A note on non-recurring sequences over Galois fields

By HASSAN AL-ZAID (Safat, Kuwait) and SURJEET SINGH (Safat, Kuwait)

Introduction

Let F be a Galois field and $\Gamma(F)$ be the F[D]-module of all sequences over F, [4]. Consider an $f(D) \neq 0$ in F[D]. The concept of a pseudoperiodic sequence with f(D) as its pseudo-characteristic polynomial was introduced in [1]. The set $\overline{\Omega}(f(D))$ of all such sequences is a submodule of $\Gamma(F)$. It was seen in [1] that in the study of the lattice L(F) of these $\overline{\Omega}(f(D))$'s, $\overline{\Omega}(1)$ plays a very significant role. The possibilities of different kinds of non-recurring sequences, that one can have inside $\overline{\Omega}(1)$ seem to be too many. In the present note we give an explicit construction of an uncountable direct sum $K = \bigoplus \sum_{\alpha} F[D]S_{\alpha}$ and its closure in any torsionfree submodule of $\overline{\Omega}(1)$. Let E be an injective hull of $\overline{\Omega}(1)$. By using K, it is proved that for any monic irreducible polynomial $p(D) \neq D$, in F[D], the p(D)-primary component of $E/\overline{\Omega}(1)$ is of uncountable rank. Finally we discuss the concept of a minimal sparse set associated with a member of $\overline{\Omega}(1)$.

\S **1. Preliminaries**

Throughout F is a Galois field and $\Gamma(F)$ denotes the F-vector space of all sequences $S = (s_n)_{n\geq 0}$ over F. Consider the ring of polynomials F[D], where D is an indeterminate. For any $f(D) = \sum_{i=0}^{k} a_i D^i \in F[D]$, $S = (s_n) \in \Gamma(F)$, define $f(D)S = (w_n) \in \Gamma(F)$ such that $w_n = \sum_i a_i s_{n+i}$. This makes $\Gamma(F)$ a divisible left F[D]-module, [4]. For any $S = (s_n) \in$ $\Gamma(F)$ the power series $G_s(x) = \sum_{i=0}^{\infty} s_i x^i$, with x an indeterminate, is called the generating function of S, [3]. For any $f(x) = a_0 + a_1 x + \cdots + a_k x^k$, $a_k \neq 0$, the reciprocal of f(x), is the polynomial $\overline{f}(x) = a_k + a_{k-1} x + \cdots + a_0 x^k$. If $f(x) = x^u g(x)$, with $g(0) \neq 0$, it is obvious that $\overline{f}(x) = \overline{g}(x)$. The definition of $\Gamma(F)$ as an F[D]-module gives the following. **Lemma 1.1.** (a). For any $S, S' \in \Gamma(F)$ and $f(D) \in F[D]$ with deg $f(D) = k \ge 0$, f(D)S = S' if and only if $x^k G_{s'}(x) = g(x) + \overline{f}(x)G_s(x)$ for some $g(x) \in F[x]$ with deg g(x) < k.

(b) For any $f(x) \in F[x]$ with deg $f(x) = k \ge 0$, and $S \in \Gamma(F)$ $f(x)G_s(x) = \sum_{i=0}^{k-1} c_i x^i + x^k G_{s'}(x)$ for some $c_i \in F$, and $S' \in \Gamma(F)$ such that $\overline{f}(D)S = S'$.

