
M is a hemisphere. O

From above, it is easy to see that Theorem 5.3 becomes Croke’s isoperimetric
inequality [9] if Ap = 1. In the Finslerian case, the upper bound on Ap in
Theorem 5.3 is very important as the following example shows.

Ezample 1. Let B™ be the unit open ball in R™ equipped with a Funk met-
ric F', that is,

VA =Ty + (@ -y’ +x-y

F(.’I,',y) = ]_*|SC‘2 )

where “| - |” (resp. “-”) denote the Euclidean norm (resp. inner product). For
r € (0,1),set Q. := {x € B" : |z| < r}. Then (Q,0Q,, Flg ) is a compact Finsler
manifold. By directly computing, we have ppg(Q,) = “=1r™ and AL (0Q,) =
cn_1(1 £7)r""1 where d Ay are induced by dugg. Clearly,

Ay (3QT)

lim ————= = +o0.

r1A_(09,)



94 Lixia Yuan and Wei Zhao

1+7\? 147
Api; = (1—7") , diam(92,) = log (1—7")'

For any z € ),

Note that

jE—;>1 e, w=1
xr (17‘x|2)n;1 — ) ey .

Hence, we have

A+ (09,) (n—1)en1w Ax(09) tn1w!
Q > il 1_1 > 1, 2n43 "
pBE () s diam(Q,) A7} pE(Q)' 70 (e, /2)1 % o

In particular,

A_(09Q, . A_(09Q,
lim Ap . = +oo, lim # = lim (7)1 =
r—1 e r=Lpupu(Qr) =1 ppy (Q,)
Before giving some applications of Theorem 5.3, we introduce the definitions
of the Sobolev constant, Cheeger’s constant and the isoperimetric constant of a
closed Finsler manifold.

Definition 5.4. Let (M, F,du) be a closed Finsler manifold. The Sobolev
constant S(M, du) is defined as

F*(df)du"
S(M,du) = igofM : {fM (df) i} —.
feC=(M) inf,er {fM If — a|n71du}

Cheeger’s constant h(M,dy) and the isoperimetric constant I(M,du) are de-
fined by

. min{AL (")}
B )= Hl}f min{u(M1), p(Mz)}’
(M, dps) = inf min{A (1)}

' {min{u(My), p(M)}}r—t

where I" varies over compact (n — 1)-dimensional submanifolds of M which divide
M into disjoint open submanifolds My, Ms of M with common boundary M7 =
OMy =T.
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Remark 3. By using the co-area formula (cf. [18, Theorem 3.3.1]) and the
same argument as in [13], one can obtain a Cheeger type inequality

h*(M, du)
M (M, dp) > ————~

1( bl /’L) = 4)\%—,
And we also have a Federer-Fleming type inequality (see Proposition 6.1 below),
ie.,

I(M,dp) < S(M, dp) < 2I(M, dp).

Corollary 5.5. Let (M, F,du) be a closed Finlser n-manifold with Ric >
(n — 1)k, where du denotes either the Busemann—Hausdorff measure or the Hol-
mes—Thompson measure. Then

A (M, dp) > e S
| 4en_o AT diam (M) Odlam(M) syt (t)dt
p(dM)
S(M,dp) > 1 AP pdiam(M) o1y L
den_i1(cn)" 1AL (o si ()dt)

Hence, both Ay (M, dp) and S(M, du) can be bounded from below in terms of the
diameter, volume, uniform constant and a lower bound for the Ricci curvature.

PROOF. Step 1. Let I be any (n—1)-dimensional compact submanifold of M
dividing M into two open submanifolds M; and Ms, such that OM; = OMy =T.
Given x € M, let

O, :={q€ M :3y € U, such that ¢ =7_,(t), t € (0,i(~y)]},

where Y_,(t) is the geodesic in (M, F) with ﬁ_y(o) = —y.

