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On a characterization theorem for the group of p-adic numbers

By GENNADIY FELDMAN (Kharkov)

Abstract. It is well known Heyde’s characterization of the Gaussian distribution
on the real line: Let &1,&2,...,&n, 7 > 2, be independent random variables, let a;, §;
be nonzero constants such that B;o; ' + ﬂj&;l # 0 for all ¢ # j. If the conditional
distribution of the linear form Lo = [1&1 + P22 + -+ + Bnén given L1 = a1& +
azés + - -+ + ap&y, is symmetric, then all random variables £; are Gaussian. We prove
an analogue of this theorem for two independent random variables in the case when
they take values in the group of p-adic numbers 2, and coefficients of linear forms are
topological automorphisms of €2,.

1. Introduction

It is well known Heyde’s characterization of the Gaussian distribution on the
real line by the symmetry of the conditional distribution of one linear form given
another ([8], see also [9, §13.4.1]):

Theorem A. Let &1,&s,...,&,, n > 2, be independent random variables,
let o, B; be nonzero constants such that ﬁiai_l + ,Bjozj_l # 0 for all i # j. If the
conditional distribution of the linear form Lo = 1&1 + B2&o + -+ + B, given
L1 = aq&y + ado + - - + apéy is symmetric, then all random variables & are
Gaussian.

Let X be a second countable locally compact Abelian group, Aut(X) be
the group of topological automorphisms of X, &;, 7 = 1,2,...,n, n > 2, be
independent random variables with values in X and distributions u;. Consider
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the linear forms Ly = a1&1 +agda +- -+ ann and Ly = 161+ B2l + - - + Bnkn,
where o, 8; € Aut(X). We formulate the general problem.

Problem 1. Let X be a given group. Describe distributions p; assuming
that the conditional distribution of Lo given Ly is symmetric. In particular,
for which groups X the symmetry of the conditional distribution of Lo given
L, implies that all u; are either Gaussian distributions or belong to a class of
distributions which we can consider as a natural analogue of the class of Gaussian
distributions.

This problem for different classes of locally compact Abelian groups was
studied in series articles (see [1]-[3], [5], [6], [10]-[12]). In this article we continue
these investigations. We study Problem 1 for two independent random variables
with values in the group of p-adic numbers.

We will use some results of the duality theory for locally compact Abelian
groups (see e.g. [7]). Before we formulate the main theorem remind some defi-
nitions and agree on notation. For an arbitrary locally compact Abelian group
X let Y = X* be its character group, and (x,y) be the value of a character
y € Y at an element x € X. If K is a closed subgroup of X, we denote by
AY,K)={y €Y : (x,y) =1 for all x € K} its annihilator. If 6 : X — X is a
continuous endomorphism, then the adjoint endomorphism §:Y = Y is defined
by the formula (x,gy) = (0z,y) for all x € X, y € Y. We note that § € Aut(X)
if and only if 6 € Aut(Y). Denote by I the identity automorphism of a group.

Let M*(X) be the convolution semigroup of probability distributions on X.
For a distribution € M*(X) denote by i(y) = [y (x,y)du(x) its characteristic
function. If H is a closed subgroup of Y and fi(y) = 1 for y € H, then u(y+h) =
f(y) forally € Y, h € H. For u € M(X), we define the distribution i € M1 (X
by the formula ji(F) = u(—E) for any Borel set E C X. Observe that fi(y)
@. Let K be a compact subgroup of X. Note that the characteristic function

~—

of the Haar distribution mg is of the form

_ )L ye A(Y,K);
mK(y)—{O’ ) & AV K). (1)

Denote by I(X) the set of the idempotent distributions on X i.e. the set of shifts
of the Haar distributions mg of compact subgroups K of X.
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2. The main theorem

Let p be a prime number. We need some properties of the group of p-adic
numbers Q, (see e.g. [7, §10]). As a set £, coincides with the set of sequences
of integers of the form x = (..., @ _p, T pi1,-« s T1,T0, X1y, Ty, ... ), Where
x, €40,1,...,p—1}, such that x,, = 0 for n < ng, where the number ny depends
xp®. Addition and
multiplication of series are defined in a natural way and define the operations

on z. Correspond to each element = € €2, the series Zzo:ﬂw
of addition and multiplication in €,. With respect to these operations €2, is a
field. Denote by A, a subgroup of €2, consisting of x € €2, such that z, =0
for n < 0. This subgroup is called the group of p-adic integers. Elements of the
group A, we write in the form x = (2o, %1,...,Zn,...). The family of subgroups
{p™AL}__ . can be considered as an open basis at zero of the group 2, and
defines a topology on €2,. With respect to this topology the group €2, is locally
compact, noncompact, and totally disconnected. The character group €27 of the
group {2, is topologically isomorphic to €2, and the value of a character y € (2}
at an element = € 2, is defined by the formula

(z,y) = exp [zm( i Tn ( i y_sps+n1>ﬂ

n=—oo

([7, (25.1))).