Consider any two sequences $S = (s_n)$ and $S' = (s'_n)$ in $\Gamma(F)$. Throughout the paper let N denotes the set of natural numbers. For m < n, $[s_m, s_n] = (s_m, s_{m+1}, \ldots, s_n)$ is called a section of S of length n-m [1]. For the sake of convenience, sometime we denote the (m - n - 1)-tuple $(s_{m+1}, s_{m+2}, \ldots, s_{n-1})$ by $]s_m, s_n[$ and call it an open section of length n - m. Indeed $]s_m, s_n[= [s_{m+1}, s_{n-1}]$. A section of the form $[s_0, s_n]$ is called an initial section. $[s_m, s_n] = 0$ will mean that $s_t = 0$ for $m \le t \le n$. S and S' are said to be ultimately equal if $D^rS = D^rS'$ for some $r \ge 0$. Consider an $f(D) \in F[D]$ with deg $f(D) = k \ge 0$. Then $\Omega(f(D)) =$ $\{S \in \Gamma(F) : f(D)S = 0\}$, [4]. O(f(D)) denotes the order of f(D), [3]. Observe that in f(D)S = S', $[s_m, s_{n+k}]$ determines $[s'_m, s'_n]$ and conversely. If an $S \in \Omega(f(D))$ has minimal polynomial f(D), then for any $g(D) \ne 0$ in F[D], the minimal polynomial of g(D)S is f(D)/d(D), where $d(D) = \gcd(f(D)), g(D))$. These observations give the following two lemmas essentially mentioned in [1].

Lemma 1.2. Let $S = (s_n) \in \Gamma(F)$ and $f(D) = D^t g(D) \in F[D]$ with $t \ge 0$, deg f(D) = k, and $g(D) \in F[D]$ with $g(0) \ne 0$. Further let $f(D)S = S' = (s'_n)$. Suppose that for some $n - m > \deg f(D) + 1$, $[s_{m+1}, s_{n-1}] = 0$. Then the following hold:

(i) $[s'_{m+1}, s'_{n-1-k}] = 0$

(ii) If $s_m \neq 0$, then $s'_u \neq 0$, for $m - t \leq u \leq m$

(iii) If $s_n \neq 0$, then $s'_{n-t} \neq 0$.

Lemma 1.3. Let $S = (s_n) \in \Gamma(F)$ and $f(D)S = S' = (s'_n)$ for some $f(D) \in F(D)$ with deg f(D) = k. Further let $0 \neq g(D) \in F[D]$, and $n > m \ge 0$. Then the following hold:

- (i) If $[s'_m, s'_n]$ is a section of a member of $\Omega(g(D))$, then $[s_m, s_{n+k}]$ is a section of a member of $\Omega(f(D)g(D))$; in particular if $[s'_m, s'_n] = 0$, then $[s_m, s_{n+k}]$ is a section of a member of $\Omega(f(D))$.
- (ii) If n − m ≥ deg f(D), g(D) is monic with g(0) ≠ 0, and [s_m, s_n] is a section of a T ∈ Γ(F) with minimal polynomial g(D), then [s'_m, s'_{n-k}] is a section of g(D)T with minimal polynomial f(D)/d(D) where d(D) = gcd(f(D), g(D)).

For any $f(D) \neq 0$ in F[D], $\Omega(f(D)^{\infty})$ denotes the submodule $U_{n\geq 0}$ $\Omega(f(D)^n)$. As remarked in [4], $\Omega(f(D)^{\infty})$ is the smallest divisible submodule of $\Gamma(F)$ containing $\Omega(f(D))$. For the definition of a sparse subset of N, and of a pseudo-periodic sequence with pseudo-characteristic polynomial $f(D) \neq 0$, we refer to [1]. $\overline{\Omega}(f(D))$ denotes the submodule of $\Gamma(F)$ consisting of all the pseudo-periodic sequences with f(D) as their pseudocharasteristic polynomial. $\overline{W}(F)$, the set of all pseudo-periodic sequences in $\Gamma(F)$ is a divisible submodule of $\Gamma(F)$ and it contains W(F) the divisible submodule of all ultimately periodic sequences, [1]. Any member of $\overline{\Omega}(1)$ is called an almost zero sequence. The following was proved in [1].

Theorem 1.4. (i). $\overline{\Omega}(1) = \Omega(D^{\infty}) \oplus L$, where L is a torsion-free F[D]-module

- (ii) $\overline{W}(F) = W(F) + E$, where E is any injective hull of $\overline{\Omega}(1)$ in $\Gamma(F)$.
- (iii) $\overline{\Omega}(1)$ is divisible by D.

For any sparse set A, given $n, m \in A$, n is called a successor of m in A if m < n and there is no $p \in A$ such that $m , a finite sequence <math>a_1 < a_2 < \cdots < a_t$ in A is called a successor sequence in A, if each a_{i+1} is a successor of a_i in A.

