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Counting invertible sums of squares modulo n and a new
generalization of Euler’s totient function

By CATALINA CALDERON (Leioa), JOSE MARIA GRAU (Oviedo),
ANTONIO M. OLLER-MARCEN (Zaragoza) and LASZLO TOTH (Pécs)

Abstract. In this paper we introduce and study a family ®; of arithmetic func-
tions generalizing Euler’s totient function. These functions are given by the number of
solutions to the equation ged(z} + --- + 27,n) = 1 with z1,...,2, € Z/nZ which, for
k = 2,4 and 8 coincide, respectively, with the number of units in the rings of Gauss-
ian integers, quaternions and octonions over Z/nZ. We prove that ®; is multiplicative
for every k, we obtain an explicit formula for ®x(n) in terms of the prime-power de-
composition of n and derive an asymptotic formula for ) _ ®x(n). As a tool we
investigate the multiplicative arithmetic function that counts the number of solutions
to 3 +---+xf = A (mod n) for A coprime to n, thus extending an old result that dealt
only with the prime n case.

1. Introduction

Euler’s totient function ¢ is one of the most famous arithmetic functions used
in number theory. Recall that ¢(n) is defined as the number of positive integers
less than or equal to n that are coprime to n. Many generalizations and analogs of
Euler’s function are known. See, for instance [5], [6], [8], [9], [13], [16] or the special
chapter on this topic in [15]. Among the generalizations, the most significant is
probably the Jordan’s totient function Jj given by Ji(n) = nF 1,1 - p~ ")
(neN:={1,2,...}). See [1], [3, pp. 147-155], [18].
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In this paper we introduce and study a new generalization of ¢. In particular,
given k € N we define

®y(n) := card {(z1,...,2) € (Z/nZ)* : ged(23 4 -+ 2i,n) =1}. (1)

Clearly, ®1(n) = ¢(n) and it is the order of the group of units of the ring
Z/nZ. On the other hand, ®2(n) is the restriction to the set of positive integers of
the Euler function defined on the Gaussian integers Z[i]. Thus ®3(n), denoted also
by GIphi(n) in the literature, counts the number of Gaussian integers in a reduced
residue system modulo n. See [2]. In the same way, ®4(n) and ®g(n) count,
respectively, the number of invertible quaternions and octonions over Z/nZ.

In order to study the function ®; we need to focus on the functions

pra(n) :=card {(z1,...,2) € (Z/nZ)F 2?4+ -+ 23 =X (modn)} (2)

which count the number of points on hyperspheres in (Z/nZ)* and, in particular,
in the case gcd(A, n) = 1. These functions were already studied in the case when n
is an odd prime by VICTOR-AMEDEE LEBESGUE in 1837. In particular he proved
the following result ([4, Chapter X]).

Proposition 1. Let p be an odd prime and let k, A\ be positive integers with
pt A Putt=(—1)P-DED/4p(k=1/2 and = (=1)kE-1/4p(=2)/2 Then

pP~1 +t, ifk is odd and ) is a quadratic residue modulo p;
pea(p) =< pF~t —t, ifk is odd and X is a quadratic nonresidue;

pF~t — ¢, ifk is even.

The paper is organized as follows. First of all, in Section 2 we study the
values of pi A(n) in the case gcd(\,n) = 1, thus generalizing Lebesgue’s work.
In Section 3 we study the functions ®j, in particular we prove that they are
multiplicative and we give a closed formula for ®(n) in terms of the prime-power
decomposition of n. Section 4 is devoted to deduce an asymptotic formula for
Y n<z Pi(n). Finally, we close our work suggesting some ideas that leave the door
oper_l for future work.

2. Counting points on hyperspheres (mod n)

Due to the Chinese Remainder Theorem, the function py x, defined by (2)
is multiplicative; i.e., if n = pi*---plm, then pga(n) = peA(PT) - preA@hr).
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Hence, we can restrict ourselves to the case when n = p°® is a prime-power.
Moreover, since in this paper we focus on the case ged(A, n) = 1, we will always
assume that p f A. The following result will allow us to extend Lebesgue’s work
to the odd prime-power case.

