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On a characterization theorem for the group of p-adic numbers

By GENNADIY FELDMAN (Kharkov)

Abstract. It is well known Heyde’s characterization of the Gaussian distribution

on the real line: Let ξ1, ξ2, . . . , ξn, n ≥ 2, be independent random variables, let αj , βj

be nonzero constants such that βiα
−1
i + βjα

−1
j ̸= 0 for all i ̸= j. If the conditional

distribution of the linear form L2 = β1ξ1 + β2ξ2 + · · · + βnξn given L1 = α1ξ1 +

α2ξ2 + · · · + αnξn is symmetric, then all random variables ξj are Gaussian. We prove

an analogue of this theorem for two independent random variables in the case when

they take values in the group of p-adic numbers Ωp, and coefficients of linear forms are

topological automorphisms of Ωp.

1. Introduction

It is well known Heyde’s characterization of the Gaussian distribution on the

real line by the symmetry of the conditional distribution of one linear form given

another ([8], see also [9, § 13.4.1]):

Theorem A. Let ξ1, ξ2, . . . , ξn, n ≥ 2, be independent random variables,

let αj , βj be nonzero constants such that βiα
−1
i + βjα

−1
j ̸= 0 for all i ̸= j. If the

conditional distribution of the linear form L2 = β1ξ1 + β2ξ2 + · · · + βnξn given

L1 = α1ξ1 + α2ξ2 + · · · + αnξn is symmetric, then all random variables ξj are

Gaussian.

Let X be a second countable locally compact Abelian group, Aut(X) be

the group of topological automorphisms of X, ξj , j = 1, 2, . . . , n, n ≥ 2, be

independent random variables with values in X and distributions µj . Consider
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the linear forms L1 = α1ξ1+α2ξ2+ · · ·+αnξn and L2 = β1ξ1+β2ξ2+ · · ·+βnξn,
where αj , βj ∈ Aut(X). We formulate the general problem.

Problem 1. Let X be a given group. Describe distributions µj assuming

that the conditional distribution of L2 given L1 is symmetric. In particular,

for which groups X the symmetry of the conditional distribution of L2 given

L1 implies that all µj are either Gaussian distributions or belong to a class of

distributions which we can consider as a natural analogue of the class of Gaussian

distributions.

This problem for different classes of locally compact Abelian groups was

studied in series articles (see [1]–[3], [5], [6], [10]–[12]). In this article we continue

these investigations. We study Problem 1 for two independent random variables

with values in the group of p-adic numbers.

We will use some results of the duality theory for locally compact Abelian

groups (see e.g. [7]). Before we formulate the main theorem remind some defi-

nitions and agree on notation. For an arbitrary locally compact Abelian group

X let Y = X∗ be its character group, and (x, y) be the value of a character

y ∈ Y at an element x ∈ X. If K is a closed subgroup of X, we denote by

A(Y,K) = {y ∈ Y : (x, y) = 1 for all x ∈ K} its annihilator. If δ : X 7→ X is a

continuous endomorphism, then the adjoint endomorphism δ̃ : Y 7→ Y is defined

by the formula (x, δ̃y) = (δx, y) for all x ∈ X, y ∈ Y . We note that δ ∈ Aut(X)

if and only if δ̃ ∈ Aut(Y ). Denote by I the identity automorphism of a group.

Let M1(X) be the convolution semigroup of probability distributions on X.

For a distribution µ ∈ M1(X) denote by µ̂(y) =
∫
X
(x, y)dµ(x) its characteristic

function. If H is a closed subgroup of Y and µ̂(y) = 1 for y ∈ H, then µ̂(y+h) =

µ̂(y) for all y ∈ Y , h ∈ H. For µ ∈M1(X), we define the distribution µ̄ ∈M1(X)

by the formula µ̄(E) = µ(−E) for any Borel set E ⊂ X. Observe that ̂̄µ(y) =

µ̂(y). Let K be a compact subgroup of X. Note that the characteristic function

of the Haar distribution mK is of the form

m̂K(y) =

{
1, y ∈ A(Y,K);

0, y /∈ A(Y,K).
(1)

Denote by I(X) the set of the idempotent distributions on X, i.e. the set of shifts

of the Haar distributions mK of compact subgroups K of X.



