A note on non-recurring sequences over Galois fields

By HASSAN AL-ZAID (Safat, Kuwait) and SURJEET SINGH (Safat, Kuwait)

Introduction

Let F be a Galois field and $\Gamma(F)$ be the $F[D]$-module of all sequences over F, [4]. Consider an $f(D) \neq 0$ in $F[D]$. The concept of a pseudoperiodic sequence with $f(D)$ as its pseudo-characteristic polynomial was introduced in [1]. The set $\bar{\Omega}(f(D))$ of all such sequences is a submodule of $\Gamma(F)$. It was seen in [1] that in the study of the lattice $L(F)$ of these $\bar{\Omega}(f(D))$'s, $\bar{\Omega}(1)$ plays a very significant role. The possibilities of different kinds of non-recurring sequences, that one can have inside $\bar{\Omega}(1)$ seem to be too many. In the present note we give an explicit construction of an uncountable direct sum $K=\oplus \sum_{\alpha} F[D] S_{\alpha}$ and its closure in any torsionfree submodule of $\bar{\Omega}(1)$. Let E be an injective hull of $\bar{\Omega}(1)$. By using K, it is proved that for any monic irreducible polynomial $p(D) \neq D$, in $F[D]$, the $p(D)$-primary component of $E / \bar{\Omega}(1)$ is of uncountable rank. Finally we discuss the concept of a minimal sparse set associated with a member of $\bar{\Omega}(1)$.

§1. Preliminaries

Throughout F is a Galois field and $\Gamma(F)$ denotes the F-vector space of all sequences $S=\left(s_{n}\right)_{n \geq 0}$ over F. Consider the ring of polynomials $F[D]$, where D is an indeterminate. For any $f(D)=\sum_{i=0}^{k} a_{i} D^{i} \in F[D]$, $S=\left(s_{n}\right) \in \Gamma(F)$, define $f(D) S=\left(w_{n}\right) \in \Gamma(F)$ such that $w_{n}=\sum_{i} a_{i} s_{n+i}$. This makes $\Gamma(F)$ a divisible left $F[D]$-module, [4]. For any $S=\left(s_{n}\right) \in$ $\Gamma(F)$ the power series $G_{s}(x)=\sum_{i=0}^{\infty} s_{i} x^{i}$, with x an indeterminate, is called the generating function of $S,[3]$. For any $f(x)=a_{0}+a_{1} x+\cdots+$ $a_{k} x^{k}, a_{k} \neq 0$, the reciprocal of $f(x)$, is the polynomial $\bar{f}(x)=a_{k}+a_{k-1} x+$ $\cdots+a_{0} x^{k}$. If $f(x)=x^{u} g(x)$, with $g(0) \neq 0$, it is obvious that $\bar{f}(x)=\bar{g}(x)$. The definition of $\Gamma(F)$ as an $F[D]$-module gives the following.

Lemma 1.1. (a). For any $S, S^{\prime} \in \Gamma(F)$ and $f(D) \in F[D]$ with $\operatorname{deg} f(D)=k \geq 0, f(D) S=S^{\prime}$ if and only if $x^{k} G_{s^{\prime}}(x)=g(x)+\bar{f}(x) G_{s}(x)$ for some $g(x) \in F[x]$ with $\operatorname{deg} g(x)<k$.
(b) For any $f(x) \in F[x]$ with $\operatorname{deg} f(x)=k \geq 0$, and $S \in \Gamma(F)$ $f(x) G_{S}(x)=\sum_{i=0}^{k-1} c_{i} x^{i}+x^{k} G_{s^{\prime}}(x)$ for some $c_{i} \in F$, and $S^{\prime} \in \Gamma(F)$ such that $\bar{f}(D) S=S^{\prime}$.