§2. The module $\overline{\Omega}(1)$

Proposition 2.1. Let $S = (s_n) \in \Gamma[D]$, and $f(D) \in F[D]$, with $f(0) \neq 0$. If for each positive integer K, there exist $n, m \in N$ with $n - m \geq K$ such that $[s_m, s_n]$ is a section of some non-zero member of $\Omega(f(D))$, then $S \notin \overline{\Omega}(1)$.

PROOF. On the contrary suppose that $S \in \Omega(1)$. Let (A, u, 1) be a companion of S and let t = sparsity(A), [1]. Consider any integer $w > \max(O(f(D)), u)$. By definition there exists $a \in A$ such that for $a \le a_1 < a_2 < \cdots < a_t$ in A, $a_t - a_1 > wt$. The hypothesis on S gives n, m such that $m \ge a$, n - m > (w + 1)t and that $[s_m, s_n]$ is a section of a non-zero $S' \in \Omega(f(D))$. Let $b \in A$ be largest such that $b \le m$. Consider the successor sequence in A,

$$b = b_0 < b_1 < b_2 < \cdots < b_t$$
.

Clearly $m < b_1$. Suppose that $b_1 - m \ge w$. As the period of S' is a factor of O(f(D)) and $[s_m, s_{b_1}]$ is a section of S' of length $b_1 - m > O(f(D))$ we get $[s_m, s_{b_1}] \ne 0$. So that $[s_{b_0}, s_{b_1}] \ne 0$. However $b_1 - b_0 > u$, gives $[s_{b_0}, s_{b_1}] = 0$. This is a contradiction. Hence $b_1 - m < w$. Now $b_t - b_1 > wt$. So we get smallest $i \ge 1$ such that i < t and $b_{i+1} - b_i > w$. Then $[s_{b_i}, s_n] \cap [s_{b_i}, s_{b_{i+1}}]$ is a section of S' of length greater than w and hence it is non-zero. Consequently $[s_{b_i}, s_{b_{i+1}}] \ne 0$. As $b_{i+1} - b_i > w > u$, we get $[s_{b_i}, s_{b_{i+1}}] = 0$. This is a contradiction. Hence $S \notin \overline{\Omega}(1)$.

The following is well known

Lemma 2.2. There exist an uncountable family $\{\mathbb{N}_{\alpha}\}_{\alpha \in \Lambda}$ of subsets of \mathbb{N} , the set of natural numbers such that:

- (i) Far each $\alpha \in \Lambda$, \mathbb{N}_{α} and $\mathbb{N} \mathbb{N}_{\alpha}$ are countably infinite.
- (ii) For any two distinct $\alpha, \beta \in \Lambda$, $\mathbb{N}_{\alpha} \cap \mathbb{N}_{\beta}$ is finite.

PROOF. As \mathbb{Q} , the set of rational numbers is countable we replace \mathbb{N} by \mathbb{Q} . For each real number α , fix a sequence $\mathbb{Q}_{\alpha} = \{a_n\}_{n \in \mathbb{N}}$ of rational numbers such that $a_n > a_{n+1}$ for every n, and $\alpha = \lim_{n \to \infty} a_n$. Then $\{\mathbb{Q}_{\alpha}\}_{\alpha \in \Lambda}$, where Λ is the set of all real numbers, is a desired family.

We now fix an $S = (s_n) \in \Gamma(F)$, such that

$$G_s(x) = \sum_{n \ge 1} x^{\lambda_n} (1 - x^{n!})$$

with $\lambda_1 = 0$, $\lambda_{n+1} - \lambda_n > 2(n!) + 4$. Observe the following

Lemma 2.3. (i) $s_{\lambda_n} = 1$, $s_{\lambda_n+n!} = 1$ and $s_k = 0$, otherwise.

