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A note on non-recurring sequences over Galois fields

By HASSAN AL-ZAID (Safat, Kuwait) and SURJEET SINGH (Safat, Kuwait)

Introduction

Let F be a Galois field and Γ(F ) be the F [D]–module of all sequences
over F , [4]. Consider an f(D) 6= 0 in F [D]. The concept of a pseudo-
periodic sequence with f(D) as its pseudo-characteristic polynomial was
introduced in [1]. The set Ω̄(f(D)) of all such sequences is a submodule
of Γ(F ). It was seen in [1] that in the study of the lattice L(F ) of these
Ω̄(f(D))’s, Ω̄(1) plays a very significant role. The possibilities of different
kinds of non-recurring sequences, that one can have inside Ω̄(1) seem to
be too many. In the present note we give an explicit construction of an
uncountable direct sum K = ⊕∑

α F [D]Sα and its closure in any torsion-
free submodule of Ω̄(1). Let E be an injective hull of Ω̄(1). By using K,
it is proved that for any monic irreducible polynomial p(D) 6= D, in F [D],
the p(D)–primary component of E/Ω̄(1) is of uncountable rank. Finally
we discuss the concept of a minimal sparse set associated with a member
of Ω̄(1).

§1. Preliminaries

Throughout F is a Galois field and Γ(F ) denotes the F–vector space
of all sequences S = (sn)n≥0 over F . Consider the ring of polynomials
F [D], where D is an indeterminate. For any f(D) =

∑k
i=0 aiD

i ∈ F [D],
S = (sn) ∈ Γ(F ), define f(D)S = (wn) ∈ Γ(F ) such that wn =

∑
i aisn+i.

This makes Γ(F ) a divisible left F [D]–module, [4]. For any S = (sn) ∈
Γ(F ) the power series Gs(x) =

∑∞
i=0 six

i, with x an indeterminate, is
called the generating function of S, [3]. For any f(x) = a0 + a1x + · · · +
akxk, ak 6= 0, the reciprocal of f(x), is the polynomial f̄(x) = ak+ak−1x+
· · ·+a0x

k. If f(x) = xug(x), with g(0) 6= 0, it is obvious that f̄(x) = ḡ(x).
The definition of Γ(F ) as an F [D]–module gives the following.
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Lemma 1.1. (a). For any S, S′ ∈ Γ(F ) and f(D) ∈ F [D] with
deg f(D) = k ≥ 0, f(D)S = S′ if and only if xkGs′(x) = g(x)+ f̄(x)Gs(x)
for some g(x) ∈ F [x] with deg g(x) < k.

(b) For any f(x) ∈ F [x] with deg f(x) = k ≥ 0, and S ∈ Γ(F )
f(x)Gs(x) =

∑k−1
i=0 cix

i+xkGs′(x) for some ci ∈ F , and S′ ∈ Γ(F ) such
that f̄(D)S = S′.

Consider any two sequences S = (sn) and S′ = (s′n) in Γ(F ). Through-
out the paper let N denotes the set of natural numbers. For m<n, [sm, sn]=
(sm, sm+1, . . . , sn) is called a section of S of length n−m [1]. For the sake of
convenience, sometime we denote the (m− n− 1)–tuple (sm+1, sm+2, . . . ,
sn−1) by ]sm, sn[ and call it an open section of length n − m. Indeed
]sm, sn[ = [sm+1, sn−1]. A section of the form [s0, sn] is called an ini-
tial section. [sm, sn] = 0 will mean that st = 0 for m ≤ t ≤ n. S
and S′ are said to be ultimately equal if DrS = DrS′ for some r ≥ 0.
Consider an f(D) ∈ F [D] with deg f(D) = k ≥ 0. Then Ω(f(D)) =
{S ∈ Γ(F ) : f(D)S = 0}, [4]. O(f(D)) denotes the order of f(D),
[3]. Observe that in f(D)S = S′, [sm, sn+k] determines [s′m, s′n] and
conversely. If an S ∈ Ω(f(D)) has minimal polynomial f(D), then for
any g(D) 6= 0 in F [D], the minimal polynomial of g(D)S is f(D)/d(D),
where d(D) = gcd(f(D)), g(D)). These observations give the following
two lemmas essentially mentioned in [1].