Consider any two sequences $S=\left(s_{n}\right)$ and $S^{\prime}=\left(s_{n}^{\prime}\right)$ in $\Gamma(F)$. Throughout the paper let N denotes the set of natural numbers. For $m<n,\left[s_{m}, s_{n}\right]=$ $\left(s_{m}, s_{m+1}, \ldots, s_{n}\right)$ is called a section of S of length $n-m[1]$. For the sake of convenience, sometime we denote the $(m-n-1)$-tuple $\left(s_{m+1}, s_{m+2}, \ldots\right.$, s_{n-1}) by $] s_{m}, s_{n}$ [and call it an open section of length $n-m$. Indeed $] s_{m}, s_{n}\left[=\left[s_{m+1}, s_{n-1}\right]\right.$. A section of the form $\left[s_{0}, s_{n}\right]$ is called an initial section. $\left[s_{m}, s_{n}\right]=0$ will mean that $s_{t}=0$ for $m \leq t \leq n$. S and S^{\prime} are said to be ultimately equal if $D^{r} S=D^{r} S^{\prime}$ for some $r \geq 0$. Consider an $f(D) \in F[D]$ with $\operatorname{deg} f(D)=k \geq 0$. Then $\Omega(f(D))=$ $\{S \in \Gamma(F): f(D) S=0\},[4] . \quad O(f(D))$ denotes the order of $f(D)$, [3]. Observe that in $f(D) S=S^{\prime},\left[s_{m}, s_{n+k}\right]$ determines $\left[s_{m}^{\prime}, s_{n}^{\prime}\right]$ and conversely. If an $S \in \Omega(f(D))$ has minimal polynomial $f(D)$, then for any $g(D) \neq 0$ in $F[D]$, the minimal polynomial of $g(D) S$ is $f(D) / d(D)$, where $d(D)=\operatorname{gcd}(f(D)), g(D))$. These observations give the following two lemmas essentially mentioned in [1].

Lemma 1.2. Let $S=\left(s_{n}\right) \in \Gamma(F)$ and $f(D)=D^{t} g(D) \in F[D]$ with $t \geq 0, \operatorname{deg} f(D)=k$, and $g(D) \in F[D]$ with $g(0) \neq 0$. Further let $f(D) S=$ $S^{\prime}=\left(s_{n}^{\prime}\right)$. Suppose that for some $n-m>\operatorname{deg} f(D)+1,\left[s_{m+1}, s_{n-1}\right]=0$. Then the following hold:
(i) $\left[s_{m+1}^{\prime}, s_{n-1-k}^{\prime}\right]=0$
(ii) If $s_{m} \neq 0$, then $s_{u}^{\prime} \neq 0$, for $m-t \leq u \leq m$
(iii) If $s_{n} \neq 0$, then $s_{n-t}^{\prime} \neq 0$.

Lemma 1.3. Let $S=\left(s_{n}\right) \in \Gamma(F)$ and $f(D) S=S^{\prime}=\left(s_{n}^{\prime}\right)$ for some $f(D) \in F(D)$ with $\operatorname{deg} f(D)=k$. Further let $0 \neq g(D) \in F[D]$, and $n>m \geq 0$. Then the following hold:
(i) If $\left[s_{m}^{\prime}, s_{n}^{\prime}\right]$ is a section of a member of $\Omega(g(D))$, then $\left[s_{m}, s_{n+k}\right]$ is a section of a member of $\Omega(f(D) g(D))$; in particular if $\left[s_{m}^{\prime}, s_{n}^{\prime}\right]=0$, then $\left[s_{m}, s_{n+k}\right]$ is a section of a member of $\Omega(f(D))$.
(ii) If $n-m \geq \operatorname{deg} f(D), g(D)$ is monic with $g(0) \neq 0$, and $\left[s_{m}, s_{n}\right]$ is a section of a $T \in \Gamma(F)$ with minimal polynomial $g(D)$, then $\left[s_{m}^{\prime}, s_{n-k}^{\prime}\right]$ is a section of $g(D) T$ with minimal polynomial $f(D) / d(D)$ where $d(D)=\operatorname{gcd}(f(D), g(D))$.
For any $f(D) \neq 0$ in $F[D], \Omega\left(f(D)^{\infty}\right)$ denotes the submodule $U_{n \geq 0}$ $\Omega\left(f(D)^{n}\right)$. As remarked in [4], $\Omega\left(f(D)^{\infty}\right)$ is the smallest divisible sub-
module of $\Gamma(F)$ containing $\Omega(f(D))$. For the definition of a sparse subset of N, and of a pseudo-periodic sequence with pseudo-characteristic polynomial $f(D) \neq 0$, we refer to $[1] . \bar{\Omega}(f(D))$ denotes the submodule of $\Gamma(F)$ consisting of all the pseudo-periodic sequences with $f(D)$ as their pseudocharasteristic polynomial. $\bar{W}(F)$, the set of all pseudo-periodic sequences in $\Gamma(F)$ is a divisible submodule of $\Gamma(F)$ and it contains $W(F)$ the divisible submodule of all ultimately periodic sequences, [1]. Any member of $\bar{\Omega}(1)$ is called an almost zero sequence. The following was proved in [1].