(ii) The open section $]s_{\lambda_n+n!}, s_{\lambda_{n+1}}[=0 \text{ and that } \lambda_{n+1} - (\lambda_n + n!) \text{ approaches infinity as } n \text{ approaches infinity.}$

We now fix a family $\{\mathbb{N}_{\alpha}\}_{\alpha \in \Lambda}$ given by (2.2). By using the S fixed above, for each $m \geq 1$, and $\alpha \in \Lambda$, we define $S_{\alpha,m}$ in $\Gamma(F)$ such that

$$G_{s_{\alpha,m}}(x) = \sum_{n} x^{\lambda_n} (1 - x^{n!}), \quad n \ge m \text{ and } n \in \mathbb{N}_{\alpha}.$$

Further define $S_{\alpha,m}$ such that

$$G_{\bar{S}_{\alpha,m}}(x) = \frac{1}{1 - x^m} G_{s_{\alpha,m}}(x)$$

i.e. $(1 - x^m) G_{\bar{S}_{\alpha,m}} = G_{s_{\alpha,m}}(x)$.

For $m \ge 2$, by (1.1) (b) $(D^m - 1)\overline{S}_{\alpha,m}$ has generating function $\sum x^{\lambda_n - m}(1 - x^{n!})$, $n \in \mathbb{N}_{\alpha}$. So that $(D^m - 1) \overline{S}_{\alpha,m} = D^m S_{\alpha,m}$. For $m \ge n$, as $(1 - x^m)$ divides $(1 - x^{n!})$, we get

$$\frac{x^{\lambda_n}(1-x^{n!})}{1-x^m} = x^{\lambda_n}[1+x^m+x^{2m}+\dots+x^{r_nm}]$$

where $r_n = [(n!)/m - 1]$. This corresponds to a section of a non-zero member of $\Omega(D^m - 1)$. Because $r_n \to \infty$, as $n \to \infty$, by (2.1). $\bar{S}_{\alpha,m} \notin \bar{\Omega}(1)$, we write $S_{\alpha} = S_{\alpha,1}$. We collect these observations and their immediate consequences in the following.

A note on non-recurring sequences over Galois fields

Lemma 2.4. (i) $S_{\alpha,m} \in \overline{\Omega}(1), \ \overline{S}_{\alpha,m} \notin \overline{\Omega}(1), \ \overline{S}_{\alpha,m} \in \overline{\Omega}(D^m - 1).$

- (ii) For $m \ge 2$, $D^{\lambda_m} S_{\alpha} = D^{\lambda_m} S_{\alpha,m}$ and $(D^m 1) \bar{S}_{\alpha,m} = D^m S_{\alpha,m}$.
- (iii) Given any finitely many distinct members $\alpha_1, \alpha_2, \ldots, \alpha_u$ of Λ and any positive integer K, there exists $n \in \mathbb{N}_{\alpha_1}$ such that $n \notin \mathbb{N}_{\alpha_j}$ for $j \geq 2, n! \geq K$ and $\lambda_{n+1} - \lambda_n - n! \geq K$.

The following result gives an explicit uncountable direct sum in $\Omega(1)$.

Lemma 2.5. $K = \sum_{\alpha} F[D] S_{\alpha}$ is a direct sum in $\overline{\Omega}(1)$

PROOF. Let for some distinct $\alpha_i \in \Lambda$ and $f_i(D) \in F[D]$,

$$\sum_{i=1}^{u} f_i(D) S_{\alpha_i} = 0.$$

Suppose that $f_1(D) \neq 0$. Let k be a positive integer greater than every deg $f_i(D)$. We get an $n \in \mathbb{N}_{\alpha_1}$ such that n > k, $n \notin \mathbb{N}_{\alpha_j}$ for $j \ge 2$ and $\lambda_n - \lambda_{n-1} - (n-1)! > K$. The section of S_{α_1} indexed by $[\lambda_n, \lambda_n + n!]$ is of the form $(1, 0, 0, \dots, 1)$ and that indexed by $[\lambda_{n-1} + (n-1)!, \lambda_n[$ is zero. For $j \ge 2$, the corresponding sections of S_{α_j} are all zeros. As $f_1(D) \neq 0$, by (1.2), the section of S_{α_1} indexed by $[\lambda_n - k, \lambda_n + n!]$ is non zero, but the corresponding sections of any $S_{\alpha_j}, j \ge 2$ are zeros. This then contradicts the fact that $\sum_i f_i(D)S_{\alpha_i} = 0$. Hence $f_1(D) = 0$. Similarly every $f_i(D) = 0$. This proves the result.

