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A note on non-recurring sequences over Galois fields

By HASSAN AL-ZAID (Safat, Kuwait) and SURJEET SINGH (Safat, Kuwait)

Introduction

Let F' be a Galois field and I'(F) be the F[D]-module of all sequences
over F, [4]. Consider an f(D) # 0 in F[D]. The concept of a pseudo-
periodic sequence with f(D) as its pseudo-characteristic polynomial was
introduced in [1]. The set Q(f(D)) of all such sequences is a submodule
of I'(F). It was seen in [1] that in the study of the lattice L(F') of these
Q(f(D))’s, Q(1) plays a very significant role. The possibilities of different
kinds of non-recurring sequences, that one can have inside (1) seem to
be too many. In the present note we give an explicit construction of an
uncountable direct sum K = @) F[D]S, and its closure in any torsion-
free submodule of Q(1). Let E be an injective hull of Q(1). By using K,
it is proved that for any monic irreducible polynomial p(D) # D, in F[D],
the p(D)-primary component of E/Q(1) is of uncountable rank. Finally
we discuss the concept of a minimal sparse set associated with a member
of Q(1).

§1. Preliminaries

Throughout F' is a Galois field and I'(F) denotes the F—vector space
of all sequences S = (s,)n>0 over F. Consider the ring of polynomials

F[D], where D is an indeterminate. For any f(D) = Zf:o a;D* € F[D],
S = (sp) € I'(F), define f(D)S = (w,) € I'(F') such that w, =), a;Snyi.
This makes I'(F') a divisible left F[D]-module, [4]. For any S = (s,) €
['(F) the power series Gy(z) = Y oo, siz’, with z an indeterminate, is
called the generating function of S, [3]. For any f(z) = ag + a1z + -+
apz®, ar # 0, the reciprocal of f(x), is the polynomial f(x) = ax+ax_ 12+
ot agx®. If f(z) = 2¥g(z), with g(0) # 0, it is obvious that f(z) = g(x).
The definition of I'(F’) as an F[D]-module gives the following.
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Lemma 1.1. (a). For any S, S’ € I'(F) and f(D) € F[D] with
deg f(D) =k >0, f(D)S = S ifand only if 2*Gy (x) = g(z)+ f(2)Gs(x)
for some g(x) € F|x] with deg g(z) < k.

(b) For any f(x) € F[x] with deg f(x) = k > 0, and S € T'(F)
f(z)Gs(x) = Zf Olczzl; +2*Gy (x) for some ¢; € F, and S' € T'(F) such
that f(D)S = 5.

Consider any two sequences S = (s,) and S’ = (s},) in T'(F'). Through-
out the paper let NV denotes the set of natural numbers. For m<n, [s,,, $n]=
(Sms Sm41, - - -, Sn) 1s called a section of S of length n—m [1]. For the sake of
convenience, sometime we denote the (m —n — 1)—tuple (S;41, Smt2,-- -,
Sn—1) BY |Sm,Sn| and call it an open section of length n — m. Indeed
1Sms $n| = [Sma1,8n—1]- A section of the form [sg, s,] is called an ini-
tial section. [s;,,$n] = 0 will mean that s; = 0 for m < ¢t < n. S
and S’ are said to be ultimately equal if D"S = D"S’ for some r > 0.
Consider an f(D) € F[D] with deg f(D) = k > 0. Then Q(f(D)) =
{S € T'(F) : f(D)S = 0}, [4. O(f(D)) denotes the order of f(D),
[3]. Observe that in f(D)S = S’, [S$m,Sntk] determines [s] ,s)] and
conversely. If an S € Q(f(D)) has minimal polynomial f(D), then for
any g(D) # 0 in F[D], the minimal polynomial of ¢(D)S is f(D)/d(D),
where d(D) = ged(f(D)),g(D)). These observations give the following
two lemmas essentially mentioned in [1].

Lemma 1.2. Let S = (s,) € I'(F) and f(D) = D'g(D) € F[D] with
t>0, deg f(D) =k, and g(D) € F[D] with g(0) # 0. Furtherlet f(D)S =

S = ( '.). Suppose that for some n—m > deg f(D)+1, [Sm+1,Sn—1] =0.
Then the following hold:

(1) [Stt1s8n_1-% =0
(ii) If sy # 0, then si, #0, form —t <u<m
(iii) If s, # 0, then s,,_, # 0.

Lemma 1.3. Let S = (s,,) € I'(F) and f(D)S = S’ = (s,) for some
f(D) € F(D) with deg f(D) = k. Further let 0 # g(D) € F[D], and
n > m > 0. Then the following hold:

(i) If [s),, sl.] is a section of a member of Q( (D)), then [sm, Snik| IS a
section of a member of Q(f(D)g(D)); in particular if [s =0,
then [s,,, Sn+k| Is a section of a member of Q(f(D)).

