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Ricci almost solitons satisfying certain conditions
on the potential vector field

By AMALENDU GHOSH (Chandannagar)

Abstract. We study Ricci almost soliton with certain conditions on the potential

vector field V . First, we prove that a Ricci almost soliton is a Ricci soliton if and only if

the potential vector field V is an infinitesimal harmonic transformation. Next, we study

Ricci almost soliton satisfying some integral inequalities.

1. Introduction

In [11], Pigola et al. introduced and studied the notion of Ricci almost

solitons on a Riemannian manifold, where they essentially modified the definition

of Ricci solitons. A Riemannian manifold (Mn, g) is said to be a Ricci almost

soliton if there exist a complete vector field V and a smooth soliton function

λ : Mn → R satisfying

(£V g)(Y, Z) + 2S(Y, Z) = 2λg(Y,Z), (1.1)

where S stands for the 2-covariant Ricci tensor, £V denotes the Lie-derivative

operator in the direction of the vector field V , and Y , Z are arbitrary vector fields

on M . This is said to be expanding if λ < 0, steady if λ = 0, and shrinking if

λ > 0. If λ is constant, then (1.1) represents the so called Ricci soliton. Since

the soliton function λ is not necessarily constant, most of the results will differ as

compared with the Ricci soliton (see [11]). The existence of non-compact Ricci

almost soliton has been established by Pigola et al. [11] on some certain class
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of warped product manifolds. Using Lemma 2.1 of [11] we can construct the

following example of a Ricci almost soliton.

Example 1.1. Let Mn+1 = R ×cosh t Hn with metric g = dt2 + (cosh2 t)g0,

where g0 is the standard metric on the hyperbolic space Hn. Then Mn+1 becomes

Einstein manifold with Ricci tensor SM = −ng . Consequently, (Mn+1, g,∇f, λ)

is a Ricci almost Ricci soliton with f(x, t) = sinh t and λ(x, t) = sinh t − n.

Actually, Mn+1 is a realisation of the hyperbolic space.

Following Barros and Ribeiro Jr. [1], we can construct the following for-

mal example of a compact Ricci almost soliton on the standard sphere Sn(c).

Example 1.2. Let Sn(c) be a sphere with its canonical metric g0 considered

as a hypersurface of Rn+1. Let V (x) be a vector field on Sn such that V (x) =

aT (x), where a ∈ Rn+1 is a constant vector. Therefore, V (x)=∇h(x), where h :

Sn→R is a height function given by h(x) = ⟨x, a⟩. A straightforward computation

shows that h is a non-trivial eigenfunction corresponding to the first eigenvalue

of the Laplacian −∆ on Sn. Since Sn is Einstein, its Ricci tensor is given by

S = (n − 1)g0. Thus, taking into account ∇2h = −hg0 it is easy to see that

(Sn(c), V, g0) is a Ricci almost soliton with λ = (n− 1)− h. Next, we shall show

that V is non-zero on Sn. In fact, if V ≡ 0, then h becomes constant. But this

contradicts the fact that h is a non-trivial eigenfunction.

Some characterizations of Ricci almost soliton on a compact Riemannian

manifold in terms of integral inequalities were obtained by Barros–Ribeiro Jr.

[1] and Barros–Batista-Ribeiro Jr. [2]. It is interesting to note that if the

potential vector field V of the Ricci almost soliton (Mg, V, λ) is Killing, then the

soliton becomes trivial (i.e. Einstein) provided the dimension of M > 2. More-

over, if V is a non-Killing conformal vector field on a compact manifold Mn with

n ≥ 3, then Mn is isometric to the Euclidean sphere Sn. Thus the Ricci almost

soliton can be considered as a generalization of Einstein metric as well as Ricci

soliton. In [13] Stepanov–Shelepova proved that “The potential vector field

of V of a Ricci soliton is necessarily an infinitesimal harmonic transformation”.