Theorem 2.6. For any $T \in \Omega(1)$ and $f(D) \in F[D]$ with $f(0) \neq 0$ and $\deg f(D) = k > 0$, if $f(D)T \in \sum_{\alpha} F[D]S_{\alpha}$, then $D^{\ell}T \in \sum_{\alpha} F[D]S_{\alpha}$ for some $\ell \geq 0$.

PROOF. As $f(0) \neq 0$, we get an integer $m \geq 2$ such that f(D) divides $(D^m - 1)$. Write $D^m - 1 = f(D)g(D)$. By the hypothesis $f(D)T = \sum_{i=1}^{u} f_i(D)S_{\alpha_i}$ for some distinct $\alpha_i \in \Lambda$, $f_i(D) \in F[D]$. Then by (2.4)

$$D^{\lambda_m + m} f(D)T = \sum_i f_i(D) D^{\lambda_m + m} S_{\alpha_{i,m}} =$$

= $f(D)g(D) \sum_i f_i(D) D^{\lambda_m} \bar{S}_{\alpha_{i,m}}$.

Consequently

(1)
$$D^{\lambda_m + m}T = \sum_i f_i(D)g(D)D^{\lambda_m}\bar{S}_{\alpha_{i,m}} + T'$$

where $T' \in \Omega(f(D))$. All the $\bar{S}_{\alpha_{i,m}}$ have common-zero sections indexed by open intervals $]\lambda_n + n!, \lambda_{n+1}[$ which are of arbitrarily large lengths. Consequently by (1.2), all the $f_i(D)g(D)\bar{S}_{\alpha_{i,m}}$ have commonly indexed zero sections of arbitrarily large lengths. If $T' \neq 0$, (1) gives that T has sections of arbitrarily large lengths, which are sections of $T' \in \Omega(f(D))$. By (2.1) $D^{\lambda_m+m}T \notin \bar{\Omega}$ (1). This gives a contradiction. Hence T' = 0, i.e.

(2)
$$D^{\lambda_m + m}T = \sum_i f_i(D)g(D)D^{\lambda_m}\bar{S}_{\alpha_{i,m}}$$

Fix a positive integer s greater than every deg($f_i(D)g(D)$), $O(f_i(D)g(D))$. By using (2.2) we choose an $n \in \mathbb{N}_{\alpha_1}$ such that n > m, $r_nm > 2s$, $\lambda_n - (\lambda_{n-1} + (n-1)!) > s$, $r_n = (n!/m) - 1$ and $n \notin \mathbb{N}_{\alpha_j}$ for $j \ge 2$. Now $x^{\lambda_n} (1 + x^m + \cdots + x^r n^m)$ corresponds to the sections B of $\bar{S}_{\alpha_{1,m}}$ indexed by $[\lambda_n, \lambda_n + r_nm]$. It is a section of a member $T'' \in \Omega(D^m - 1)$ with $D^m - 1$ as its minimal polynomial. Suppose $(D^m - 1)$ does not divide $f_1(D)g(D)$. Then $f_1(D)g(D)T'' \ne 0$, and by (1.3) the section of $f_1(D)g(D)S_{\alpha_{1,m}}$ indexed by $[\lambda_n, \lambda_n + r_nm - s]$ is a section of $f_1(D)g(D)T''$. As its length is greater than s it is non-zero. However the corresponding section of every $f_j(D)g(D)\bar{S}_{\alpha_j,m}, \ j \ge 2$ is zero. So that $D^{\lambda_m+m}T$ has a section, which is a section of $f_1(D)g(D)T''$; by (2.2) n can be choosen as large as desired. So by (2.1) $D^{\lambda_m+m}T \notin \bar{\Omega}(1)$. This is a contradiction. Hence $(D^m - 1)$ divides $f_1(D)g(D)$. Write $f_1(D)g(D) = (D^m - 1) g_1(D)$. Similarly we get $f_j(D)g(D) = (D^m - 1) g_i(D), \ g_i(D) \in F[D]$. Hence

$$D^{\lambda_m + m}T = \sum_i g_i(D)D^{m + \lambda_m}S_{\alpha_{i,m}} =$$
$$= \sum_i g_i(D)D^{m + \lambda_m}S_{\alpha_i} \in \sum_{\alpha} F[D]S_{\alpha}.$$

This proves the result.