On a characterization theorem for the group of p-adic numbers 149

2. The main theorem

Let p be a prime number. We need some properties of the group of p-adic

numbers Ωp (see e.g. [7, §10]). As a set Ωp coincides with the set of sequences

of integers of the form x = (. . . , x−n, x−n+1, . . . , x−1, x0, x1, . . . , xn, . . . ), where

xn ∈ {0, 1, . . . , p−1}, such that xn = 0 for n < n0, where the number n0 depends

on x. Correspond to each element x ∈ Ωp the series
∑∞

k=−∞ xkp
k. Addition and

multiplication of series are defined in a natural way and define the operations

of addition and multiplication in Ωp. With respect to these operations Ωp is a

field. Denote by ∆p a subgroup of Ωp consisting of x ∈ Ωp such that xn = 0

for n < 0. This subgroup is called the group of p-adic integers. Elements of the

group ∆p we write in the form x = (x0, x1, . . . , xn, . . . ). The family of subgroups

{pm∆p}∞m=−∞ can be considered as an open basis at zero of the group Ωp and

defines a topology on Ωp. With respect to this topology the group Ωp is locally

compact, noncompact, and totally disconnected. The character group Ω∗
p of the

group Ωp is topologically isomorphic to Ωp, and the value of a character y ∈ Ω∗
p

at an element x ∈ Ωp is defined by the formula

(x, y) = exp

[
2πi

( ∞∑
n=−∞

xn

( ∞∑
s=n

y−sp
−s+n−1

))]
([7, (25.1)]).

Each automorphism α ∈ Aut(Ωp) is the multiplication by an element xα ∈
Ωp, xα ̸= 0, i.e. αg = xαg, g ∈ Ωp. If α ∈ Aut(Ωp), in order not to complicate

notation, we will identify the automorphism α with the corresponding element

xα, i.e. when we write αg, we will suppose that α ∈ Ωp. We note that α̃ = α.

Denote by ∆0
p the subset of ∆p, consisting of all invertible elements of ∆p, ∆

0
p =

{x = (x0, x1, . . . , xn, . . . ) ∈ ∆p : x0 ̸= 0}. Obviously, each element g ∈ Ωp is

represented in the form g = pkc, where k is an integer, and c ∈ ∆0
p. It is obvious

that the multiplication by c is a topological automorphism of the group pm∆p for

any integer m.

For a fixed prime p denote by Z(p∞) the set of rational numbers of the form{
k

pn
: k = 0, 1, . . . , pn − 1, n = 0, 1, . . .

}
and define the operation in Z(p∞) as addition modulo 1. Then Z(p∞) is trans-

formed into an Abelian group, which we consider in the discrete topology. Obvi-

ously, this group is topologically isomorphic to the multiplicative group of pnth

roots of unity, where n goes through the nonnegative integers, considering in the
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discrete topology. For a fixed n denote by Z(pn) the subgroup of Z(p∞) consist-

ing of all elements of the form
{

k
pn : k = 0, 1, . . . , pn − 1

}
. The group Z(pn) is

isomorphic to the multiplicative group of pnth roots of unity.

Let α ∈ Aut(Ωp), α = pkc, where k ≥ 0, c ∈ ∆0
p. Let l be an integer. It is

easy to see that α induces an epimorphism ᾱ and c induces an automorphism c̄

on the factor-group Ωp/p
l∆p. Let

x = (. . . , x−n, x−n+1, . . . , x−1, x0, x1, . . . , xn, . . . ) ∈ Ωp.