Lemma 1.2. Let S = (sn) ∈ Γ(F ) and f(D) = Dtg(D) ∈ F [D] with
t ≥ 0, deg f(D) = k, and g(D) ∈ F [D] with g(0) 6= 0. Further let f(D)S =
S′ = (s′n). Suppose that for some n−m > deg f(D)+1, [sm+1, sn−1] = 0.
Then the following hold:

(i) [s′m+1, s
′
n−1−k] = 0

(ii) If sm 6= 0, then s′u 6= 0, for m− t ≤ u ≤ m

(iii) If sn 6= 0, then s′n−t 6= 0.

Lemma 1.3. Let S = (sn) ∈ Γ(F ) and f(D)S = S′ = (s′n) for some
f(D) ∈ F (D) with deg f(D) = k. Further let 0 6= g(D) ∈ F [D], and
n > m ≥ 0. Then the following hold:

(i) If [s′m, s′n] is a section of a member of Ω(g(D)), then [sm, sn+k] is a
section of a member of Ω(f(D)g(D)); in particular if [s′m, s′n] = 0,
then [sm, sn+k] is a section of a member of Ω(f(D)).

(ii) If n −m ≥ deg f(D), g(D) is monic with g(0) 6= 0, and [sm, sn] is a
section of a T ∈ Γ(F ) with minimal polynomial g(D), then [s′m, s′n−k]
is a section of g(D)T with minimal polynomial f(D)/d(D) where
d(D) = gcd(f(D), g(D)).

For any f(D) 6= 0 in F [D], Ω(f(D)∞) denotes the submodule Un≥0

Ω(f(D)n). As remarked in [4], Ω(f(D)∞) is the smallest divisible sub-
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module of Γ(F ) containing Ω(f(D)). For the definition of a sparse subset
of N , and of a pseudo-periodic sequence with pseudo-characteristic poly-
nomial f(D) 6= 0, we refer to [1]. Ω̄(f(D)) denotes the submodule of Γ(F )
consisting of all the pseudo-periodic sequences with f(D) as their pseudo-
charasteristic polynomial. W̄ (F ), the set of all pseudo-periodic sequences
in Γ(F ) is a divisible submodule of Γ(F ) and it contains W (F ) the divis-
ible submodule of all ultimately periodic sequences, [1]. Any member of
Ω̄(1) is called an almost zero sequence. The following was proved in [1].

Theorem 1.4. (i). Ω̄(1) = Ω(D∞) ⊕ L, where L is a torsion-free
F [D]–module

(ii) W̄ (F ) = W (F ) + E, where E is any injective hull of Ω̄(1) in Γ(F ).
(iii) Ω̄(1) is divisible by D.

For any sparse set A, given n,m ∈ A, n is called a successor of m in
A if m < n and there is no p ∈ A such that m < p < n, a finite sequence
a1 < a2 < · · · < at in A is called a successor sequence in A, if each ai+1 is
a successor of ai in A.

§2. The module Ω̄(1)

Proposition 2.1. Let S = (sn) ∈ Γ[D], and f(D) ∈ F [D], with
f(0) 6= 0. If for each positive integer K, there exist n, m ∈ N with
n − m ≥ K such that [sm, sn] is a section of some non-zero member of
Ω(f(D)), then S 6∈ Ω̄(1).

Proof. On the contrary suppose that S ∈ Ω̄(1). Let (A, u, 1) be
a companion of S and let t = sparsity (A), [1]. Consider any integer
w > max (O(f(D)), u). By definition there exists a ∈ A such that for
a ≤ a1 < a2 < · · · < at in A, at − a1 > wt. The hypothesis on S gives
n,m such that m ≥ a, n−m > (w + 1)t and that [sm, sn] is a section of
a non-zero S′ ∈ Ω(f(D)). Let b ∈ A be largest such that b ≤ m. Consider
the successor sequence in A,

b = b0 < b1 < b2 < · · · < bt .