Theorem 1.4. (i). $\bar{\Omega}(1)=\Omega\left(D^{\infty}\right) \oplus L$, where L is a torsion-free $F[D]$-module
(ii) $\bar{W}(F)=W(F)+E$, where E is any injective hull of $\bar{\Omega}(1)$ in $\Gamma(F)$.
(iii) $\bar{\Omega}(1)$ is divisible by D.

For any sparse set A, given $n, m \in A, n$ is called a successor of m in A if $m<n$ and there is no $p \in A$ such that $m<p<n$, a finite sequence $a_{1}<a_{2}<\cdots<a_{t}$ in A is called a successor sequence in A, if each a_{i+1} is a successor of a_{i} in A.

§2. The module $\bar{\Omega}(1)$

Proposition 2.1. Let $S=\left(s_{n}\right) \in \Gamma[D]$, and $f(D) \in F[D]$, with $f(0) \neq 0$. If for each positive integer K, there exist $n, m \in N$ with $n-m \geq K$ such that $\left[s_{m}, s_{n}\right]$ is a section of some non-zero member of $\Omega(f(D))$, then $S \notin \bar{\Omega}(1)$.

Proof. On the contrary suppose that $S \in \bar{\Omega}(1)$. Let $(A, u, 1)$ be a companion of S and let $t=$ sparsity $(A),[1]$. Consider any integer $w>\max (O(f(D)), u)$. By definition there exists $a \in A$ such that for $a \leq a_{1}<a_{2}<\cdots<a_{t}$ in $A, a_{t}-a_{1}>w t$. The hypothesis on S gives n, m such that $m \geq a, n-m>(w+1) t$ and that $\left[s_{m}, s_{n}\right]$ is a section of a non-zero $S^{\prime} \in \Omega(f(D))$. Let $b \in A$ be largest such that $b \leq m$. Consider the successor sequence in A,

$$
b=b_{0}<b_{1}<b_{2}<\cdots<b_{t} .
$$

Clearly $m<b_{1}$. Suppose that $b_{1}-m \geq w$. As the period of S^{\prime} is a factor of $O(f(D))$ and $\left[s_{m}, s_{b_{1}}\right.$] is a section of S^{\prime} of length $b_{1}-m>O(f(D))$ we get $\left[s_{m}, s_{b_{1}}\right] \neq 0$. So that $\left[s_{b_{0}}, s_{b_{1}}\right] \neq 0$. However $b_{1}-b_{0}>u$, gives $\left[s_{b_{0}}, s_{b_{1}}\right]=0$. This is a contradiction. Hence $b_{1}-m<w$. Now $b_{t}-b_{1}>w t$. So we get smallest $i \geq 1$ such that $i<t$ and $b_{i+1}-b_{i}>w$. Then $\left[s_{b_{i}}, s_{n}\right] \cap\left[s_{b_{i}}, s_{b_{i+1}}\right]$ is a section of S^{\prime} of length greater than w and hence it is non-zero. Consequently $\left[s_{b_{i}}, s_{b_{i+1}}\right] \neq 0$. As $b_{i+1}-b_{i}>w>u$, we get $\left[s_{b_{i}}, s_{b_{i+1}}\right]=0$. This is a contradiction. Hence $S \notin \bar{\Omega}(1)$.