Define the mapping τ : Ωp/p
l∆p 7→ Z(p∞) by the formula

τ(x+ pl∆p) =

l−1∑
n=−∞

xnp
n−l, x+ pl∆p ∈ Ωp/p

l∆p. (2)

Then τ is a topological isomorphism of the groups Ωp/p
l∆p and Z(p∞). Put

α̂ = τᾱτ−1, ĉ = τ c̄τ−1, (3)

and observe that α̂ = pk ĉ, ĉ ∈ Aut(Z(p∞)), and α̂ is an epimorphism. If c =

(c0, c1, . . . , cn, . . . ) ∈ ∆0
p, then the automorphism ĉ acts in the following way. Put

sn = c0 + c1p+ c2p
2 + · · ·+ cn−1p

n−1. The restriction of the automorphism ĉ to

the subgroup Z(pn) ⊂ Z(p∞) is of the form ĉy = sny, y ∈ Z(pn), i.e. ĉ acts in

Z(pn) as the multiplication by sn.

We note that since Ωp is a totally disconnected group, the Gaussian dis-

tributions on Ωp are degenerated ([13, Ch. 4]), and the class of idempotent

distributions on Ωp can be considered as a natural analog of the class of Gaussian

distributions.

We consider the case of two independent random variables ξ1 and ξ2 with

values in the group X = Ωp, i.e. we consider the linear forms L1 = α1ξ1 + α2ξ2
and L2 = β2ξ1 + β2ξ2, where αj , βj ∈ Aut(X). Assume that the conditional

distribution of the linear form L2 = β2ξ1 + β2ξ2 given L1 = α1ξ1 + α2ξ2 is

symmetric. Our aim is to describe the possible distributions µj depending on αj ,

βj . Introducing the new independent random variables ξ′j = αjξj , j = 1, 2, we

can suppose that L1 = ξ1 + ξ2 and L2 = δ1ξ1 + δ2ξ2, where δj ∈ Aut(X). Note

also that the conditional distribution of the linear form L2 = δ1ξ1 + δ2ξ2 given

L1 = ξ1+ ξ2 is symmetric if and only if the conditional distribution of δL2, where

δ ∈ Aut(X), given L1 is symmetric. It follows from this that we may assume that

L2 = ξ1 + αξ2, where α ∈ Aut(X).

We can formulate now the main result of the article.
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Theorem 1. Let X = Ωp. Let α = pkc, where k ∈ Z and

c = (c0, c1, . . . , cn, . . . ) ∈ ∆0
p, be an arbitrary topological automorphism of the

group X. Then the following statements hold.

1. Let ξ1 and ξ2 be independent random variables with values in X and distri-

butions µ1 and µ2. Assume that the conditional distribution of the linear

form L2 = ξ1 + αξ2 given L1 = ξ1 + ξ2 is symmetric. Then

1(i) If p > 2, k = 0 and c0 ̸= p − 1, then µj = mK ∗ Exj , where K is a

compact subgroup of X and xj ∈ X. Moreover, if c0 = 1, then µ1 and

µ2 are degenerate distributions.

1(ii) If p = 2, k = 0, c0 = 1 and c1 = 0, then µ1 and µ2 are degenerate

distributions.

1(iii) If p > 2 and |k| = 1, then either µ1 ∈ I(X) or µ2 ∈ I(X).

2. If one of the following conditions holds:

2(i) p > 2, k = 0, c0 = p− 1;

2(ii) p = 2, k = 0, c0 = c1 = 1;

2(iii) p = 2, |k| = 1;

2(iv) p ≥ 2, |k| ≥ 2,

then there exist independent random variables ξ1 and ξ2 with values inX and

distributions µ1 and µ2 such that the conditional distribution of the linear

form L2 = ξ1 + αξ2 given L1 = ξ1 + ξ2 is symmetric whereas µ1, µ2 /∈ I(X).

It is easy to see that cases 1(i)–1(iii) and 2(i)–2(iv) exhaust all possibilities

for p and α.

3. Lemmas

To prove Theorem 1 we need some lemmas.