Each automorphism « € Aut(,) is the multiplication by an element z, €
Qp, zo # 0, 1e. ag = xa9, g € Qp. If & € Aut(£2,), in order not to complicate
notation, we will identify the automorphism « with the corresponding element
Zo, i.e. when we write g, we will suppose that o € €2,. We note that & = a.
Denote by Ag the subset of A,, consisting of all invertible elements of A, Ag =
{z = (zo,x1,...,Tpn,...) € A, : 29 # 0}. Obviously, each element g € Q, is
represented in the form g = p¥c, where k is an integer, and ¢ € Ag. It is obvious
that the multiplication by c is a topological automorphism of the group p™A,, for
any integer m.

For a fixed prime p denote by Z(p>) the set of rational numbers of the form

k
{n :k:0,1,...,p”—1,n=0,17...}
p

and define the operation in Z(p>°) as addition modulo 1. Then Z(p>) is trans-
formed into an Abelian group, which we consider in the discrete topology. Obvi-
ously, this group is topologically isomorphic to the multiplicative group of p™th
roots of unity, where n goes through the nonnegative integers, considering in the
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discrete topology. For a fixed n denote by Z(p™) the subgroup of Z(p*°) consist-
ing of all elements of the form {p% ck=0,1,...,p" — 1}. The group Z(p") is
isomorphic to the multiplicative group of p™th roots of unity.

Let a € Aut(€,), a = pFe, where k > 0, ¢ € Ag. Let | be an integer. It is
easy to see that a induces an epimorphism & and ¢ induces an automorphism ¢
on the factor-group €,/p'A,. Let

T = (...,x,n,$,n+1,...,3?,171'0,.%‘17...,,@”,...) EQP.

Define the mapping 7 : Q,/p'A, — Z(p™>) by the formula

-1
(@ +p'Ay) = Z " w4 p A, € /P A, (2)

n—=—oo

Then 7 is a topological isomorphism of the groups Q,/p'A, and Z(p*). Put

a=rar ', ¢=rert, (3)
and observe that & = p*¢, ¢ € Aut(Z(p>)), and @ is an epimorphism. If ¢ =
(coyClyevyCny...) € Ag, then the automorphism ¢ acts in the following way. Put
Sp =co+c1p+cap? + -+ cp_1p™ L. The restriction of the automorphism ¢ to
the subgroup Z(p™) C Z(p*>°) is of the form ¢y = s,y, y € Z(p"), i.e. ¢ acts in
Z(p™) as the multiplication by s,,.

We note that since €, is a totally disconnected group, the Gaussian dis-
tributions on €2, are degenerated ([13, Ch. 4]), and the class of idempotent
distributions on (2, can be considered as a natural analog of the class of Gaussian
distributions.

We consider the case of two independent random variables & and & with
values in the group X = €, i.e. we consider the linear forms Ly = o1& + aéo
and Ly = (261 + 262, where o, 8; € Aut(X). Assume that the conditional
distribution of the linear form Lo = (2§ + [2& given L1 = a1&y + agés is
symmetric. Our aim is to describe the possible distributions y; depending on «;,
B;. Introducing the new independent random variables 5;- = «a;&, J = 1,2, we
can suppose that Ly = & + &2 and Lo = 61&; + 0262, where §; € Aut(X). Note
also that the conditional distribution of the linear form Lo = 01£; + §2&2 given
Ly = & + & is symmetric if and only if the conditional distribution of 6 Lo, where
0 € Aut(X), given L is symmetric. It follows from this that we may assume that
Lo = & + a&s, where a € Aut(X).

We can formulate now the main result of the article.
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Theorem 1. Let X = (,. Let a = p¥c, where k € Z and
¢ = (CoyCly--vsCny-v.) € Ag, be an arbitrary topological automorphism of the
group X. Then the following statements hold.

1. Let & and & be independent random variables with values in X and distri-
butions puy and ps. Assume that the conditional distribution of the linear
form Lo = & + aés given Ly = & + & Is symmetric. Then
1(G) If p > 2, k = 0 and ¢y # p — 1, then p; = mg * E,;, where K is a

compact subgroup of X and z; € X. Moreover, if ¢y =1, then j, and
ue are degenerate distributions.
1(Gi)) Ifp =2,k =0, ¢ =1 and ¢; = 0, then py and ps are degenerate
distributions.
1(iii) If p > 2 and |k| = 1, then either p; € I(X) or pus € I(X).
2. If one of the following conditions holds:
20) p>2,k=0,co=p—1;
2(il) p=2,k=0,c0=c1 =1;
2(iii) p=2, |k| = 1;
2(iv) p > 2, [k| > 2,
then there exist independent random variables &1 and & with values in X and
distributions p; and po such that the conditional distribution of the linear
form Ly = & + a&s given Ly = & + & is symmetric whereas i1, 1o ¢ I(X).

It is easy to see that cases 1(i)—1(iii) and 2(i)—2(iv) exhaust all possibilities
for p and a.

3. Lemmas

To prove Theorem 1 we need some lemmas.