The following is well known

Lemma 2.2. There exist an uncountable family $\left\{\mathbb{N}_{\alpha}\right\}_{\alpha \in \Lambda}$ of subsets of \mathbb{N}, the set of natural numbers such that:
(i) Far each $\alpha \in \Lambda, \mathbb{N}_{\alpha}$ and $\mathbb{N}-\mathbb{N}_{\alpha}$ are countably infinite.
(ii) For any two distinct $\alpha, \beta \in \Lambda, \mathbb{N}_{\alpha} \cap \mathbb{N}_{\beta}$ is finite.

Proof. As \mathbb{Q}, the set of rational numbers is countable we replace \mathbb{N} by \mathbb{Q}. For each real number α, fix a sequence $\mathbb{Q}_{\alpha}=\left\{a_{n}\right\}_{n \in \mathbb{N}}$ of rational numbers such that $a_{n}>a_{n+1}$ for every n, and $\alpha=\lim _{n \rightarrow \infty} a_{n}$. Then $\left\{\mathbb{Q}_{\alpha}\right\}_{\alpha \in \Lambda}$, where Λ is the set of all real numbers, is a desired family.

We now fix an $S=\left(s_{n}\right) \in \Gamma(F)$, such that

$$
G_{s}(x)=\sum_{n \geq 1} x^{\lambda_{n}}\left(1-x^{n!}\right)
$$

with $\lambda_{1}=0, \lambda_{n+1}-\lambda_{n}>2(n!)+4$. Observe the following
Lemma 2.3. (i) $s_{\lambda_{n}}=1, s_{\lambda_{n}+n!}=1$ and $s_{k}=0$, otherwise.
(ii) The open section $] s_{\lambda_{n}+n!}, s_{\lambda_{n+1}}\left[=0\right.$ and that $\lambda_{n+1}-\left(\lambda_{n}+n\right.$!) approaches infinity as n approaches infinity.
We now fix a family $\left\{\mathbb{N}_{\alpha}\right\}_{\alpha \in \Lambda}$ given by (2.2). By using the S fixed above, for each $m \geq 1$, and $\alpha \in \Lambda$, we define $S_{\alpha, m}$ in $\Gamma(F)$ such that

$$
G_{s_{\alpha, m}}(x)=\sum_{n} x^{\lambda_{n}}\left(1-x^{n!}\right), \quad n \geq m \text { and } n \in \mathbb{N}_{\alpha} .
$$

Further define $\bar{S}_{\alpha, m}$ such that

$$
\begin{aligned}
& \quad G_{\bar{S}_{\alpha, m}}(x)=\frac{1}{1-x^{m}} G_{s_{\alpha, m}}(x) \\
& \text { i.e. } \quad\left(1-x^{m}\right) G_{\bar{S}_{\alpha, m}}=G_{s_{\alpha, m}}(x) .
\end{aligned}
$$

For $m \geq 2$, by (1.1) (b) ($\left.D^{m}-1\right) \bar{S}_{\alpha, m}$ has generating function $\sum x^{\lambda_{n}-m}(1-$ $\left.x^{n!}\right), n \in \mathbb{N}_{\alpha}$. So that $\left(D^{m}-1\right) \bar{S}_{\alpha, m}=D^{m} S_{\alpha, m}$. For $m \geq n$, as $\left(1-x^{m}\right)$ divides $\left(1-x^{n!}\right)$, we get

$$
\frac{x^{\lambda_{n}}\left(1-x^{n!}\right)}{1-x^{m}}=x^{\lambda_{n}}\left[1+x^{m}+x^{2 m}+\cdots+x^{r_{n} m}\right]
$$

where $r_{n}=[(n!) / m-1]$. This corresponds to a section of a non-zero member of $\Omega\left(D^{m}-1\right)$. Because $r_{n} \rightarrow \infty$, as $n \rightarrow \infty$, by (2.1). $\bar{S}_{\alpha, m} \notin \bar{\Omega}(1)$, we write $S_{\alpha}=S_{\alpha, 1}$. We collect these observations and their immediate consequences in the following.