Lemma 1 ([3], see also [4, §16]). Let X be a second countable locally com-

pact Abelian group, Y be its character group. Let ξ1 and ξ2 be independent

random variables with values in X and distributions µ1 and µ2. Let αj , βj be

continuous endomorphisms of X. The conditional distribution of the linear form

L2 = β1ξ1 + β2ξ2 given L1 = α1ξ1 + α2ξ2 is symmetric if and only if the charac-

teristic functions µ̂j(y) satisfy the equation

µ̂1(α̃1u+ β̃1v)µ̂2(α̃2u+ β̃2v) = µ̂1(α̃1u− β̃1v)µ̂2(α̃2u− β̃2v), u, v ∈ Y. (4)
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Observe that in [3] this lemma is proved when αj , βj ∈ Aut(X), but the

proof is valid without any changes for the case when αj , βj are continuous endo-

morphisms.

Lemma 2. Let X = Ωp, ξ1 and ξ2 be independent random variables with

values in X and distributions µ1 and µ2 such that µj(y) ≥ 0, j = 1, 2. Let

α = pkc ∈ Aut(X), where k ∈ Z and c ∈ ∆0
p. Assume also that α ̸= −I. If the

conditional distribution of the linear form L2 = ξ1 + αξ2 given L1 = ξ1 + ξ2 is

symmetric, then there exists a closed subgroup H ⊂ Y , such that µ̂j(y) = 1 for

y ∈ H, j = 1, 2.

Proof. Taking into account that the conditional distribution of the linear

form L2 given L1 is symmetric if and only if the conditional distribution of the

linear form α−1L2 given L1 is symmetric, we may assume without loss of gener-

ality that k ≥ 0. Apply Lemma 1. Since X = Ωp, we have α̃ = α, and hence

equation (4) takes the form

µ̂1(u+ v)µ̂2(u+ αv) = µ̂1(u− v)µ̂2(u− αv), u, v ∈ Y. (5)

If α = I, then put in equation (5) u = v = y. We get that H = Y , i.e. µ1,

and µ2 are degenerate distributions. So, we will assume that α ̸= I. Since

µ̂1(0) = µ̂2(0) = 1, we can choose a neighborhood at zero V of Y such that

µ̂j(y) > 0 for y ∈ V , j = 1, 2. Obviously, we can assume that V = pl∆p

for some l. Since k ≥ 0, we have α(pl∆p) ⊂ pl∆p. Put ψj(y) = − log µ̂j(y),

y ∈ pl∆p, j = 1, 2. It follows from (5) that the functions ψ1(y) and ψ2(y) satisfy

the equation

ψ1(u+ v) + ψ2(u+ αv)− ψ1(u− v)− ψ2(u− αv) = 0, u, v ∈ pl∆p. (6)

We use the finite difference method to solve equation (6). Let ψ(y) be a function

on Y , and h be an arbitrary element of Y . Denote by ∆h the finite difference

operator

∆hψ(y) = ψ(y + h)− ψ(y).

Let k1 be an arbitrary element of pl∆p. Put h1 = αk1 and hence, h1 − αk1 = 0.

Substitute u+h1 for u and v+ k1 for v in equation (6). Subtracting equation (6)

from the obtained equation we find

∆l11ψ1(u+ v) + ∆l12ψ2(u+ αv)−∆l13ψ1(u− v) = 0, u, v ∈ pl∆p, (7)

where l11 = (α+I)k1, l12 = 2αk1, l13 = (α−I)k1. Let k2 be an arbitrary element

of pl∆p. Put h2 = k2 and hence, h2 − k2 = 0. Substitute u+ h2 for u and v + k2
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for v in equation (7). Subtracting equation (7) from the obtained equation we

arrive at

∆l21∆l11ψ1(u+ v) + ∆l22∆l12ψ2(u+ αv) = 0, u, v ∈ pl∆p, (8)