(ii) If n —m > deg f(D), g(D) is monic with g(0) # 0, and [sm, Sp) Is a
section of aT" € I'(F') with minimal polynomial g(D) then [s),,s! ;]

is a section of g(D)T with minimal polynomial f(D)/d(D) where

d(D) = ged(f(D), g(D)).

For any f(D) # 0 in F[D], Q(f(D)*>°) denotes the submodule U, >
Q(f(D)™). As remarked in [4], Q(f(D)>°) is the smallest divisible sub-

m’ TL]
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module of I'(F") containing Q(f(D)). For the definition of a sparse subset
of N, and of a pseudo-periodic sequence with pseudo-characteristic poly-
nomial f(D) # 0, we refer to [1]. Q(f(D)) denotes the submodule of I'( F)
consisting of all the pseudo-periodic sequences with f(D) as their pseudo-
charasteristic polynomial. W (F), the set of all pseudo-periodic sequences
in I'(F') is a divisible submodule of I'(F') and it contains W (F") the divis-
ible submodule of all ultimately periodic sequences, [1]. Any member of
Q(1) is called an almost zero sequence. The following was proved in [1].

Theorem 1.4. (i). Q(1) = (D) @ L, where L is a torsion-free
F[D]-module
(ii) W(F) = W(F) + E, where E is any injective hull of Q(1) in T'(F).
(iii) Q(1) is divisible by D.

For any sparse set A, given n,m € A, n is called a successor of m in
A if m < n and there is no p € A such that m < p < n, a finite sequence

a1 < ag < ---<ain A is called a successor sequence in A, if each a;41 is
a successor of a; in A.

2. The module Q(1)

Proposition 2.1. Let S = (s,) € I'|D], and f(D) € F[D], with
f(0) # 0. If for each positive integer K, there exist n,m € N with
n —m > K such that [s,,, s,] is a section of some non-zero member of

Q(f(D)), then S & Q(1).

PROOF. On the contrary suppose that S € Q(1). Let (A4,u,1) be
a companion of S and let ¢t = sparsity (A), [1]. Consider any integer
w > max (O(f(D)),u). By definition there exists a € A such that for
a<a <ay <---<a in A, a; —a; > wt. The hypothesis on S gives
n,m such that m > a, n —m > (w + 1)t and that [s,,, s,] is a section of
a non-zero S’ € Q(f(D)). Let b € A be largest such that b < m. Consider
the successor sequence in A,

b=by <by <by<---<Uby.

Clearly m < by. Suppose that by —m > w. As the period of S’ is a factor
of O(f(D)) and [sy, Sp,| is a section of S’ of length by — m > O(f(D))
we get [Sm, Sp,] # 0. So that [sp,,sp,] # 0. However by — by > u, gives
[Sbos Sb,] = 0. This is a contradiction. Hence by —m < w. Now by —b; > wt.
So we get smallest ¢ > 1 such that ¢ < ¢t and b;11 — b; > w. Then
(86> 5] N [Sb,» Sb,,,) 15 a section of S of length greater than w and hence
it is non-zero. Consequently [sp,, sp,,,] # 0. As biy1 —b; > w > u, we get
[Sb; Sb:y,) = 0. This is a contradiction. Hence S & Q(1).

The following is well known
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Lemma 2.2. There exist an uncountable family {N,},en of subsets
of N, the set of natural numbers such that:

(i) Far each a € A, N, and N — N, are countably infinite.
(ii) For any two distinct o, 3 € A, N, N Ng is finite.
PrROOF. As Q, the set of rational numbers is countable we replace N

by Q. For each real number «, fix a sequence Q, = {a,}nen of ratio-

nal numbers such that a,, > a,41 for every n, and « = lim a,. Then
n—oo

{Qa }acn, where A is the set of all real numbers, is a desired family.

We now fix an S = (s,) € I'(F), such that

Zw 1—x

n>1
with Ay =0, A1 — A > 2(n!) + 4. Observe the following

Lemma 2.3. (i) sy, =1, sx,4+n! = 1 and s = 0, otherwise.
(ii) The open section |sx,4n!s Sx,..| = 0 and that A\,11 — (A, +n!l) ap-
proaches infinity as n approaches infinity.

We now fix a family {N,}aeca given by (2.2). By using the S fixed
above, for each m > 1, and o € A, we define S, ,,, in I'(F') such that

Zx "!, n>m and n € N,.