Lemma 2.4. (i) $S_{\alpha, m} \in \bar{\Omega}(1), \bar{S}_{\alpha, m} \notin \bar{\Omega}(1), \bar{S}_{\alpha, m} \in \bar{\Omega}\left(D^{m}-1\right)$.
(ii) For $m \geq 2, D^{\lambda_{m}} S_{\alpha}=D^{\lambda_{m}} S_{\alpha, m}$ and $\left(D^{m}-1\right) \bar{S}_{\alpha, m}=D^{m} S_{\alpha, m}$.
(iii) Given any finitely many distinct members $\alpha_{1}, \alpha_{2}, \ldots, \alpha_{u}$ of Λ and any positive integer K, there exists $n \in \mathbb{N}_{\alpha_{1}}$ such that $n \notin \mathbb{N}_{\alpha_{j}}$ for $j \geq 2, n!\geq K$ and $\lambda_{n+1}-\lambda_{n}-n!\geq K$.
The following result gives an explicit uncountable direct sum in $\bar{\Omega}(1)$.
Lemma 2.5. $K=\sum_{\alpha} F[D] S_{\alpha}$ is a direct sum in $\bar{\Omega}(1)$
Proof. Let for some distinct $\alpha_{i} \in \Lambda$ and $f_{i}(D) \in F[D]$,

$$
\sum_{i=1}^{u} f_{i}(D) S_{\alpha_{i}}=0
$$

Suppose that $f_{1}(D) \neq 0$. Let k be a positive integer greater than every $\operatorname{deg} f_{i}(D)$. We get an $n \in \mathbb{N}_{\alpha_{1}}$ such that $n>k, n \notin \mathbb{N}_{\alpha_{j}}$ for $j \geq 2$ and $\lambda_{n}-\lambda_{n-1}-(n-1)!>K$. The section of $S_{\alpha_{1}}$ indexed by $\left[\lambda_{n}, \lambda_{n}+n!\right]$ is of the form $(1,0,0, \ldots, 1)$ and that indexed by $] \lambda_{n-1}+(n-1)$!, $\lambda_{n}[$ is zero. For $j \geq 2$, the corresponding sections of $S_{\alpha_{j}}$ are all zeros. As $f_{1}(D) \neq 0$, by (1.2), the section of $S_{\alpha_{1}}$ indexed by $\left[\lambda_{n}-k, \lambda_{n}+n!\right]$ is non zero, but the corresponding sections of any $S_{\alpha_{j}}, j \geq 2$ are zeros. This then contradicts the fact that $\sum_{i} f_{i}(D) S_{\alpha_{i}}=0$. Hence $f_{1}(D)=0$. Similarly every $f_{i}(D)=0$. This proves the result.

Theorem 2.6. For any $T \in \bar{\Omega}(1)$ and $f(D) \in F[D]$ with $f(0) \neq 0$ and $\operatorname{deg} f(D)=k>0$, if $f(D) T \in \sum_{\alpha} F[D] S_{\alpha}$, then $D^{\ell} T \in \sum_{\alpha} F[D] S_{\alpha}$ for some $\ell \geq 0$.

Proof. As $f(0) \neq 0$, we get an integer $m \geq 2$ such that $f(D)$ divides $\left(D^{m}-1\right)$. Write $D^{m}-1=f(D) g(D)$. By the hypothesis $f(D) T=$ $\sum_{i=1}^{u} f_{i}(D) S_{\alpha_{i}}$ for some distinct $\alpha_{i} \in \Lambda, f_{i}(D) \in F[D]$. Then by (2.4)

$$
\begin{aligned}
& D^{\lambda_{m}+m} f(D) T=\sum_{i} f_{i}(D) D^{\lambda_{m}+m} S_{\alpha_{i, m}}= \\
&=f(D) g(D) \sum_{i} f_{i}(D) D^{\lambda_{m}} \bar{S}_{\alpha_{i, m}}
\end{aligned}
$$

Consequently

$$
\begin{equation*}
D^{\lambda_{m}+m} T=\sum_{i} f_{i}(D) g(D) D^{\lambda_{m}} \bar{S}_{\alpha_{i, m}}+T^{\prime} \tag{1}
\end{equation*}
$$

where $T^{\prime} \in \Omega(f(D))$. All the $\bar{S}_{\alpha_{i, m}}$ have common-zero sections indexed by open intervals $] \lambda_{n}+n!, \lambda_{n+1}$ [which are of arbitrarily large lengths.