Clearly m < b1. Suppose that b1 −m ≥ w. As the period of S′ is a factor
of O(f(D)) and [sm, sb1 ] is a section of S′ of length b1 − m > O(f(D))
we get [sm, sb1 ] 6= 0. So that [sb0 , sb1 ] 6= 0. However b1 − b0 > u, gives
[sb0 , sb1 ] = 0. This is a contradiction. Hence b1−m < w. Now bt−b1 > wt.
So we get smallest i ≥ 1 such that i < t and bi+1 − bi > w. Then
[sbi , sn] ∩ [sbi , sbi+1 ] is a section of S′ of length greater than w and hence
it is non-zero. Consequently [sbi , sbi+1 ] 6= 0. As bi+1 − bi > w > u, we get
[sbi , sbi+1 ] = 0. This is a contradiction. Hence S 6∈ Ω̄(1).

The following is well known
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Lemma 2.2. There exist an uncountable family {Nα}α∈Λ of subsets
of N, the set of natural numbers such that:

(i) Far each α ∈ Λ, Nα and N− Nα are countably infinite.

(ii) For any two distinct α, β ∈ Λ, Nα ∩ Nβ is finite.

Proof. As Q, the set of rational numbers is countable we replace N
by Q. For each real number α, fix a sequence Qα = {an}n∈N of ratio-
nal numbers such that an > an+1 for every n, and α = lim

n→∞
an. Then

{Qα}α∈Λ, where Λ is the set of all real numbers, is a desired family.

We now fix an S = (sn) ∈ Γ(F ), such that

Gs(x) =
∑

n≥1

xλn(1− xn!)

with λ1 = 0, λn+1 − λn > 2(n!) + 4. Observe the following

Lemma 2.3. (i) sλn = 1, sλn+n! = 1 and sk = 0, otherwise.

(ii) The open section ]sλn+n!, sλn+1 [ = 0 and that λn+1 − (λn + n!) ap-
proaches infinity as n approaches infinity.

We now fix a family {Nα}α∈Λ given by (2.2). By using the S fixed
above, for each m ≥ 1, and α ∈ Λ, we define Sα,m in Γ(F ) such that

Gsα,m(x) =
∑

n

xλn(1− xn!), n ≥ m and n ∈ Nα .

Further define S̄α,m such that

GS̄α,m
(x) =

1
1− xm

Gsα,m(x)

i.e. (1− xm)GS̄α,m
= Gsα,m(x) .

For m ≥ 2, by (1.1) (b) (Dm−1)S̄α,m has generating function
∑

xλn−m(1−
xn!), n ∈ Nα. So that (Dm− 1) S̄α,m = DmSα,m. For m ≥ n, as (1−xm)
divides (1− xn!), we get

xλn(1− xn!)
1− xm

= xλn [1 + xm + x2m + · · ·+ xrnm]

where rn = [(n!)/m − 1]. This corresponds to a section of a non-zero
member of Ω(Dm−1). Because rn →∞, as n →∞, by (2.1). S̄α,m 6∈ Ω̄(1),
we write Sα = Sα,1. We collect these observations and their immediate
consequences in the following.
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Lemma 2.4. (i) Sα,m ∈ Ω̄(1), S̄α,m 6∈ Ω̄(1), S̄α,m ∈ Ω̄(Dm − 1).

(ii) For m ≥ 2, DλmSα = DλmSα,m and (Dm − 1) S̄α,m = DmSα,m.

(iii) Given any finitely many distinct members α1, α2, . . . , αu of Λ and
any positive integer K, there exists n ∈ Nα1 such that n 6∈ Nαj

for
j ≥ 2, n! ≥ K and λn+1 − λn − n! ≥ K.

The following result gives an explicit uncountable direct sum in Ω̄(1).

Lemma 2.5. K =
∑

α F [D]Sα is a direct sum in Ω̄(1)

Proof. Let for some distinct αi ∈ Λ and fi(D) ∈ F [D],
u∑

i=1

fi(D)Sαi = 0 .

Suppose that f1(D) 6= 0. Let k be a positive integer greater than every
deg fi(D). We get an n ∈ Nα1 such that n > k, n 6∈ Nαj for j ≥ 2 and
λn − λn−1 − (n − 1)! > K. The section of Sα1 indexed by [λn, λn + n!]
is of the form (1, 0, 0, . . . , 1) and that indexed by ]λn−1 + (n − 1)!, λn[
is zero. For j ≥ 2, the corresponding sections of Sαj are all zeros. As
f1(D) 6= 0, by (1.2), the section of Sα1 indexed by [λn − k, λn + n!] is non
zero, but the corresponding sections of any Sαj , j ≥ 2 are zeros. This then
contradicts the fact that

∑
i fi(D)Sαi = 0. Hence f1(D) = 0. Similarly

every fi(D) = 0. This proves the result.