So the question may naturally arise,

What happens if the potential vector field V of a Ricci almost soliton gener-

ates an infinitesimal harmonic transformation?

The organization of this paper is as follows. In Section 2, we collect some

basic definitions and fundamental formulas of infinitesimal harmonic transforma-

tions. Thereafter, we study Ricci almost solitons when its potential vector field V
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generates an infinitesimal harmonic transformation. In this case, the Ricci almost

soliton reduces to Ricci soliton. In Section 4, we prove some triviality results of

Ricci almost soliton satisfying certain integral inequalities.

2. Preliminaries

A vector field V is an infinitesimal harmonic transformation on a Riemannian

manifold (M, g) if the local 1-parameter group of infinitesimal point transforma-

tions generated by the vector field V forms a group of harmonic transforma-

tions(see [12], [6]). An analytic characterization of such vector field is given by

the equation trace(£V ∇) = 0. Moreover, an interesting characterization of such

vector field was given by Stepanov–Shandra in [12]. They proved that

“A vector field V generates an infinitesimal harmonic transformation on a Rie-

mannian manifold (M, g) if and only if ∆V = 2QV ”.

The operator ∆ is known as the Laplacian and determined by the Weitzenböck

formula

∆V = ∇∗∇V +QV,

where ∇∗ is the formal adjoint of ∇ and Q is the Ricci operator associated with

the (0, 2) Ricci tensor S. The rough Laplacian ∆̄ of a vector field V is defined by

∆̄V = −tr∇2V , where

(∇2V )(X,Y ) = ∇X∇Y V −∇∇XY V.

Explicitely, if {ei} is any orthonormal frame field, then we have

∆̄V =
∑
i

{∇∇ei
ei −∇ei∇ei}V. (2.1)

It is well-known that ∆̄V = ∇∗∇V and therefore, ∆V = ∆̄V +QV . The known

examples of harmonic transformations are:

• Any Killing vector field on a Riemannian manifold generates an infinitesimal

harmonic transformation (see [12]).

• The potential vector field V of the Ricci soliton is necessarily an infinitesimal

harmonic transformation (see [13]).

• Since the Reeb vector field ξ of a K-contact manifold is Killing, it generates

an infinitesimal harmonic transformation (see [9]).
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3. Infinitesimal harmonic transformation and Ricci almost solitons

In [13], the authors proved that “the potential vector field V of a Ricci soliton

on a Riemannian manifold (M, g) is an infinitesimal harmonic transformation

on M”. Since Ricci almost soliton generalizes the notion of Ricci soliton we are

interested to study Ricci almost soliton when its potential vector field generates

an infinitesimal harmonic transformation. Precisely, we prove

Theorem 3.1. Let (Mn, g, V ), n ≥ 3, be a Ricci almost soliton. Then g is a

Ricci soliton if and only if the potential vector field V is an infinitesimal harmonic

transformation.

The proof of Theorem 3.1 relies on the following Lemma. Although this latter

already appears in [2] (see equation (2.9) of Lemma 2), for the sake of completeness

we provide an independent proof which makes use of the Lie-derivative technique.

Lemma 3.1. For a Ricci almost soliton (Mn, g, V ), we have ∆̄V − QV =

(n− 2)Dλ, where Dλ denotes the gradient of λ.

Proof. First, assume that g is a Ricci almost soliton. Then taking covariant

differentiation of (1.1) along X gives

(∇X£V g)(Y,Z) + 2(∇XS)(Y, Z) = 2(Xλ)g(Y,Z). (3.1)

Now the commutation formula (see Yano [14], p. 23)

(£V ∇Xg−∇X£V g−∇[V,X]g)(Y,Z) = −g((£V ∇)(X,Y ), Z)−g((£V ∇)(X,Z), Y ),

reduces to

(∇X£V g)(Y,Z) = g((£V ∇)(X,Y ), Z) + g((£V ∇)(X,Z), Y ). (3.2)

Making use of (3.1) in (3.2) gives

g((£V ∇)(X,Y ), Z) + g((£V ∇)(X,Z), Y )

+ 2(∇XS)(Y, Z) = 2(Xλ)g(Y,Z). (3.3)

Permuting (3.3) cyclically twice over {X,Y, Z} and then taking their difference

we obtain

g((£V ∇)(Y,X), Z)− g((£V ∇)(Z,X), Y ) + 2(∇Y S)(Z,X)

−2(∇ZS)(X,Y ) = 2(Y λ)g(X,Z)− 2(Zλ)g(X,Y ).