Consequently by (1.2), all the $f_{i}(D) g(D) \bar{S}_{\alpha_{i, m}}$ have commonly indexed zero sections of arbitrarily large lengths. If $T^{\prime} \neq 0,(1)$ gives that T has sections of arbitrarily large lengths, which are sections of $T^{\prime} \in \Omega(f(D))$. By (2.1) $D^{\lambda_{m}+m} T \notin \bar{\Omega}(1)$. This gives a contradiction. Hence $T^{\prime}=0$, i.e.

$$
\begin{equation*}
D^{\lambda_{m}+m} T=\sum_{i} f_{i}(D) g(D) D^{\lambda_{m}} \bar{S}_{\alpha_{i, m}} \tag{2}
\end{equation*}
$$

Fix a positive integer s greater than every $\operatorname{deg}\left(f_{i}(D) g(D)\right), O\left(f_{i}(D) g(D)\right)$. By using (2.2) we choose an $n \in \mathbb{N}_{\alpha_{1}}$ such that $n>m, r_{n} m>2 s, \lambda_{n}-$ $\left(\lambda_{n-1}+(n-1)!\right)>s, r_{n}=(n!/ m)-1$ and $n \notin \mathbb{N}_{\alpha_{j}}$ for $j \geq 2$. Now $x^{\lambda_{n}}\left(1+x^{m}+\cdots+x^{r} n^{m}\right)$ corresponds to the sections B of $\bar{S}_{\alpha_{1, m}}$ indexed by $\left[\lambda_{n}, \lambda_{n}+r_{n} m\right]$. It is a section of a member $T^{\prime \prime} \in \Omega\left(D^{m}-1\right)$ with $D^{m}-1$ as its minimal polynomial. Suppose ($D^{m}-1$) does not divide $f_{1}(D) g(D)$. Then $f_{1}(D) g(D) T^{\prime \prime} \neq 0$, and by (1.3) the section of $f_{1}(D) g(D) S_{\alpha_{1, m}}$ indexed by $\left[\lambda_{n}, \lambda_{n}+r_{n} m-s\right]$ is a section of $f_{1}(D) g(D) T^{\prime \prime}$. As its length is greater than s it is non-zero. However the corresponding section of every $f_{j}(D) g(D) \bar{S}_{\alpha_{j}, m}, j \geq 2$ is zero. So that $D^{\lambda_{m}+m} T$ has a section, which is a section of $f_{1}(D) g(D) T^{\prime \prime}$; by (2.2) n can be choosen as large as desired. So by (2.1) $D^{\lambda_{m}+m} T \notin \bar{\Omega}(1)$. This is a contradiction. Hence $\left(D^{m}-1\right)$ divides $f_{1}(D) g(D)$. Write $f_{1}(D) g(D)=\left(D^{m}-1\right) g_{1}(D)$. Similarly we get $f_{j}(D) g(D)=\left(D^{m}-1\right) g_{i}(D), g_{i}(D) \in F[D]$. Hence

$$
\begin{aligned}
D^{\lambda_{m}+m} T=\sum_{i} g_{i}(D) D^{m+\lambda_{m}} & S_{\alpha_{i, m}}= \\
& =\sum_{i} g_{i}(D) D^{m+\lambda_{m}} S_{\alpha_{i}} \in \sum_{\alpha} F[D] S_{\alpha}
\end{aligned}
$$

This proves the result.
Given submodule L of a torsion-free $F[D]$-module M, the closure $\operatorname{cl}(L)$ of L in M is the set of those $x \in M$ such that $f(D) x \in L$ for some $f(D) \neq 0$ in $F[D]$. Let $K=\sum_{\alpha} F[D] S_{\alpha}$. In general closure of a direct sum is not equal to the direct sum of closures. Here we explicity describe the closure of K, in any torsion-free submodule of $\bar{\Omega}(1)$. By using (1.4) and the fact that $\bar{W}(F)$ is injective, we get $\bar{\Omega}(1)=\Omega\left(D^{\infty}\right) \oplus L^{\prime}$ with $K \subseteq L^{\prime}$.