Lemma 1. Let p be an odd prime and let s € N. If pt \, then

P (%) = ptTDVED o\ ().

PROOF. It is easily seen that any solution to the congruence z3+---+z7 = X
(mod p**™1) must be of the form (ay +t1p°%, ..., ar +t,p°), where 0 < ty,... .t <
p — 1, for some (a1,...,a;) such that a} + -+ a7 = X (mod p*). Now, (a1 +
t1p®)2+- -+ (ar +txp®)? = X (mod p**1) if and only if 2a1t; +- - -+ 2axty = — K
(mod p), where K is such that a} + -+ + a2 = Kp® + \. Since a; # 0 (mod p)

for some i € {1,...,k}, it follows that there are exactly p*~! possibilities for
(t1,...,tx). We obtain that pp\(p*T!) = p* 1o A(p*), and the result follows
inductively. O

If p = 2 we have a similar result.

Lemma 2. Let s > 3 and let A € N be odd. Then,
Pk,)\(2s> — 2(8_3)(k_1)pk:,)\(8)~

PROOF. In the case p = 2 the proof of Lemma 1 does not work since 2a1t; +
-+« 4+ 2aitp, = —K (mod 2) holds only if K is even. Therefore, we use that every
solution of the congruence z% + - + 27 = A (mod 2°T!) is of the form (a; +
112571 ag + 1257, where 0 < tq,...,t, < 3, for some (ai,...,ay) satisfying
a4+ +a2 =X (mod 2°71), that is a? + -+ - + a2 = L2571 + \ with an integer
L. Now, taking into account that s > 3, (a3 +#12°71)2 4+ + (ar + tx2°" 12 = A
(mod 2°71) if and only if

2(ar1ty + -+ agty) = —L (mod 4). (3)

Here the condition (3) holds true if and only if L is even, i.e., a?+---+a? = A

(mod 2%). Hence we need the solutions (ay,...,ax) of the congruence (mod 2°),
but only those satisfying

0<aq,...,a <251 (4)

It is easy to see that their number is p x(2°)/2", since all solutions of the

congruence (mod 2%) are (a14+u12°7 1, ... ap+ur2°~t) with (ay, . .., ax) verifying

(4) and 0 < wq,...,ux < 1. Since a; must be odd for some i € {1,...,k}, for a

fixed even L, (3) has 2-4%~1 solutions (t1,...,#). We deduce that pg (2571) =
2 4F=1pp £ (2%)/2F = 2871y 1 (2%). Now the result follows inductively on s. O
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As we have just seen, unlike when p is an odd prime, the recurrence is now
based on py A (2%). Hence, the cases s = 1,2,3; i.e., n = 2,4,8, must be studied
separately. In order to do so, the following general result will be useful.

Lemma 3. Let k, A and n be positive integers. Then

P (1 Zpu n)pr—1,1-e(n).

PROOF. Let (z1,...,xx) € (Z/nZ)* be such that 3 +---+22 = A (mod n).
Then, for some £ € {0,...,n—1} we have that 27 = ¢ (mod n) and 23+ - -+z7 =
A — £ (mod n) and hence the result. O

Now, given k,n € N let us define the matrix M(n) = (p1,i—j(n))g<; j<p_1-
If we consider the column vector Rg(n) = (pr,i(n))g<;<,_1, then Lemma 3 leads
to the following recurrence relation:

Ri(n) = M(n) - Rr_1(n).

In the following proposition we use this recurrence relation to compute pg z(2°)
for s =1,2,3 and odd A.

Lemma 4. Let k be a positive integer. Then

)

)

ok 4 95+1 sin (
(

(

’ =3 Th) 4+ 2sin (37(k+1)) — 2cos (37 (3k + 1)),
V) pra(8) = 22473 (2F — 25+ sin (Tk) — 2(cos (Lr(k + 1)) + cos (37 (k +1)))),
vi) pr5(8 :22’“_3(2’“—1—2%"‘15111 Th) — 2sin (3m(k + 1)) + 2 cos (17(3k +1))),
Vi) pr,7(8) = 22673 (28 — 25+ sin (TR) — 2sin (2 (37k + 7)) + 2cos (n(k +1))).
PRroOF. First of all, observe that
20 00 2 0 0 4
4 2 0 0 0 2 00
2 0 0 2 042000 20
11 2 2 00 004 2 000 2
M(2)_<1 1>’M(4)_ 022 0 M=l 0042000
0 0 2 2 02004 2 00
00200420
0002004 2
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Let us compute ii). We know that Ry(4) = M(4) - Ry—1(4). Hence, since the
eigenvalues of M (4) are {4,2 + 2i,2 — 2i,0}, we know that

pra(4) = C14F + Co(2 + 20)F + C3(2 — 2i)k.