Ricci almost solitons satisfying certain conditions on the potential. . . 107

Adding the foregoing equation with (3.3) and noting that (£V ∇)(X,Y ) =

(£V ∇)(Y,X), we deduce

g((£V ∇)(X,Y ), Z) = (∇ZS)(X,Y )− (∇XS)(Y, Z)

−(∇Y S)(X,Z) + (Xλ)g(Y,Z) + (Y λ)g(X,Z)− (Zλ)g(X,Y ). (3.4)

Using the formula (see p. 23 of [14])

g((£V ∇)(X,Y ), Z) = g(∇X∇Y V −∇∇XY V −R(X,V )Y, Z)

in the above equation we obtain

g(∇X∇Y V −∇∇XY V −R(X,V )Y,Z) = (∇ZS)(X,Y )− (∇XS)(Y,Z)

−(∇Y S)(X,Z) + (Xλ)g(Y,Z) + (Y λ)g(X,Z)− (Zλ)g(X,Y ). (3.5)

Let {ei : i = 1, 2, . . . , n} be an orthonormal frame of the tangent space of M .

Then setting X = Y = ei and using the definition of rough Laplacian it follows

that

−∆̄V +QV = −(n− 2)Dλ. (3.6)

This completes the proof. �

Proof of Theorem 3.1. First, assume that V generates an infinitesimal

harmonic transformation. Then, by [12], [13] ∆V = 2QV . Therefore, by applying

Weitzenböck’s formula :

∆V = ∆̄V +QV, (3.7)

we have ∆̄V = QV . Utilizing this in (3.6) we see that λ is constant. Hence, the

Ricci almost soliton becomes a Ricci soliton. The converse was proved in [13]. �

4. Triviality results under integral inequalities

In [1], the authors proved that a compact Ricci almost soliton (Mn, g, V ),

n > 2 is trivial if it satisfies
∫
M
{S(V, V ) + (n− 2)g(Dλ, V )}dM ≤ 0. This result

extends the corresponding result of Petersen–Wylie [10] for compact Ricci soli-

tons. Here we present another generalization of Petersen–Wylie’s result satisfying

an integral inequality on the Ricci tensor which is slightly different from that of

Barros–Ribeiro Jr. [1].
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Theorem 4.1. Let (Mn, g, V ), n ≥ 2 be a compact Ricci almost soliton

with non-zero potential vector field V . If it satisfies
∫
M
{2S(V, V ) + (n − 2)g

(Dλ, V )}dM ≤ 0, then the 1-form associated to V is harmonic andM is Ricci flat.

Proof. First, we recall the following integral formula (see Yano [14], p. 41)∫
M

{
g(△V, V )− 1

2
|dV ♭|2 − (div V )2

}
dM = 0,

where V ♭ is the 1-form associated with the potential vector field V . Now, using

(3.6) and (3.7) we get

△V − (n− 2)Dλ = 2QV. (4.1)

Making use of (4.1) the foregoing integral formula reduces to∫
M

{2S(V, V ) + (n− 2)g(Dλ, V )}dM =

∫
M

{
1

2
|dV ♭|2 + (div V )2

}
dM. (4.2)

By hypothesis the left hand side integral of (4.2) is less or equal to zero, while

the integrand on the right hand side integral of (4.2) is greater or equal to zero.

Hence, we have ∫
M

{
1

2
|dV ♭|2 + (div V )2

}
dM = 0.