Sorm

Further define Sa’m such that

1

mGsa,m (z)

Gs, . (x) =
Le. (1-2")Gg, . =G5, .. (2).

For m > 2, by (1.1) (b) (D™—1)S a,m has generating function S AT (1—
™), n € N,. So that (D™ —1) S, = D™S4 1. For m > n, as (1 —2™)
divides (1 — 2™, we get

2 (1 — ™)

o _.%’A”[1+1'm—|—l'2m—|----—|-l'rnm]

where r, = [(n!)/m — 1]. This corresponds to a section of a non-zero
member of Q(D™—1). Because 7, — 00, as n — 00, by (2.1). Sa.m € Q(1),
we write So = S4,1. We collect these observatlons and their immediate
consequences in the following.
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Lemma 2.4. (i) So.m € Q(1), Sa.m € Q(1), Sa.m € QD™ —1).
(ii) Form >2, D*nS, = D*» w,m and (D™ —1) Sa,m =D"Sq m-
(ili) Given any finitely many distinct members oy, aq,...,a, of A and

any positive integer K, there exists n € N, such that n ¢ N, for
j>2, nl>Kand \py1 — A, —n! > K.

The following result gives an explicit uncountable direct sum in Q(1).
Lemma 2.5. K =Y F[D]S, is a direct sum in Q(1)
PROOF. Let for some distinct o; € A and f;(D) € F[D],

> fi(D)Sa, =0.
=1

Suppose that fi1(D) # 0. Let k be a positive integer greater than every
deg fi(D). We get an n € N, such that n >k, n ¢ N, for j > 2 and
An — Ap—1 — (n — 1)1 > K. The section of S,, indexed by [An, A, + nl]
is of the form (1,0,0,...,1) and that indexed by |A\,—1 + (n — 1)1, A\,
is zero. For j > 2, the corresponding sections of S,, are all zeros. As
f1(D) # 0, by (1.2), the section of S,, indexed by [\, — k, A, +n!] is non
zero, but the corresponding sections of any S, j > 2 are zeros. This then
contradicts the fact that >, f;(D)S, = 0. Hence fi(D) = 0. Similarly
every f;(D) = 0. This proves the result.

Theorem 2.6. For any T € Q(1) and f(D) € F[D] with f(0) # 0 and
deg f(D) =k > 0, if f(D)T € Y., F[D]S,, then D'T € Y F[D]S, for
some ¢ > 0.

PrOOF. As f(0) # 0, we get an integer m > 2 such that f(D) divides
(D™ —1). Write D™ — 1 = f(D)g(D). By the hypothesis f(D)T' =
Soiy fi(D)Sa, for some distinct a; € A, f;(D) € F[D]. Then by (2.4)

Af m

Dt f(D)T =Y f;(D)DM ™S, =

= f(D)g(D) Z fi(D)D*" 8, ..

Consequently

(1) Dt = 3 f(D)g(D)D S, + T

QG m

where T" € Q(f(D)). All the S,,,, have common-zero sections indexed
by open intervals |\, + n!, A,11[ which are of arbitrarily large lengths.
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Consequently by (1.2), all the f;(D)g(D)Sa,,. have commonly indexed
zero sections of arbitrarily large lengths. If 77 # 0, (1) gives that T" has
sections of arbitrarily large lengths, which are sections of 77 € Q(f(D)).
By (2.1) D »*+™T ¢ Q (1). This gives a contradiction. Hence 7" = 0, i.e.

(2) DAmtmp — Z fi(D)g(D)D " S

Q4,m

Fix a positive integer s greater than every deg(f;(D)g(D)), O(f:;(D)g(D)).
By using (2.2) we choose an n € N, such that n > m, r,m > 2s, A\, —
A1+ (=11 >s, 7y = (n!/m) —1and n € N, for j > 2. Now
a* (1+ 2™+ -4 z"n™) corresponds to the sections B of S, ,, indexed
by [An, An+rnm]. It is a section of a member 7" € Q(D™—1) with D™ —1
as its minimal polynomial. Suppose (D™ — 1) does not divide f1(D)g(D).
Then f1(D)g(D)T" # 0, and by (1.3) the section of fi(D)g(D)S.,,,, in-
dexed by [\, A\, +7r,m — s| is a section of f1(D)g(D)T". As its length is
greater than s it is non-zero. However the corresponding section of every
fi(D)g(D)Su; m, j > 2is zero. So that D*T™T has a section, which is
a section of f1(D)g(D)T"; by (2.2) n can be choosen as large as desired.
So by (2.1) D*»*™T & Q(1). This is a contradiction. Hence (D™ — 1)
divides f1(D)g(D). Write fi1(D)g(D) = (D™ —1) ¢g1(D). Similarly we get
#,(D)g(D) = (D™ 1) (D), (D) € F[D]. Hence

Q4 m

DAmtm — Z gi (D)Dm-i-)\ms —

=S G(D)D" S, € S FID]S, .