Lemma 1 ([3], see also [4, §16]). Let X be a second countable locally com-
pact Abelian group, Y be its character group. Let & and & be independent
random variables with values in X and distributions p1; and ps. Let o ,3; be
continuous endomorphisms of X. The conditional distribution of the linear form
Lo = 51&1 4 B2&2 given L1 = a1y + axs is symmetric if and only if the charac-
teristic functions fi;(y) satisfy the equation

fir (Gru + Bro)fiz(Gou + Bov) = fir(@ru — ro)fia(Gou — fav), w,v €Y. (4)
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Observe that in [3] this lemma is proved when «a;,3; € Aut(X), but the
proof is valid without any changes for the case when «;, 3; are continuous endo-
morphisms.

Lemma 2. Let X =, & and & be independent random variables with
values in X and distributions p; and pe such that p(y) > 0, j = 1,2. Let
o = pFc € Aut(X), where k € Z and ¢ € AY. Assume also that o # —1. If the
conditional distribution of the linear form Lo = & + a&s given L1 = & + & is
symmetric, then there exists a closed subgroup H C Y, such that [i;(y) = 1 for
ye H, j=1,2.

ProoF. Taking into account that the conditional distribution of the linear
form Lo given Lq is symmetric if and only if the conditional distribution of the
linear form a~!L, given L; is symmetric, we may assume without loss of gener-
ality that £ > 0. Apply Lemma 1. Since X = Q,, we have a = «, and hence
equation (4) takes the form

p1(u+v)ia(u+ av) = g (u —v)e(u — aw), u,v €Y. (5)

If @« = I, then put in equation (5) v = v = y. We get that H = Y, ie. pq,
and uo are degenerate distributions. So, we will assume that o # I. Since
11(0) = [2(0) = 1, we can choose a neighborhood at zero V' of Y such that
fj(y) > 0 for y € V, j = 1,2. Obviously, we can assume that V = p'A,
for some [. Since k > 0, we have a(p'A,) C p'A,. Put ¢;(y) = —logi;(y),
y € plA,, j =1,2. It follows from (5) that the functions 11 (y) and ¥2(y) satisfy
the equation

V1 (u+v) + o (u + av) — 1y (u—v) —Pa(u — av) =0, wu,v € p'A,. (6)

We use the finite difference method to solve equation (6). Let ¢(y) be a function
on Y, and h be an arbitrary element of Y. Denote by Aj the finite difference
operator

Ap(y) = by +h) — Y(y).

Let k1 be an arbitrary element of plAp. Put h1 = ak; and hence, hy — ak; = 0.
Substitute w4 h; for u and v+ k; for v in equation (6). Subtracting equation (6)
from the obtained equation we find

Alndjl (u + U) + Almw?(u + av) - Al13w1 (u - U) =0, w,ve plAp, (7)

where l17 = (a+1)k1, l12 = 2aky, l15 = (o —I)k;. Let kg be an arbitrary element
of plAp. Put ho = ko and hence, ho — ko = 0. Substitute u + ho for u and v + ko
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for v in equation (7). Subtracting equation (7) from the obtained equation we
arrive at

AlZlAlll (a1 (u + U) + A122 Al12 (0 (u + Oﬂ}) =0, wve plA;Da (8)

where lo; = 2ka, las = (I + a)ka. Let k3 be an arbitrary element of p'A,. Put
hs = —aks and hence, hs + aks = 0. Substitute u + hs for v and v + k3 for v in
equation (8). Subtracting equation (8) from the obtained equation we find

Alm AVWAVIR (u + U) =0, wve plApa (9)

where l31 = (I — a)ks. Substituting v = 0 into (9), taking into account the
expressions for ly1, l21, I31 and the fact that k1, ko, k3 are arbitrary elements of
p'A,, we find from (9) that there exists a subgroup p™A, C p'A,, where the
function 1 (y) satisfies the equation

Apr(y) =0, hyyep™A,. (10)

Taking into account that p™A, is a compact group, we conclude from (10) that
1(y) = const, y € p™A, ([4, §5]). Since 91(0) = 0, we have 91 (y) = 0, for
y € p™A,. This implies that f1(y) = 1 for y € p™A,. For the distribution us
we reason similarly and find a subgroup p™A, such that fiz(y) = 1 for y € p"A,,.
Put H =p™A, Np"A,. Lemma 2 is proved. O

Lemma 3 ([1], sec also [4, §17]). Let X be a finite Abelian group containing
no elements of order 2, a be an automorphism of X such that I + o € Aut(X).
Let & and & be independent random variables with values in the group X and
distributions py and po. If the conditional distribution of the linear form Lo =
&1+ aés given Ly = &§ + &2 Is symmetric, then p; = my * B, where K Is a finite
subgroup of X and z; € X, j =1,2.