In order to compute Cq, Cy and Cj it is enough to observe that p; 1(4) = 2,
p21(4) =8 and p3 1(4) = 24. Hence

ACY + (24 20)Cy + (2 — 20)C5 = 2, 160 + 8iCy — 8iC5 = 8,
64C; — (16 — 16i)Cy — (16 + 16i)C5 = 24.

We deduce
1 k
pra(4) = 1 (4" —i(2+ 20)F +i(2 — 20)F) =222 ¢ 2% ~lgin <7T4> ,
as claimed.
To compute the other cases note that the eigenvalues of M (2) are {0, 2} while
the eigenvalues of M (8) are

{8,4 + i, 4 — 4i,V2(—2 — 20),V2(2 + 26), V2(—2 + 2i),V2(2 — 2¢),0} :

Thus, in each case we only need to compute the corresponding initial conditions
and constants. The final results have been obtained with the help of Mathematica
“ComplexExpand” command. O

Note that a different approach to compute the values p x(n), using the Gauss
quadratic sum was given in [20].

3. Counting invertible sums of squares (mod n)

Given positive integers k, n, this section is devoted to computing ®x(n),
defined by (1). Let A(k,\,n) denote the set of solutions (z1,...,7x) € (Z/nZ)*
of the congruence z% + -+ 4+ 27 = X (mod n). First of all, let us define the set

Arn) = | A(k\n).

1<A<n
ged(A,n)=1

Hence, ®1(n) = card Ai(n) and, since the union is clearly disjoint, it follows
that

Or(n) = Y praln).

1<A<n
ged(A,n)=1

The following result shows the multiplicativity of ®; for every positive k.
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Proposition 2. Let k be a positive integer. Then ®;, is multiplicative; i.e.,
Dy (mn) = P (m)Pg(n) for every m,n € N such that ged(m,n) = 1.

PROOF. Let us define a map F : Ax(m) x Ap(n) — Ag(mn) by
F((a1,...,ak), (b1,...,b)) = (nay + mby,...,nay + mby).

Note that if (a1,...,ar) € Ax(m), then a? + --- + a2 = A\; (mod m) for
some A; with ged(A,m) = 1. In the same way, if (b1,...,bx) € Ag(n), then
b? + .-+ b7 = Xy (mod n) for some Ay with gcd(\2,n) = 1. Consequently,

(na; +mb1)* 4 - + (nag +mby)? = n?(a + - +ai) + m*(b3 + - +b3)
+2mn(bras + - - - + bpax) = nZA; + mZ iy (mod mn).

Since it is clear that ged(n?\; + m?Xa,mn) = 1, it follows that (na; +
mby,...,na, +mbg) € Ax(mn) and thus F is well-defined.

Now, let (c1,...,c,) € Ag(mn). Then ¢ +--- 4 ¢ = X (mod mn) for some
A such that ged(A, mn) = 1. Let us define a; = ¢; (mod m) and b; = ¢; (mod n)
for every i = 1,..., k. It follows that (ai,...,ar) € Ax(m), (b1,...,bg) € Ax(n)
and, moreover, F((ay,...,ax), (b1,...,br)) = (c1,...,cr). Hence, F is surjective.

Finally, assume that

(nay + mby,...,nax + mbg) = (nay + mpPu,...,nar +mpPy) (mod mn)

for some (aq,...,a), (a1,...,ar)€AL(m) and for some (by,...,bg), (B1,-..,Bk)€E
A (n). Then, for every ¢ = 1,...,k we have that na; + mb;, = no; + mp;
(mod mn). From this, it follows that a; = «; (mod m) and that b; = 8; (mod n)
for every i and hence F' is injective.