This implies dV ♭ = 0 and div V = 0. Consequently V ♭ is harmonic. So, we can

integrate the Bochner formula (which holds for any harmonic 1-form) to obtain∫
M

{S(V, V ) + |∇V ♭|2}dM =

∫
M

1

2
∆|V ♭|2dM = 0. (4.3)

Since V is divergence free, div(λV ) = g(Dλ, V )+λ(div V ) = g(Dλ, V ). Integrat-

ing this over M we achieve
∫
M

g(Dλ, V )dM = 0. On the other hand, from the

harmonicity of V ♭ and (4.2), it follows∫
M

{2S(V, V ) + (n− 2)g(Dλ, V )}dM = 0.

Therefore
∫
M

S(V, V )dM = 0 and using this information into (4.3) proves that V

is parallel. Thus, equation (1.1) shows that M is Einstein (i.e. S = λg) and hence

λ is constant. Since ∇V = 0, we have R(X,Y )V = 0, and hence S(X,V ) = 0.

From which it follows that λ|V |2 = 0. Since λ is constant and |V | is a non-zero

constant, we have λ = 0. Hence, M is Ricci flat. This completes the proof. �
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Finally, using Lemma 2 of [1] we prove the following.

Proposition 4.1. Let (Mn, g, V ), n > 2 be a compact Ricci almost soliton

with non-zero potential vector field V . If it satisfies
∫
M
{g(△V, V ) + (n − 2)g

(Dλ, V )}dM ≤ 0, then M is Ricci flat.

Proof. Indeed, using (4.1) and equation (1) of Lemma 2 of [1] yields∫
M

{g(△V, V ) + (n− 2)(g(Dλ, V )}dM

= 2

∫
M

{S(V, V ) + (n− 2)g(Dλ, V )}dM = 2

∫
M

g(∇V,∇V )dM.

Thus, making use of our hypothesis it follows that the potential vector field V

is parallel. Hence M is Einstein. The rest of the proof follows from the last

Theorem. This completes the proof. �
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Boston, 2002.

[5] A. Ghosh, Certain contact metrics as Ricci almost solitons, Results Math. 65 (2014),

81–94.

[6] O. Nouhaud, Transformations infinitesimales harmoniques, C. R. Acad. Sci. Paris Ser. A
274 (1972), 573–576.

[7] M. Obata, Certain conditions for a Riemannian manifold to be isometric with a sphere, J.
Math. Soc. Japan 14 (1962), 333–340.

[8] G. Perelman, The entropy formula for the Ricci flow and its geometric applications,
Preprint , http:arXiv.org abs math.DG/02111159.

[9] D. Perrone, Geodesic Ricci solitons on unit tangent sphere bundles, Ann. Global Anal.

Geom. 44 (2013), 91–103.

[10] P. Petersen and W. Wylie, Rigidity of gradient Ricci solitons, Pacific J. Math. 242

(2009), 329–345.

[11] S. Pigola, M. Rigoli, M. Rimoldi and A. Setti, Ricci almost solitons, Ann. Scuola.
Norm. Sup. Pisa. CL Sc. vol 10 (2011), 757–799.



110 A. Ghosh : Ricci almost solitons satisfying certain conditions. . .

[12] S. E. Stepanov and I. G. Shandra, Geometry of infinitesimal harmonic transformations,
Ann. Global Anal. Geom. 24 (2003), 291–299.

[13] S. E. Stepanov and V. N. Shelepova, A note on Ricci solitons, Math. Notes 86 (2009),
447–450.

[14] K. Yano, Integral Formulas in Riemannian Geometry, Marcel Dekker, New York, 1970.

AMALENDU GHOSH

DEPARTMENT OF MATHEMATICS

CHANDERNAGORE COLLEGE

CHANDANNAGAR, 712 136, W.B.

INDIA

E-mail: aghosh 70@yahoo.com

(Received April 28, 2014; revised January 24, 2015)