4. Proof of statements 1(i)—1(iii)

Before we begin the proof make the following remarks. It is obvious that
the characteristic functions of the distributions fi; also satisfy equation (5). This
implies that the characteristic functions of the distributions v; = p; * fi; sat-
isfy equation (5) too. We have 7;(y) = |i;(y)[*> > 0, j = 1,2. Hence, when
we prove statements 1(i)—1(iii) we may assume without loss of generality that
w;i(y) >0, j =1,2, because p; and v; are idempotent distributions or degenerate
distributions simultaneously.
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Taking into account that the conditional distribution of the linear form Lo
given L; is symmetric if and only if the conditional distribution of the linear form
a 'Ly given L; is symmetric, we may assume without loss of generality that
k> 0.

Put f(y) = f1(y), 9(y) = fiz(y) and write equation (5) in the form

flu+v)g(u+av) = flu—v)glu —av), u,veY, (11)

where a € Aut(Y), a = pFe, k > 0, ¢ € AY. We also assume that f(y) > 0,
g(y) > 0. In fact we will study solutions of equation (11).

PROOF OF STATEMENTS 1(i) AND 1(ii). By Lemma 1, the characteristic
functions f(y) and g(y) satisfy equation (11). Put

E={yeY:fy) =gy =1} (12)

If either p1; or py is a nondegenerate distribution, then E # Q,,. Observe that in
cases 1(i) and 1(ii) o # —I. Then by Lemma 2, E # {0}. Thus, F is a nonzero
proper closed subgroup of €,, and hence £ = plAp for some [. It follows from
(12) that

fly+h)=f), gly+h)=gly), yeY, hepA, (13)

Taking into account (13), denote by f(y) and g(y) the functions induced by the
functions f(y) and g(y) on the factor-group Y/p!'A,. Put f = for~!, where 7 is

defined by formula (2). We get from (11) that the functions f(y) and g(y) satisfy
the equation

~ ~

flut0)g(u+av) = f(u—v)glu—av), wu,ve Z(p>), (14)
where @ is defined by formula (3). It follows from (12) that

{y € Z(p™) : fy) =G(y) =1} = {0}. (15)

Statement 1(i). Assume first that cg # 1. Since p > 2, k =0 and ¢y # p — 1,
we have
I+ @ € Aut(Z(p™)). (16)

We note that for any n the restriction of any automorphism of the group Z(p*°)
to the subgroup Z(p") C Z(p™) is an automorphism of the subgroup Z(p").
Consider the restriction of equation (14) to the subgroup Z(p™). Observe that
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(Z(p™))* =2 Z(p™), and the group Z(p™) contains no elements of order 2. Taking
into account that (16) holds, we can apply Lemmas 1 and 3 to the group Z(p")
and get that the restrictions of the characteristic functions ]?(y) and g(y) to
the subgroup Z(p™) take only two values: 0 and 1. Moreover, f(y) = g(y) for
y € Z(p™). Hence, the characteristic functions ]?(y) and g(y) on the group Z(p*°)
take also only two values 0 and 1, and f(y) = g(y) for y € Z(p*°). Then the
standard reasoning show that j; = mg * E,,, where K is a compact subgroup of
X and z; € X.

Assume now that ¢g = 1. Since k = 0, the restriction of the automorphism @
to Z(p) C Z(p*°) is the identity automorphism. Hence, the restriction of equation

(14) to Z(p) takes the form

Flu+v)gu+v) = flu—v)glu—2v), uveZp). (17)

Substituting here u = v = y, we get f(2y)g(2y) = 1, y € Z(p). Since p > 2, this
implies that

Fy)=3y) =1, yeZp),
but this contradicts to (15). Thus, p1 and uo are degenerate distributions.

Statement 1(ii). Since kK = 0, ¢ = 1 and ¢; = 0, the restriction of the
automorphism @ to the subgroup Z(4) C Z(2%) is the identity automorphism.
Hence, the restriction of equation (14) to the subgroup Z(4) takes the form (17),
where u, v € Z(4). Substituting in (17) v = v = y, we get

Fe9ay) =1, yeZ()
This implies that f(y) = g(y) = 1 for y € Z(2), but this contradicts to (15).
Thus, @1 and po are degenerate distributions. (]

The proof of statement 1(iii) is based on the proof of the following proposition
which is of interest in its own right.

Proposition 1. Let X = Q,, £ and & be independent random variables
with values in X and distributions p; and ps. Let « € Aut(X), and o # —1I. If
the conditional distribution of the linear form Lo = & + a&s given Ly = &1 + &
is symmetric, then either u, and ps are degenerate distributions or there exists a
closed subgroup M C Y, such that [i;(y) =0 fory ¢ M, j =1,2.

PROOF. Let a = pFc € Aut(X), where k € Z and ¢ € AY. We can assume
without loss of generality that & > 0. Otherwise we consider the linear form
Ly = a™ ¢ + & instead of Ly = &1 + afy. Taking into account that in cases 1(i)
and 1(ii) of Theorem 1 Proposition 1 holds, it remains to consider the following
cases:
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1.p>2,k>1;
2.p>2,k=0,cg=p—1;
3.p=2,k=0,cg=cy = 1.