Theorem 2.7. Let $K=\oplus \sum_{\alpha} F[D] S_{\alpha}$ and L^{\prime} be a submodule of $\bar{\Omega}(1)$ containing K such that $\bar{\Omega}(1)=\Omega\left(D^{\infty}\right) \oplus L^{\prime}$. Then $\operatorname{cl}_{L^{\prime}}(K)=\left\{T \in L^{\prime}\right.$: $D^{\lambda} T \in K$ for some $\left.\lambda \geq 0\right\}$ and $\operatorname{cl}_{L^{\prime}}(K)=\oplus \sum_{\alpha} \operatorname{cl}_{L^{\prime}}\left(F[D] S_{\alpha}\right)$.

Proof. The first part is an immediate consequence of (2.6) and the remark just above this theorem. We have an injective hull E of $\bar{\Omega}(1)$ in $\bar{W}(F)$ such that $E=\Omega\left(D^{\infty}\right) \oplus E_{1} \oplus E_{2}$ where $E_{1} \oplus E_{2}$ and E_{1} are
injective hulls of L^{\prime} and K respectively in E. As $F[D]$ is noetherian, we have $E=\oplus \sum E_{\alpha}$, where E_{α} is the injective hull of $L_{\alpha}=F[D] S_{\alpha}$ in E_{1}. It follows from (2.6) that $\mathrm{cl}_{L^{\prime}}(K) / K$ is the D-primary component of E_{1} / K. However $E_{1} / K \cong \oplus \sum_{\alpha} E_{\alpha} / L_{\alpha}$. So that $\operatorname{cl}_{L^{\prime}}(K) / K$ is direct sum of D-primary components of E_{α} / L_{α}. This in view of (2.6) yields.

$$
\mathrm{cl}_{L^{\prime}}(K)=\oplus \sum \mathrm{cl}_{L^{\prime}}\left(F[D] S_{\alpha}\right)
$$

Theorem 2.8. Let E be any injective hull of $\bar{\Omega}(1)$ in $\bar{W}(F)$. Then for any monic irreducible polinomial $p(D) \neq D$, in $f[D]$, the $p(D)$-primary component of $E / \bar{\Omega}(1)$ is of uncountable rank.

Proof. We have $E=\Omega\left(D^{\infty}\right) \oplus E_{1} \oplus E_{2}$ where $E_{1} \oplus E_{2}$ is an injective hull of a submodule L^{\prime} of $\bar{\Omega}(1)$ containing K such that $\bar{\Omega}(1)=\Omega\left(D^{\infty}\right) \oplus L^{\prime}$ and E_{1} is an injective hull of K in E. Let $K_{\alpha}=c l_{L^{\prime}}\left(F[D] S_{\alpha}\right)$. Then for $K^{\prime}=\operatorname{cl}_{L^{\prime}}(K), K^{\prime}=E_{1} \cap \bar{\Omega}(1)$ and

$$
\left[E_{1}+\bar{\Omega}(1)\right] / \bar{\Omega}(1) \cong \oplus \sum_{\alpha} E_{\alpha} / K_{\alpha}
$$

Consider the quotient field \mathbb{Q} of $F[D]$ and $M=\left\{a \in \mathbb{Q}: D^{\lambda} a \in\right.$ $F[D]$ for some $\lambda \geq 0\}$. Then $M / F[D]$ is the D-primary component of $\mathbb{Q} / F[D] \cong E_{\alpha} / F[\bar{D}] S_{\alpha}$. For any monic irreducible polynomial $p(D) \neq D$ over F, the $p(D)$-primary component of $\mathbb{Q} / F[D]$ is isomorphic to that of \mathbb{Q} / M. However $\mathbb{Q} / M \cong E_{\alpha} / K_{\alpha}$. As $|\Lambda|$ is uncountable, and \mathbb{Q} / M has non-zero $p(D)$-primary component, the result follows.