Theorem 2.6. For any T ∈ Ω̄(1) and f(D) ∈ F [D] with f(0) 6= 0 and
deg f(D) = k > 0, if f(D)T ∈ ∑

α F [D]Sα, then D`T ∈ ∑
α F [D]Sα for

some ` ≥ 0.

Proof. As f(0) 6= 0, we get an integer m ≥ 2 such that f(D) divides
(Dm − 1). Write Dm − 1 = f(D)g(D). By the hypothesis f(D)T =∑u

i=1 fi(D)Sαi for some distinct αi ∈ Λ, fi(D) ∈ F [D]. Then by (2.4)

Dλm+mf(D)T =
∑

i

fi(D)Dλm+mSαi,m =

= f(D)g(D)
∑

i

fi(D)Dλm S̄αi,m
.

Consequently

(1) Dλm+mT =
∑

i

fi(D)g(D)Dλm S̄αi,m + T ′

where T ′ ∈ Ω(f(D)). All the S̄αi,m have common-zero sections indexed
by open intervals ]λn + n!, λn+1[ which are of arbitrarily large lengths.
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Consequently by (1.2), all the fi(D)g(D)S̄αi,m
have commonly indexed

zero sections of arbitrarily large lengths. If T ′ 6= 0, (1) gives that T has
sections of arbitrarily large lengths, which are sections of T ′ ∈ Ω(f(D)).
By (2.1) Dλm+mT 6∈ Ω̄ (1). This gives a contradiction. Hence T ′ = 0, i.e.

(2) Dλm+mT =
∑

i

fi(D)g(D)Dλm S̄αi,m

Fix a positive integer s greater than every deg(fi(D)g(D)), O(fi(D)g(D)).
By using (2.2) we choose an n ∈ Nα1 such that n > m, rnm > 2s, λn −
(λn−1 + (n − 1)!) > s, rn = (n!/m) − 1 and n 6∈ Nαj

for j ≥ 2. Now
xλn (1 + xm + · · ·+ xrnm) corresponds to the sections B of S̄α1,m

indexed
by [λn, λn+rnm]. It is a section of a member T ′′ ∈ Ω(Dm−1) with Dm−1
as its minimal polynomial. Suppose (Dm− 1) does not divide f1(D)g(D).
Then f1(D)g(D)T ′′ 6= 0, and by (1.3) the section of f1(D)g(D)Sα1,m in-
dexed by [λn, λn + rnm− s] is a section of f1(D)g(D)T ′′. As its length is
greater than s it is non-zero. However the corresponding section of every
fj(D)g(D)S̄αj ,m, j ≥ 2 is zero. So that Dλm+mT has a section, which is
a section of f1(D)g(D)T ′′; by (2.2) n can be choosen as large as desired.
So by (2.1) Dλm+mT 6∈ Ω̄(1). This is a contradiction. Hence (Dm − 1)
divides f1(D)g(D). Write f1(D)g(D) = (Dm− 1) g1(D). Similarly we get
fj(D)g(D) = (Dm − 1) gi(D), gi(D) ∈ F [D]. Hence

Dλm+mT =
∑

i

gi(D)Dm+λmSαi,m =

=
∑

i

gi(D)Dm+λmSαi ∈
∑
α

F [D]Sα .

This proves the result.

Given submodule L of a torsion-free F [D]–module M , the closure
cl(L) of L in M is the set of those x ∈ M such that f(D)x ∈ L for some
f(D) 6= 0 in F [D]. Let K =

∑
α F [D]Sα. In general closure of a direct

sum is not equal to the direct sum of closures. Here we explicity describe
the closure of K, in any torsion-free submodule of Ω̄(1). By using (1.4) and
the fact that W̄ (F ) is injective, we get Ω̄(1) = Ω(D∞)⊕ L′ with K ⊆ L′.

Theorem 2.7. Let K = ⊕∑
α F [D]Sα and L′ be a submodule of Ω̄(1)

containing K such that Ω̄(1) = Ω(D∞) ⊕ L′. Then clL′(K) = {T ∈ L′ :
DλT ∈ K for some λ ≥ 0} and clL′(K) = ⊕∑

α clL′(F [D]Sα).