Given submodule L of a torsion-free F[D]-module M, the closure cl(L) of L in M is the set of those $x \in M$ such that $f(D)x \in L$ for some $f(D) \neq 0$ in F[D]. Let $K = \sum_{\alpha} F[D]S_{\alpha}$. In general closure of a direct sum is not equal to the direct sum of closures. Here we explicitly describe the closure of K, in any torsion-free submodule of $\overline{\Omega}(1)$. By using (1.4) and the fact that $\overline{W}(F)$ is injective, we get $\overline{\Omega}(1) = \Omega(D^{\infty}) \oplus L'$ with $K \subseteq L'$.

Theorem 2.7. Let $K = \bigoplus \sum_{\alpha} F[D]S_{\alpha}$ and L' be a submodule of $\overline{\Omega}(1)$ containing K such that $\overline{\Omega}(1) = \Omega(D^{\infty}) \oplus L'$. Then $\operatorname{cl}_{L'}(K) = \{T \in L' : D^{\lambda}T \in K \text{ for some } \lambda \geq 0\}$ and $\operatorname{cl}_{L'}(K) = \bigoplus \sum_{\alpha} \operatorname{cl}_{L'}(F[D]S_{\alpha}).$

PROOF. The first part is an immediate consequence of (2.6) and the remark just above this theorem. We have an injective hull E of $\overline{\Omega}(1)$ in $\overline{W}(F)$ such that $E = \Omega(D^{\infty}) \oplus E_1 \oplus E_2$ where $E_1 \oplus E_2$ and E_1 are injective hulls of L' and K respectively in E. As F[D] is noetherian, we have $E = \bigoplus \sum E_{\alpha}$, where E_{α} is the injective hull of $L_{\alpha} = F[D]S_{\alpha}$ in E_1 . It follows from (2.6) that $\operatorname{cl}_{L'}(K)/K$ is the D-primary component of E_1/K . However $E_1/K \cong \bigoplus \sum_{\alpha} E_{\alpha}/L_{\alpha}$. So that $\operatorname{cl}_{L'}(K)/K$ is direct sum of D-primary components of E_{α}/L_{α} . This in view of (2.6) yields.

$$\operatorname{cl}_{L'}(K) = \bigoplus \sum \operatorname{cl}_{L'}(F[D]S_{\alpha}).$$

Theorem 2.8. Let *E* be any injective hull of $\Omega(1)$ in W(F). Then for any monic irreducible polynomial $p(D) \neq D$, in f[D], the p(D)-primary component of $E/\overline{\Omega}(1)$ is of uncountable rank.

PROOF. We have $E = \Omega(D^{\infty}) \oplus E_1 \oplus E_2$ where $E_1 \oplus E_2$ is an injective hull of a submodule L' of $\overline{\Omega}(1)$ containing K such that $\overline{\Omega}(1) = \Omega(D^{\infty}) \oplus L'$ and E_1 is an injective hull of K in E. Let $K_{\alpha} = cl_{L'}(F[D]S_{\alpha})$. Then for $K' = cl_{L'}(K), K' = E_1 \cap \overline{\Omega}(1)$ and

$$[E_1 + \overline{\Omega}(1)]/\overline{\Omega}(1) \cong \bigoplus \sum_{\alpha} E_{\alpha}/K_{\alpha}.$$

Consider the quotient field \mathbb{Q} of F[D] and $M = \{a \in \mathbb{Q} : D^{\lambda}a \in F[D] \text{ for some } \lambda \geq 0\}$. Then M/F[D] is the *D*-primary component of $\mathbb{Q}/F[D] \cong E_{\alpha}/F[D]S_{\alpha}$. For any monic irreducible polynomial $p(D) \neq D$ over *F*, the p(D)-primary component of $\mathbb{Q}/F[D]$ is isomorphic to that of \mathbb{Q}/M . However $\mathbb{Q}/M \cong E_{\alpha}/K_{\alpha}$. As $|\Lambda|$ is uncountable, and \mathbb{Q}/M has non-zero p(D)-primary component, the result follows.