Obviously, we can assume without loss of generality that fi;(y) >0, j = 1,2.

Put f(y) = m(y), 9(y) = p2(y). We have f(=y) = f(y) and g(-y) = g(y)-
Reasoning as in the proof of statements 1(i)-1(ii) and retaining the same notation

we arrive at equation (14). Set § = I — «, v = I + a. Substituting into equation
(14) u = v = y, we obtain

F2y)3@Ey) = §By), y € ZE™). (18)
Substituting into equation (14) u = ay, v =y, we get
F@y)aay) = F(By), vy Z(p™). (19)

1. p>2 k> 1. Since k > 1, we have 3,7 € Aut(Z(p>)). Put k = By~ L.
Equations (18) and (19) imply

~

G(Ry) = F(27 'w)a(y),  y € Z(p™), (20)
and R R
f(Ry) = f(y)g(2a7y), vy € Z(p™). (21)
Since 0 < f(y) < 1, it follows from (20) that
9(Ry) <9(y), y € ZP™).

This implies that for any natural n the inequalities

g(&"y) <--- <g(ky) <g(y), ye€Zp™), (22)

hold. Let y € Z(p*°). Then y € Z(p') for some I, and hence Ky € Z(p'). It
follows from this that K™y = y for some m, depending generally speaking on y.
Substituting in (22) n = m we get

9(ry) =g(y), vy € Z(p™). (23)

Reasoning similarly, we obtain from (21) that

~

F®y) = fly), yeZ@p™). (24)

Assume that there exists a sequence of elements y,, € Z(p) such that:
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(a) the order of element y, is equal to p'*, i, — 0o;

(b) g(yn) # 0.
Then it follows from (20) and (23) that,

FoA ) =1 (25)
Suppose that p > 2. Then (25) implies that f(y) =1 for y € Z(p'"), because
the order of the element 27~ 'y, is equal to p’», and hence the element 27~ 'y,
generates the subgroup Z(p»). If p = 2, then f(y) = 1 for y € Z(2i»~1),
because the order of the element 291y, is equal to 2i»~!, and the element 27y,
generates the subgroup Z(2'»~1). Thus, for p > 2 we have ]?(y) = 1fory € Z(p*>),
and equation (14) implies that

glu+av) =g(u—av), u,v € Z({P™).

It follows from this that g(2ay) = 1 for y € Z(p*), and hence g(y) = 1 for
y € Z(p™>), because 2a is an epimorphism. We proved that uq, and us are
degenerate distributions.

The similar reasoning shows that if there exists a sequence of elements z,, €

Z(p™) such that:

(a) the order of the element z, is equal to p=, j, — oo;

~

(b) f(zn) #0,

then 1, and po are also degenerate distributions.
From what has been said it follows that if p1, and ps are nondegenerate

~

distributions, then there exists n such that f(y) = g(y) = 0 for y ¢ Z(p").
Proposition 1 in case 1 follows directly from this.

2. p>2,k=0,co=p—1. Since p > 2, we have B\ € Aut(Z(p*>)). We find
from equation (18) that

9(y) = F2B Y aEB ), ye Z@™). (26)

Since 0 < g(y) < 1, we find from (26) that

~

Gly) < F267 1), ye Z(p™). (27)

Reasoning similarly we get from (19) that

~

Fly) = FAB 9268 1y), y e Z(p™). (28)
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Taking into account that 0 < J?(y) < 1, this implies that
flw) <5a5"Y). v e Z(™). (29)
Inequalities (27) and (29) imply the inequalities
i) < J(2B71y) < gUapy),
fly) <G(2aB7'y) < fUaB%y), y € Z(™). (30)
Reasoning as in the proof of case 1, we find from (30) that
G(y) =9(4aB %), fly) = F4GB %), v € Z(™). (31)
We find from (30) and (31) that
i) = F207'y), T)=3(2a8"y), e Z0™). (32)
p™), then

It follows from (32) (28) and (26) that if g(yo) # 0 for some yg € Z(
GGB yo) = 1, and if f(yo) # 0, then f(78 'yo) = 1. We complete the proof as
in case 1.

3.p=2k=0,cg=c1 =1. Put f =281, vy =27v;. Then Bl € Aut(Z(2%)),

and 7; is an epimorphism. It follows from (18) that

FW)g(y) =9(Bry), v € Z(2™). (33)
Similarly, we find from (19) that

FAw)a@y) = f(By), v e Z@2™). (34)
It follows from (33) and (34) that

9) = FBTIAEB Y, Fy) = FABrwa@s'y), v e Z2™).

Hence, L ~

9y) < F(Bty),  Jy) <3@B ).
This implies that

FaE )

9(y) < F(BTYy) <9@B2y).  fly) <9@h'y) < f@br?y

We complete the proof as in case 2. Proposition 1 is proved completely.