7 [}
This proves the result.

Given submodule L of a torsion-free F[D]-module M, the closure
cl(L) of L in M is the set of those € M such that f(D)x € L for some
f(D) #0in F[D]. Let K = ) F[D]S,. In general closure of a direct
sum is not equal to the direct sum of closures. Here we explicity describe
the closure of K, in any torsion-free submodule of Q(1). By using (1.4) and
the fact that W (F) is injective, we get Q(1) = Q(D>) @ L' with K C L'.

Theorem 2.7. Let K = @), F[D]S, and L’ be a submodule of Q(1)
containing K such that Q(1) = Q(D*°) & L’. Then clp/(K) ={T € L' :
DAT € K for some A\ > 0} and clp/(K) =& clp/ (F[D]Sa).

PrOOF. The first part is an immediate consequence of (2.6) and the

remark just above this theorem. We have an injective hull E of Q(1)
in W(F) such that E = Q(D*>) @& E; @ E; where E; & Ey and E; are
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injective hulls of L' and K respectively in E. As F[D] is noetherian, we
have E = &) FE,, where E, is the injective hull of L, = F[D]S, in
E;. It follows from (2.6) that cly/ (K)/K is the D—primary component of
E,/K. However E,/K = &) E,/Lq. So that clp/(K)/K is direct sum
of D—primary components of E,/L,. This in view of (2.6) yields.

CIL/(K) = @ZCIL/(F[D]SQ)

Theorem 2.8. Let E be any injective hull of Q(1) in W(F). Then for
any monic irreducible polinomial p(D) # D, in f[D], the p(D)-primary
component of E /(1) is of uncountable rank.

PrROOF. We have E = Q(D*°)® Ey @ E5 where E; @ Fs is an injective
hull of a submodule L’ of (1) containing K such that Q(1) = Q(D>)® L/
and E; is an injective hull of K in E. Let K,, = cly/(F[D]S,). Then for
K' =clp/(K), K'=E NnQ(1) and

By +Q()]/Q(1) 2 @Y, Ea/Ka.

Consider the quotient field Q of F[D] and M = {a € Q : D*a €
F[D] for some A > 0}. Then M/F[D] is the D-primary component of
Q/F[D] =2 E,/F[D]S,. For any monic irreducible polynomial p(D) # D
over F', the p(D)-primary component of Q/F[D] is isomorphic to that of
Q/M. However Q/M = E,/K,. As |A] is uncountable, and Q/M has
non-zero p(D)-primary component, the result follows.

We end this paper by discussing the notion of minimal sparse sets
associated with members of 2(1). Consider two sparse sets A and A’. Call
A and A’ to be equivalent sparse sets, if there exist finite subsets B and B’
of A and A’ respectively such that A\ B = A’\ B’. This is an equivalence
relation. Consider any S € Q(1) that is not ultimately zero. Let (A4,u,1)
be a companion of S. Then A is said to be a minimal sparse set relative
to u, associated with S if for any sparse set A" C A, such that (A’,u, 1) is
a companion of S, A" is equivalent to A.

Theorem 2.9. Let S be any member of (1) that is not ultimately
zero. Let (A,u,1) be a companion of S. Then there exists a sparse set
A’ C A such that A’ is a minimal sparse set relative to u, associated with

S.

PROOF. Let S = (sx). We now construct A" = (m;), m; < myy1.
Choose my any member of A. For some i > 0, suppose that we have
already constructed.

mo<mip<...,m;

in A’. Let n be the successor of m; in A. If [s,,, sn] # 0, by definition
n —m; < u; in this case choose m; 1, the largest member of A such that
miy1 —m; < u. Let [$y,,,s,] = 0. As S is not ultimately zero we can find
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largest member of A, that is taken as m;i1, such that [sy,,, Sm,,,] = 0.
It is immediate that (A’,u,1) is a companion of S. Let (A”,u,1) be a
companion of S such that A” C A’. We get smallest integer r, such that
m, € A”. We prove that A” consists of all m;, i > r. Suppose for some
i > r, we have already proved that m; € A”. Let m be the successor of m;
in A”. Then m; < mp,,, <m. If Sy, Sm,,] 7 0 then [sp,,, 5] # 0, gives
m—my; < u. As m;yq is the largest member of A satisfying m;.1 —m; < u,
we get m = mit1. If [S,,, 8m] = 0, once again the choice of m; 1 gives
m = m;41. This proves the result.
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