We end this paper by discussing the notion of minimal sparse sets associated with members of $\overline{\Omega}(1)$. Consider two sparse sets A and A'. Call A and A' to be equivalent sparse sets, if there exist finite subsets B and B'of A and A' respectively such that $A \setminus B = A' \setminus B'$. This is an equivalence relation. Consider any $S \in \overline{\Omega}(1)$ that is not ultimately zero. Let (A, u, 1)be a companion of S. Then A is said to be a minimal sparse set relative to u, associated with S if for any sparse set $A' \subseteq A$, such that (A', u, 1) is a companion of S, A' is equivalent to A.

Theorem 2.9. Let S be any member of $\Omega(1)$ that is not ultimately zero. Let (A, u, 1) be a companion of S. Then there exists a sparse set $A' \subseteq A$ such that A' is a minimal sparse set relative to u, associated with S.

PROOF. Let $S = (s_k)$. We now construct $A' = (m_i)$, $m_i < m_{i+1}$. Choose m_0 any member of A. For some $i \ge 0$, suppose that we have already constructed.

$$m_0 < m_1 < \ldots, m_i$$

in A'. Let n be the successor of m_i in A. If $[s_{m_i}, s_n] \neq 0$, by definition $n - m_i < u$; in this case choose m_{i+1} , the largest member of A such that $m_{i+1} - m_i < u$. Let $[s_{m_i}, s_n] = 0$. As S is not ultimately zero we can find

354 Hassan Al-Zaid and Surjeet Singh : A note on non-recurring sequences ...

largest member of A, that is taken as m_{i+1} , such that $[s_{m_i}, s_{m_{i+1}}] = 0$. It is immediate that (A', u, 1) is a companion of S. Let (A'', u, 1) be a companion of S such that $A'' \subseteq A'$. We get smallest integer r, such that $m_r \in A''$. We prove that A'' consists of all m_i , $i \ge r$. Suppose for some $i \ge r$, we have already proved that $m_i \in A''$. Let m be the successor of m_i in A''. Then $m_i < m_{m_{i+1}} \le m$. If $[s_{m_i}, s_{m_{i+1}}] \ne 0$ then $[s_{m_i}, s_m] \ne 0$, gives $m - m_i < u$. As m_{i+1} is the largest member of A satisfying $m_{i+1} - m_i < u$, we get $m = m_{i+1}$. If $[s_{m_i}, s_m] = 0$, once again the choice of m_{i+1} gives $m = m_{i+1}$. This proves the result.

Acknowledgement. This research was supported by the Kuwait University Research Project No. SM 075.

References

- [1] H. AL-ZAID and S. SINGH, A class of non-recurring sequences over a Galois Field, (to appear in Publicationes Mathematicae Debrecen).
- [2] C. FAITH, Algebra II, Ring Theory, vol. 91, Springer Verlag, 1976.
- [3] R. LIDL and H. NIEDERREITER, Finite Fields, Encyclopedia Math. Appl., Addison Wesley, 1983.
- [4] S. SINGH, A note on linear recurring sequences, *Linear Algebra Appl.* **104** (1988), 97–101.

HASSAN AL-ZAID DEPARTMENT OF MATHEMATICS KUWAIT UNIVERSITY P.O. BOX 5969 SAFAT – 13060 KUWAIT

SURJEET SINGH DEPARTMENT OF MATHEMATICS KUWAIT UNIVERSITY P.O. BOX 5969 SAFAT – 13060 KUWAIT

(Received September 13, 1993)