]
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PROOF OF STATEMENTS 1(iii). Observe that in case 1(iii) o # —I. Reasoning
as in the proof of statements 1(i) and 1(ii) and retaining the same notation we
arrive at equation (14). Put

Ep={y e Zp™): fly) #0}, Ez={y € Z(p™):4(y) # 0},

~

By ={y € Z(p™): fly) =1}, By={y € Z(p>):3(y) =1}

Since p > 2 and k = 1, we have 277! € Aut(Z(p>)). Moreover, since k = 1,
obviously, (20), (21), (23) and (24) hold. Taking this into account, we find from
(20) and (23) that E5 C By Analogously, we find from (21) and (24) that
pEf C Bj. If us is a nondegenerate distribution, then Bg is a proper subgroup
of Z(p>), and hence B; = Z(p") for some n. Since By C E5 C By, it follows
from (15) that By = {0}. If By = {0}, then Eg C By = {0}, and hence pz is an
idempotent distribution. If B]? # {0}, then pr C pEj? C By = {0}. This implies
that By = Er = Z(p), and hence p; is an idempotent distribution. O

5. Proof of statements 2(i)—2(iv)

Taking into account that the conditional distribution of the linear form Lo
given L; is symmetric if and only if the conditional distribution of the linear
form a=!'L, given L; is symmetric, we may assume without loss of generality
that k£ > 0, and hence the restriction of o € Aut(£2,) to the subgroup A, is a
continuous endomorphism of A,. We retain the notation « for this restriction.
We will construct in cases 2(i)-2(iv) independent random variables & and & with
values in A, and distributions p; and po such that the conditional distribution
of the linear form Ly = & + as given Ly = & + & is symmetric, whereas
w1, e ¢ I(Ap). Considering ¢; as independent random variables with values
in Q,, we prove statements 2(i)-2(iv). Taking into account Lemma 1 it suffices
to construct non-idempotent distributions p; on the group A, such that their
characteristic functions satisfy equation (5). We note that the groups Z(p*°)
and A, are the character groups of one another, and the value of a character
Yy = p% € Z(p™) at an element x = (zg,1,...,Tn,...) € A, is defined by the
formula

1\ 2mil
(x,y) = exp{(mo+x1p+~-~+xn1p” )p”}
Moreover, any topological automorphism of the group A, is the multiplication
by an element of Ag. For ¢ = (co,¢15---5Cny--.) € Ag, the restriction of the



160 Gennadiy Feldman

automorphism ¢ € Aut(Z(p*)) to the subgroup Z(p™) C Z(p>) is of the form
¢y = spy, y € Z(p™), where s,, = co + c1p + cop® + -+ + c,_1p" L. Observe also
that & = p*¢, and

AZG™), 1 A,) = 2. (35)

Put f(y) = f1(y), g(y) = fi2(y). In these notation equation (5) takes the
form
flutv)g(u+av) = f(u—v)g(u—av), u,v e Z(p>). (36)

Statement 2(i). Consider on the group A, the distribution u = ama, + (1 —
a)mpa,, where 0 < a < 1. It follows from (1) and (35) that the characteristic
function fi(y) is of the form

1, y=0;
wy)=q1—a, yeZlp); (37)
0, y & Z(p).

Let us check that the characteristic functions f(y) = ¢g(y) = f(y) satisfy equation
(36). Consider 3 cases:

1. u,v € Z(p). Since ¢g = p — 1, we have ay = —y for y € Z(p), and the
restriction of equation (36) to the subgroup Z(p) takes the form

flutw)glu—v) = flu—-v)glutv), uveZp). (38)

Since f(y) = g(y), (38) holds.

2. Either u € Z(p), v ¢ Z(p), or u ¢ Z(p), v € Z(p). Then u tv ¢ Z(p).
This implies that f(u £+ v) = 0, and hence both sides of equation (36) are equal
to zero.

3. u,v ¢ Z(p). f u+v,u+av € Z(p), then
(I —a)v € Z(p). (39)

Since p > 2, k = 0 and ¢p = p — 1, we have I — a € Aut(4,), and hence
I—a € Aut(Z(p™)). Then (39) implies that v € Z(p), contrary to the assumption.
Thus, either u + v ¢ Z(p) or u + av ¢ Z(p), and the left-hand side of equation
(36) is equal to zero. Similarly we check that the right-hand side of equation (36)
is also equal to zero. Thus, (36) holds.

Statement 2(ii). Consider on the group Ag the distribution p = ama,+
(I1—a)man,, where 0 < a < 1. Then the characteristic function i(y) is represented
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by formula (37) for p = 2. Let us check that the characteristic functions f(y) =
9(y) = 1i(y) satisfy equation (36). Since k = 0 and ¢g = ¢; = 1, the restriction of
the automorphism & € Aut(Z(2°°)) to the subgroup Z(2") C Z(2*) is of the form
ay =my,y € Z(2"), where m = 1+2+¢92? 4+ -+¢,_12" " = 4]—1. Consider 3
cases: 1. w,v € Z(2); 2. either u € Z(2), v ¢ Z(2) or u ¢ Z(2), v € Z(2); 3.
u,v ¢ Z(2). In cases 1 and 2 the reasoning is the same as in case 2(i).