For any ¢ € Ms, there exists a minimal unit speed geodesic, say Yx (t), from
x to q. Clearly, Fx () must hit the boundary and therefore, t(X) < i(X). Since
F(—X) = F(X) =1, q € O, which implies that M, C O,.

Note that Ric > (n — 1)k, Az = Ap and dji = du. Hence, by Lemma 2.1
and the volume comparison theorem (cf. [23, Theorem 3.1]), we have

i(—y) _
HO) = M) <00 = [ din(y) [ Gt

i(—y)
< AR / 0z (—y) / L (r)dr
yeUy, 0
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diam (M)
< cp 1 APwT (:17)/0 sy (r)dr.

That is,
Wi Z dl%(j\{zjw)) !
cn1 A3 [, A gn = (Y dr
Set O :={q € M : 3y € U} such that ¢ = v,(t), ¢t € (0,i(y)]}. It is easy
to see that My C O. By the similar argument, one can show that

i j.

+ (M) S
Wi = c A2n diam(M) n—1 d b 7& J:
n—143p 0 gk; (t) t

Step 2. The inequalities above together with Theorem 5.3 yield

n— Du(M
h(M,du) > i+l ( ) (dia)m(M) n—1 ’
2cn oA " ? diam(M) /, s (t)dt
M n+1
I(M,du) > ek

n242n iam — ’
Aep 1 (cp)nTAGHE (amD gnot gy gy

Corollary now follows from Remark 3. (]
Corollary 5.6. Let (M, F,du) be a closed Finsler n-manifold, where dpu

is either the Busemann—Hausdorfl measure or the Holmes—Thompson measure.
Then for any x € M and 0 < r < iy /(1 4+ +/Ap), we have

C(n, AF)

nn

C(TL, AF)

nn—l

n—1

w(BF(r) > " Ax(S7(r) >

PRrROOF. The similar argument as in Lemma 3.3 shows iy, = {M, where EM
is the injectivity radius of (M, F). Hence, UF = S,M for all p € Bf(r). By
Theorem 5.3 and (4.4), we have
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In order to establish Theorem 1.5, let us recall some definitions and properties
of general LGC spaces first. Refer to [20], [24] for more details.

Definition 5.7 ([20], [24]). A general metric space is a pair (X, d), where X
isaset and d: X x X — RT U {oo}, called a metric, is a function, satisfying the
following two conditions: (a) d(z,y) > 0, with equality < = = y; (b) d(z,y) +
d(y,z) > d(x, z). The reversibility Ax of a general metric space (X, d) is defined
by Ax 1= sup,, Zgz;

A contractibility function p : [0,7) — [0,4+00) is a function satisfying: (a)
p(0) =0, (b) p(e) > ¢, (c) p(e) = 0, as e — 0, (d) p is nondecreasing. A general
metric space X is LGC(p) for some contractibility function p, if for every e € [0, )
and = € X, the forward ball B} (¢) is contractible inside B (p(e)).

Lemma 5.8 ([24]). Fix a function N : (0,«) — (0, 00) with

limsup €" N (e) < oo
e—0t

and a contractibility function p : [0,7) — [0,00). The class
E(N,p) :={X € M°: X is LGC(p), Cov(X,e) < N(e) for all € € (0, )}

contains only finitely many homotopy types. Here, M? denotes the collection of
compact general metric spaces with reversibility < § and Cov(X;e) denotes the
minimum number of forward e-balls it takes to cover X.

Corollary 5.6 together with Lemma 5.8 yields the following

Theorem 5.9. For any n and positive numbers i, V, §, the class of closed
Finsler n-manifolds (M, F') with injectivity radius ip; >4, Ap <6 and p(M) <V,
contains at most finitely many homotopy types. Here, u(M) is either the Buse-
mann—Hausdorff volume or the Holmes—Thompson volume of M.