Proof. The first part is an immediate consequence of (2.6) and the
remark just above this theorem. We have an injective hull E of Ω̄(1)
in W̄ (F ) such that E = Ω(D∞) ⊕ E1 ⊕ E2 where E1 ⊕ E2 and E1 are
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injective hulls of L′ and K respectively in E. As F [D] is noetherian, we
have E = ⊕∑

Eα, where Eα is the injective hull of Lα = F [D]Sα in
E1. It follows from (2.6) that clL′(K)/K is the D–primary component of
E1/K. However E1/K ∼= ⊕∑

α Eα/Lα. So that clL′(K)/K is direct sum
of D–primary components of Eα/Lα. This in view of (2.6) yields.

clL′(K) = ⊕∑
clL′(F [D]Sα).

Theorem 2.8. Let E be any injective hull of Ω̄(1) in W̄ (F ). Then for
any monic irreducible polinomial p(D) 6= D, in f [D], the p(D)–primary
component of E/Ω̄(1) is of uncountable rank.

Proof. We have E = Ω(D∞)⊕E1⊕E2 where E1⊕E2 is an injective
hull of a submodule L′ of Ω̄(1) containing K such that Ω̄(1) = Ω(D∞)⊕L′
and E1 is an injective hull of K in E. Let Kα = clL′(F [D]Sα). Then for
K ′ = clL′(K), K ′ = E1 ∩ Ω̄(1) and

[E1 + Ω̄(1)]/Ω̄(1) ∼= ⊕∑
α Eα/Kα.

Consider the quotient field Q of F [D] and M = {a ∈ Q : Dλa ∈
F [D] for some λ ≥ 0}. Then M/F [D] is the D–primary component of
Q/F [D] ∼= Eα/F [D]Sα. For any monic irreducible polynomial p(D) 6= D
over F , the p(D)–primary component of Q/F [D] is isomorphic to that of
Q/M . However Q/M ∼= Eα/Kα. As |Λ| is uncountable, and Q/M has
non-zero p(D)–primary component, the result follows.

We end this paper by discussing the notion of minimal sparse sets
associated with members of Ω̄(1). Consider two sparse sets A and A′. Call
A and A′ to be equivalent sparse sets, if there exist finite subsets B and B′
of A and A′ respectively such that A \B = A′ \B′. This is an equivalence
relation. Consider any S ∈ Ω̄(1) that is not ultimately zero. Let (A, u, 1)
be a companion of S. Then A is said to be a minimal sparse set relative
to u, associated with S if for any sparse set A′ ⊆ A, such that (A′, u, 1) is
a companion of S, A′ is equivalent to A.

Theorem 2.9. Let S be any member of Ω̄(1) that is not ultimately
zero. Let (A, u, 1) be a companion of S. Then there exists a sparse set
A′ ⊆ A such that A′ is a minimal sparse set relative to u, associated with
S.

Proof. Let S = (sk). We now construct A′ = (mi), mi < mi+1.
Choose m0 any member of A. For some i ≥ 0, suppose that we have
already constructed.

m0 < m1 < . . . , mi

in A′. Let n be the successor of mi in A. If [smi , sn] 6= 0, by definition
n−mi < u; in this case choose mi+1, the largest member of A such that
mi+1 −mi < u. Let [smi , sn] = 0. As S is not ultimately zero we can find
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largest member of A, that is taken as mi+1, such that [smi
, smi+1 ] = 0.

It is immediate that (A′, u, 1) is a companion of S. Let (A′′, u, 1) be a
companion of S such that A′′ ⊆ A′. We get smallest integer r, such that
mr ∈ A′′. We prove that A′′ consists of all mi, i ≥ r. Suppose for some
i ≥ r, we have already proved that mi ∈ A′′. Let m be the successor of mi

in A′′. Then mi < mmi+1 ≤ m. If [smi
, smi+1 ] 6= 0 then [smi

, sm] 6= 0, gives
m−mi < u. As mi+1 is the largest member of A satisfying mi+1−mi < u,
we get m = mi+1. If [smi

, sm] = 0, once again the choice of mi+1 gives
m = mi+1. This proves the result.
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