Consider case 3, i.e. assume that u,v ¢ Z(2), and prove first that if u+v, u+
av € Z(2), then u — v, u —av € Z(2), and (36) holds. To prove this note that the
inclusions u + v, u + av € Z(2) are possible only in the following cases.

(a) u+v = 0 and u+ awv = 0. This implies that (& — v = (m — 1)v =

2(2 — 1)v = 0. Hence, v € Z(2), but this contradicts to the assumption.

(b) u+v=1%and u+av=1.
() u+v =0 and u+ av = 4. This implies that (& — I)v = (m — 1)v
2(21 — 1)v = 3. It follows from this that either v = 1, u = 3,
u = %. In both cases u—v =, u— v = u—mv = 0, and hence (36) holds.

The reasoning is the same as in case (a).

orv =3
(d) u+v =12, u+av=0. The reasoning is the same as in case (c).

Reasoning similarly we verify that if u—v,u—av € Z(2), then u+v,u+av €
Z(2), and (36) holds.

Statement 2(iii). Consider on the group Ay the distributions p1 = amaa, +
(1 —a)man, and p2 = ama, + (1 —a)maa,, where 0 < a < 1. It follows from (1)

and (35) that that the characteristic function fi1(y) is of the form
1, y € Z(2);
my)=q1-a, yeZ)
0, y ¢ Z4).

Moreover, the characteristic function fia(y) is represented by formula (37) for
p = 2. Let us check that the characteristic functions f(y) = f1(y) and g(y) =
112 (y) satisfy equation (36). Consider 3 cases:

1. u,v € Z(4). Obviously, we can assume that u # 0, v # 0. Since either
co =1, ¢4 = 0or ¢g = ¢; = 1, the restriction of the automorphism ¢ to the
subgroup Z(4) is of the form: either cy = y or ¢y = —y, y € Z(4). Thus, the
restriction of equation (36) to the subgroup Z(4) either takes the form

flu+v)g(u+2v) = fu—v)g(u—2v), u,ve<Z4), (40)

or
flu+v)g(u—2v) = fu—v)g(u+2v), wu,veZ4). (41)

Consider equation (40). Equation (41) can be considered analogously.



162 Gennadiy Feldman

(a) u=v=13%. Then utv=0,2v=0. Hence, f(utv) =1, g(u=+2v)=g(u)
and (40) holds.

(b) u =3, v e {53} Then f(u+twv) = f(v). Since u+2v = 0, we have
g(u £ 2v) =1, and (40) holds.

(c) ue {},2},v=3. Then f(utwv) = f(u). Since 2v = 0, we have g(u+2v) =
g(u), and (40) holds.

(d) w,v € {5,2}. This implies that u + 2v ¢ Z(2). Hence g(u + 2v) = 0, and
both sides of equation (40) are equal to zero.
2. Either u € Z(4), v ¢ Z(4) or u ¢ Z(4), v € Z(4). Then u+v ¢ Z(4).

Hence f(u =+ v) =0 and both sides of equation (40) are equal to zero.
3. u,v ¢ Z(4). fu+v € Z(4) and u + av € Z(2), then

(I — @) € Z(4). (42)

Since k = 1, we have I —a € Aut(A,), and hence I —a € Aut(Z(2°°)). Then (42)
implies that v € Z(4), contrary to the assumption. Hence, either u+ v ¢ Z(4) or
u+ av ¢ Z(2). This implies that the left-hand side of equation (36) is equal to
zero. Reasoning analogously, we verify that the right-hand side of equation (36)
is also equal to zero. Thus, (36) holds.

Statement 2(iv). Consider on the group A, the distributions
p1 = amprap +(1—a)mpea and pz = ama, +(1—a)myr-1 , where 0 < a < 1.
It follows from (1) and (35) that the characteristic functions i1 (y) and fiz(y) are
of the form

1, y € Z(ph1);
fir(y) =41 —a, yeZ@P")\Zp);
0, y & Z(p").
1, y = 0;
fia(y) = 41 —a, yeZPF1)\ {0} (43)
0, y ¢ Z(p*).

Let us check that the characteristic functions f(y) = f1(y) and g(y) = fia2(y)
satisfy equation (36). Consider 3 cases:

1. u,v € Z(p*). Since a = p”c, we have av = 0, and hence the restriction of
equation (36) to the subgroup Z(p*) takes the form

flutw)g(u) = f(u—wv)g(u), u,veZ@"). (44)
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(a) u € Z(pF~1). Then f(u+v) = f(v), and equation (44) holds.

(b) u € Z(P*)\Z(p*~'). Then g(u) = 0, and both sides of equation (44) are
equal to zero.
2. Either u € Z(p*), v ¢ Z(p*) or u ¢ Z(p*), v € Z(p*). Then u+v ¢ Z(p*).