PROOF. Let ¢y denote the contractibility radius of (M, F) (cf. [24]). Since
em > iv >4, (M, F)is LGC(p), where p is the identity map of [0, ). Corollary 5.6
implies that p(B,f (€)) > C(n,d)e™ for all p € M and e < i/(1 + V8). Tt follows
from [20, Proposition 3.11] that

Cov(M, e w(M)
M9 = o) e/ v

Define the covering function N(e) := C'(n,8,V)e ", € € (0,i/(1 +V/§)). The
conclusion now follows from Lemma 5.8. O

=C'(n,8,V)e ™

One can easily see that Theorem 5.9 implies YAMAGUCHTI’s finiteness theorem
[22] and [24, Theorem 1.3].
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6. Appendix

Proposition 6.1. Let (M, F,du) be a closed Finsler manifold. Then
I(M, dp) < S(M, dp) < 21(M, dp).

PRrROOF. Fix I' with p(M7) < pu(Ms). Define a Lipschitz function f by

1, x € My, d(T,z) > ¢,
1

[ (@) = -d(T,z), z€ M, dT,z) <k,
€
0, x € MQ.

By letting e — 0T, we obtain that

n—1

n—1
- ol inf {[1 — a|7 -
inf (/M |f& —al™= dM) 2 inf {11 —a|™ 7 (M) + || 77 p(Ms) }

ne1l - n n n—1 n—
> p(My)" ™ nf {[1—af T 4 o 7T > ()2

Set pi(z) = d(T',z), x € M;. Lemma 3.2 yields that Vp,|r = ny, where n,
denotes the unit inward normal vector field along OM; = I'. By the co-area
formula (cf. [18, Theorem 3.3.1]), we see that

1 €
M € Jo Pt (1)

Hence, 2A, (T)" > S(M,du) - u(M;)"~1. Similarly, define a Lipschitz function
f& by
0, x € My, d(T,z) > €

fo(z) = 1d(l“,:z) -1, z€ My, dT,z) <e,
€

-1 r € M.

)

Then one can show 2A_(I')" > S(M,du) - u(My)"~1. Therefore, S(M,du) <
(M, dy).

Given f € C*, let ag be a median of f. Set My := {z : f(z) < ap} and
My :={z: f(z) > ap}. Then p(M;) < u(M)/2, for i =1,2. Let h:= f — ap and
h; := h‘ML S CSO(MZ), 1=1,2.
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We claim that
* 1
[P ) = 10M2)F el
Mo

where I(M;) is defined by
nf min{A4 (0Q)}" ’
@
where €2 range over all open submanifolds of M; with compact closures in M; and
smooth boundary. Clearly, I(M;) # 0.
Set My := {x : ho(x) > t}. Since u(M,) is decreasing, we have

n 1
d s n—1 n—1 n s n—1 n—1 n-1
o dt = M) = dt T
o </0 (M) ) — (/O (M) > p(Ms)

s (M),

>
“n-—1

(/ p(Mt)"nldt) - 2/ J(My)dt
0 0

Note that Vhs is the inward normal vector field along OM;. Thus,

which implies

n—

| Frandn= [ av@amyie = 100)t [ a0n)*
Mo 0 0

n—1

(/OOO N(Mt)dtn,"l> = T(M,)* (_ /Ooof"”ldu(Mt)) g

— I(Ma)* /wt%dt dAvn, %—]I(M)i /hﬁd o
a 2 0 om, F*(dhs) B 2\ :

Likewise, one can show that fMl F*(dhy)dp > T(M;)« P15/ (n—1)- Since pu(M;) <
w(M)/2, I(M;) > I(M,du). Let x; be the characteristic function of M;, i = 1,2.
Thus,

3=

> [(Mz)

[ Pandu= [ Pann - > | Paeg s

> 1M, dp)+ 3 {/M xilf —ao|"n‘} ”

J

> I(M, dp)=

1.,
f = aoll 2, 2 (M, dp)¥ inf |1 — o

n—1’

which implies that S(M, du) > I(M, dp). O
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