We end this paper by discussing the notion of minimal sparse sets associated with members of $\bar{\Omega}(1)$. Consider two sparse sets A and A^{\prime}. Call A and A^{\prime} to be equivalent sparse sets, if there exist finite subsets B and B^{\prime} of A and A^{\prime} respectively such that $A \backslash B=A^{\prime} \backslash B^{\prime}$. This is an equivalence relation. Consider any $S \in \bar{\Omega}(1)$ that is not ultimately zero. Let $(A, u, 1)$ be a companion of S. Then A is said to be a minimal sparse set relative to u, associated with S if for any sparse set $A^{\prime} \subseteq A$, such that $\left(A^{\prime}, u, 1\right)$ is a companion of S, A^{\prime} is equivalent to A.

Theorem 2.9. Let S be any member of $\bar{\Omega}(1)$ that is not ultimately zero. Let $(A, u, 1)$ be a companion of S. Then there exists a sparse set $A^{\prime} \subseteq A$ such that A^{\prime} is a minimal sparse set relative to u, associated with S.

Proof. Let $S=\left(s_{k}\right)$. We now construct $A^{\prime}=\left(m_{i}\right), m_{i}<m_{i+1}$. Choose m_{0} any member of A. For some $i \geq 0$, suppose that we have already constructed.

$$
m_{0}<m_{1}<\ldots, m_{i}
$$

in A^{\prime}. Let n be the successor of m_{i} in A. If $\left[s_{m_{i}}, s_{n}\right] \neq 0$, by definition $n-m_{i}<u$; in this case choose m_{i+1}, the largest member of A such that $m_{i+1}-m_{i}<u$. Let $\left[s_{m_{i}}, s_{n}\right]=0$. As S is not ultimately zero we can find
largest member of A, that is taken as m_{i+1}, such that $\left[s_{m_{i}}, s_{m_{i+1}}\right]=0$. It is immediate that $\left(A^{\prime}, u, 1\right)$ is a companion of S. Let $\left(A^{\prime \prime}, u, 1\right)$ be a companion of S such that $A^{\prime \prime} \subseteq A^{\prime}$. We get smallest integer r, such that $m_{r} \in A^{\prime \prime}$. We prove that $A^{\prime \prime}$ consists of all $m_{i}, i \geq r$. Suppose for some $i \geq r$, we have already proved that $m_{i} \in A^{\prime \prime}$. Let m be the successor of m_{i} in $A^{\prime \prime}$. Then $m_{i}<m_{m_{i+1}} \leq m$. If $\left[s_{m_{i}}, s_{m_{i+1}}\right] \neq 0$ then $\left[s_{m_{i}}, s_{m}\right] \neq 0$, gives $m-m_{i}<u$. As m_{i+1} is the largest member of A satisfying $m_{i+1}-m_{i}<u$, we get $m=m_{i+1}$. If $\left[s_{m_{i}}, s_{m}\right]=0$, once again the choice of m_{i+1} gives $m=m_{i+1}$. This proves the result.

Acknowledgement. This research was supported by the Kuwait University Research Project No. SM 075.

References

[1] H. Al-Zaid and S. Singh, A class of non-recurring sequences over a Galois Field, (to appear in Publicationes Mathematicae Debrecen).
[2] C. Faith, Algebra II, Ring Theory, vol. 91, Springer Verlag, 1976.
[3] R. Lidl and H. Niederreiter, Finite Fields, Encyclopedia Math. Appl., Addison Wesley, 1983.
[4] S. Singh, A note on linear recurring sequences, Linear Algebra Appl. 104 (1988), 97-101.

```
HASSAN AL-ZAID
DEPARTMENT OF MATHEMATICS
KUWAIT UNIVERSITY
P.O. BOX 5969
SAFAT - }1306
KUWAIT
SURJEET SINGH
DEPARTMENT OF MATHEMATICS
KUWAIT UNIVERSITY
P.O. BOX }596
SAFAT - 13060
KUWAIT
```

(Received September 13, 1993)