Thus, we have proved that F' is bijective and the result follows. O

Since we know that ®; is multiplicative, we just need to compute its values
over prime-powers. We do so in the following result.

Proposition 3. Let k, r be positive integers. Then
i) By (27) = p(287) = 2571,
ii) If p is an odd prime,

_ —_ ok _
Dy (p") = p(p"") — (—1)FET D Ap(phr=k/2) = phr=a =1 1) (pF/2 — (— 1)k D/4),
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PRrROOF.

i) Ifr = 1,2, 3 the result readily follows from Lemma 4 by a simple computation.
Now, if r > 3 we can apply Lemma 2 to obtain that

®(2") = Z pri(27) = 207 HE=D Z Pr.,i(8)

1<i<2r 1<i<2n
2fi 2fi

281

= 2lr= A= 3" > P,i(8)

J=0 8j+1<i<8(j+1)—1

2t
— 2(T—3)(k—1)27‘—3 Z pk‘,z(8)
1<i<7
2ti

— 2(T—3)(k—1)27‘—323k—1 — 27‘k:—1 — 80(2’“)

ii) Due to Lemma 1 it can be seen, as is the previous case, that

p—1
O (p") = PN pra(p)-
=1

Thus, it is enough to apply Proposition 1. O
Finally, we summarize the previous work in the following result.
Theorem 1. Let k be a positive integer. Then the function ®y is multi-

plicative and for every n € N,

n*~lo(n), if k is odd;
_1)k(p-1)/4
Pp(n) =  nk~1Lp(n) H (1 - ()k/Z)’ if k is even.
p
e

Written more explicitly, we deduce that

n*~lp(n), if k is odd;
1
n*F=1o(n) H (1 — W), if k=0 (mod 4);
pln
Pp(n) = e 1 1
k—
et 11 (1 - p’“/2> 11 <1 * p’““)’
p=1 p(erOd 4) pzflpl(?ﬂod 4)

if k=2 (mod 4).
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When £ is a multiple of 4, ® is closely related to Jj, /2. The following result,
which follows from Theorem 1 and the definition of Jordan’s totient function Jy
makes this relation explicit.

Corollary 1. Let k € N be a multiple of 4 and let n € N. Then,

2k/2

Dy (n) = nk/z_le/2(n)90(n) 2k/2 —14+n (mod 2)

Moreover, if k/4 is odd, then we have

2k/2
2k/2 —1+4+n (mod 2)

Pi(n)
(I)k/4 (n)

= M43, 2(n)

Recall that in the case k = 4, ®4(n) is the number of units in the ring
H(Z/nZ). If, in addition, n is odd then ®4(n) = nJa(n)p(n) which is the well-
known formula for the number of regular matrices in the ring My(Z/nZ). Of
course, this is not a surprise since it is known that for an odd n the rings H(Z/nZ)
and My (Z/nZ) are isomorphic ([7]).

Some elementary properties of @, well known for Euler’s function (the case
k = 1) follow at once by Theorem 1. For example, we have

Corollary 2. Let k € N be fixed.

i) If m,n € N such that n | m, then ®(n) | Pr(m).
ii) If m,n € N and let d = gcd(m,n). Then ®x(mn)®(d) = d*®;(m)®x(m).
iii) If n,m € N, then ®(n™) = nkm=*d; (n).

4. The average order of ®y(n)

The average order of ¢(n) is well-known. Namely,
1 3
R

see, for example, [10, Th. 330]. In fact, the best known asymptotic formula is due
to WALFISZ [22]:

5" ¢ln) = S5a? + Ola(log )/ (loglog )*/%). 5)

n<z

We now extend the validity of Walfisz result to ®y.
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Theorem 2. Let k € N be any fixed integer. Then

‘I) k+1 9] kR
> o = M 4 O (),
where
6
Cr = —, Ry = (logz)**(logloga)"/*, ifk is odd;

3 1 (DM 1 o
Cp = i H (1 - - (=1 pk/2+2(p )> , Rg(z)=logz, Iifk is even.