This implies that f(u+wv) = 0, and both sides of equation (36) are equal to zero.
3. u,v ¢ Z(pF). fu+v € Z(p¥), u+ av € Z(p*~1), then

(I —a)v € Z(p"). (45)

Since k > 1, we have ] —a € Aut(A,), and hence I —a € Aut(Z(p)). Then (45)
implies that v € Z(p*), contrary to the assumption. Hence, either u+v ¢ Z(p*) or
u+av ¢ Z(p¥~1). This implies that the left-hand side of equation (36) is equal to
zero. Reasoning analogously, we verify that the right-hand side of equation (36)
is also equal to zero. Thus, (36) holds. Theorem 1 is proved.

Let X = A,. We remind that each automorphism a € Aut(A,) is the
multiplication by an element c, € Ag. Let & and & be independent random
variables with values in the group A,. Then we can consider &; as independent
random variables with values in the group €),. Moreover, it is obvious that the
multiplication by an element ¢ € Ag is a topological isomorphism of the group
,. This implies that statements 1(i) and 1(ii) in Theorem 1 are also valid for
the group A,. Taking into account that in the proof of statements 2(i) and 2(ii)
in Theorem 1 the corresponding independent random variables take values in the
subgroup A, C €, we conclude that the following theorem holds.

Theorem 2. Let X = A,. Let a« = c= (cp,¢1,..-,Cp,y...) € Ag be an arbi-
trary topological automorphism of the group X. Then the following statements
hold.

1. Let & and & be independent random variables with values in X and distri-
butions py and ps. Assume that the conditional distribution of the linear
form Lo = & + aéy given Ly = & + &5 is symmetric. Then

1(i) If p > 2 and ¢y # p — 1, then p; = mg * E,,, where K is a compact
subgroup of X and x; € X. Moreover, if co = 1, then yu; and uo are
degenerate distributions.

1(ii)) Ifp =2, ¢co = 1 and ¢; = 0, then p; and po are degenerate distributions.
2. If one of the following conditions holds:

20) p>2,c0=p—1;

2(l) p=2,c0=c1 =1,
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then there exist independent random variables &1 and £s with values in X and
distributions py and ps such that the conditional distribution of the linear
form Lo = & + a&s given Ly = & + & is symmetric whereas uq, po ¢ 1(X).

Remark 1. Assume that in Theorem 1 p > 2, k=0, ¢y # 1 and ¢y # p — 1.
This implies in particular, that I — a € Aut(A,), and hence

I—a e Aut(Z(p™)). (46)

Let & and & be independent identically distributed random variables with values
in A, and distribution ma,. We check that the conditional distribution of the
linear form Lo = & + aés given L; = & + & is symmetric. By Lemma 1, it
suffices to verify that the characteristic functions f(y) = g(y) = ma,(y) satisfy
equation (36). It follows from (1) that

L, y=0

a, (y) = {0, y #0.

Obviously, it suffices to check that equation (36) holds when u # 0, v # 0. Thus,
assume that v # 0, v # 0. f u+v = 0 and u + av = 0, then (I — &)v = 0.
Taking into account (46), this implies that v = 0, contrary to the assumption.
Thus, either u+ v # 0 or u + av # 0, and hence the left-hand side of equation
(36) is equal to zero. Reasoning analogously we show that the right-hand side of
equation (36) is also equal to zero. So, equation (36) holds. This example shows
that statement 1(i) in Theorem 1 can not be strengthened to the statement that
both p; and po are degenerate distributions.

Assume that conditions 1(iii) of Theorem 1 hold, i.e. p > 2 and |k| = 1. We
can assume without loss of generality that £k = 1. Let & and & be independent
random variables with values in the group A, and distributions y; = ama, +
(1 —a)mpa,, where 0 < a < 1, and po = ma,. Then the characteristic functions
f(y) = i1 (y) and g(y) = f2(y) are defined by formulas (43) for k£ = 1. Obviously,
the proof that the characteristic functions f(y) and g(y) satisfy equation (36),
given in the proof of statement 2(iv), remains true for ¥ = 1 too. Thus, statement
1(iii) can not be strengthened to the statement that both distributions py, ps €
I(X).

Remark 2. Compare Theorem 1 with Heyde’s characterization theorem for
two independent random variables on the real line X = R. It is easy to see that
this theorem can be formulated in the following way. Let £&; and & be independent
random variables with values in the group X = R and distributions @1 and ps.
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Let a # —I. If the conditional distribution of the linear form Lo = & + as given
Ly = & + & is symmetric, then p1; are Gaussian. Thus, on the real line the only
condition « # —I, obviously, necessary, is sufficient for characterization of the
Gaussian distribution.

It follows from Theorem 1 that on the group of p-adic numbers X = (},
the state of affairs is more complicated. On the one hand, much more severe
constrains for « (conditions 1(i) for p > 2 and 1(ii) for p = 2) are necessary
and sufficient for characterization of the idempotent distribution. On the other
hand, there exist « (satisfying conditions 1(iii)) such that the symmetry of the
conditional distribution of the linear form Lo = & +aés given Ly = & +&- implies
that the only one of the distributions u; is idempotent. This effect is absent on
the real line.
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