PRrROOF. If k is odd, then this result follows easily by partial summation from
the fact that ®x(n) = n*~1p(n) using Walfisz’ formula (5).

Assume now that k € N is even. Since the function ¢ is multiplicative, we
deduce by the Euler product formula that

- k)Gk(S)7

1 1L (DM —1)
Gi(s) = (1 - Q_W) 11 (1 TR T ek

p>2

where

is absolutely convergent for $ts > k. This shows that ®; = idy *g in terms of the
Dirichlet convolution, where idy(n) = n* (n € N) and the multiplicative function
gk is defined by

—ok=1 ifp=2,r=1;
ge(P") = —p" Tt = ()RR ET p — 1), i p > 2,0 = 1
0, otherwise.
We obtain
- k_ _ (z/d)*+ k
> )= X andieh= o) - eh= X onta) (L + o(twa)
n<z de<z d<z e<z d<z
aktt |9k |9k (d)]|
k41 k 9k
= Gk(k+1)+0( Ly dkﬂ )+O<x de>. (6)
d>x d<z

Here for every k > 4 we have

ZL‘% <Hz|gkkr :H( |9k ><<H( k1+pk;i_1+pk/2)

d<z p<ax r=0 p<z p<zx
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AEE-TI(1-)) <o

p<xr= O p<z

by Mertens’s theorem. In the case k = 2 this gives

Sete I (i) I ()

d<z p<z p p2 p<z p2
p=1 (mod 4) p=—1 (mod 4)
1 2
< ]I (1 + ) < logz,
p<z p

p=1 (mod 4)

11 (1 - ;) ~ c(logz)"V/2,

p<z
p=1 (mod 4)

using that

with a certain constant ¢, cf. [21]. Hence the last last error term of (6) is
O(z*log z) for every k > 2 even.

Furthermore, note that for every k > 2, |gr(n)| < nk/Qak/g,l(n) (n € N),
where o4(n) = >4, d'. Using that o4(n) < ((t)n' for t > 1 we conclude that
|hi(n)| < n*~1 for k > 4. Therefore,

lgx 1
k+< q2
N

d>z d>x

In the case k = 2, using that o1(n) < nlogn (this suffices) we have hy(n) <

n3logn and
Z |gg Z log d log x

d>x d>x

Hence the first error term of (6) is O(z*) for k > 4 and it is O(x?logx) for
k = 2. This completes the proof. O

Corollary 3 (k =2,4).

2@2(71):%3 11 )(1—22+p13> 11 (1—)+O(xloga:)

n<z p=1 (mod 4 p p=—1 (mod 4) p

R 1 1 1
2@4(71):7 <1—2—3+4>+O(I‘410gl)
20 5 p*p7 P
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5. Conclusions and further work

The generalization of ¢ that we have presented in this paper is possibly one
of the closest to the original idea which consists of counting units in a ring. In
addition, both the elementary and asymptotic properties of ®; extend those of ¢
in a very natural way. There are many other results regarding ¢ that have not
been considered here but that, nevertheless, may have their extension to ®;. For
instance, in 1965 P. KESAvA MENON [14] proved the following identity:

Y ged(j - Ln) = @(n)d(n),

1<j<n
ged(j,n)=1
valid for every n € N, where d(n) denotes the number of divisors of n. This
identity has been generalized in several ways. See, for example [11], [12], [17],
[19]. Also,
Z ng(j2 —1,n) = ¢(n)h(n),
1<j<n
ged(j,n)=1
where h is a multiplicative function given explicitly in [19, Cor. 15]. Our work
suggests the following generalization:

Yoo ged(@d o+ af — 1n) = O(n)Tr(n),
1<z1,...,z<n
ged(zi++af n)=1
where ¥, is a multiplicative function to be found.
Another question is on minimal order. As well known ([10, Th. 328]), the
minimal order of ¢(n) is e~ 7n(loglogn)~!, where v is Euler’s constant, that is
(n)loglogn

4 _
liminf ———=—— =¢ ’Y.
n—00 n

It turns out by Theorem 1 that for every k € N odd,

limjnf ZE(W10B108 _ o,
n—o0 n

Find the minimal order of ®;(n) in the case when k is even.
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