where l21 = 2k2, l22 = (I + α)k2. Let k3 be an arbitrary element of pl∆p. Put

h3 = −αk3 and hence, h3 + αk3 = 0. Substitute u+ h3 for u and v + k3 for v in

equation (8). Subtracting equation (8) from the obtained equation we find

∆l31∆l21∆l11ψ1(u+ v) = 0, u, v ∈ pl∆p, (9)

where l31 = (I − α)k3. Substituting v = 0 into (9), taking into account the

expressions for l11, l21, l31 and the fact that k1, k2, k3 are arbitrary elements of

pl∆p, we find from (9) that there exists a subgroup pm∆p ⊂ pl∆p, where the

function ψ1(y) satisfies the equation

∆3
hψ1(y) = 0, h, y ∈ pm∆p. (10)

Taking into account that pm∆p is a compact group, we conclude from (10) that

ψ1(y) = const, y ∈ pm∆p ([4, §5]). Since ψ1(0) = 0, we have ψ1(y) = 0, for

y ∈ pm∆p. This implies that µ̂1(y) = 1 for y ∈ pm∆p. For the distribution µ2

we reason similarly and find a subgroup pn∆p such that µ̂2(y) = 1 for y ∈ pn∆p.

Put H = pm∆p ∩ pn∆p. Lemma 2 is proved. �

Lemma 3 ([1], see also [4, §17]). Let X be a finite Abelian group containing

no elements of order 2, α be an automorphism of X such that I ± α ∈ Aut(X).

Let ξ1 and ξ2 be independent random variables with values in the group X and

distributions µ1 and µ2. If the conditional distribution of the linear form L2 =

ξ1+αξ2 given L1 = ξ1+ ξ2 is symmetric, then µj = mK ∗Exj , where K is a finite

subgroup of X and xj ∈ X, j = 1, 2.

4. Proof of statements 1(i)–1(iii)

Before we begin the proof make the following remarks. It is obvious that

the characteristic functions of the distributions µ̄j also satisfy equation (5). This

implies that the characteristic functions of the distributions νj = µj ∗ µ̄j sat-

isfy equation (5) too. We have ν̂j(y) = |µ̂j(y)|2 ≥ 0, j = 1, 2. Hence, when

we prove statements 1(i)–1(iii) we may assume without loss of generality that

µj(y) ≥ 0, j = 1, 2, because µj and νj are idempotent distributions or degenerate

distributions simultaneously.
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Taking into account that the conditional distribution of the linear form L2

given L1 is symmetric if and only if the conditional distribution of the linear form

α−1L2 given L1 is symmetric, we may assume without loss of generality that

k ≥ 0.

Put f(y) = µ̂1(y), g(y) = µ̂2(y) and write equation (5) in the form

f(u+ v)g(u+ αv) = f(u− v)g(u− αv), u, v ∈ Y, (11)

where α ∈ Aut(Y ), α = pkc, k ≥ 0, c ∈ ∆0
p. We also assume that f(y) ≥ 0,

g(y) ≥ 0. In fact we will study solutions of equation (11).

Proof of statements 1(i) and 1(ii). By Lemma 1, the characteristic

functions f(y) and g(y) satisfy equation (11). Put

E = {y ∈ Y : f(y) = g(y) = 1}. (12)

If either µ1 or µ1 is a nondegenerate distribution, then E ̸= Ωp. Observe that in

cases 1(i) and 1(ii) α ̸= −I. Then by Lemma 2, E ̸= {0}. Thus, E is a nonzero

proper closed subgroup of Ωp, and hence E = pl∆p for some l. It follows from

(12) that

f(y + h) = f(y), g(y + h) = g(y), y ∈ Y, h ∈ pl∆p. (13)

Taking into account (13), denote by f̄(y) and ḡ(y) the functions induced by the

functions f(y) and g(y) on the factor-group Y/pl∆p. Put f̂ = f̄ ◦ τ−1, where τ is

defined by formula (2). We get from (11) that the functions f̂(y) and ĝ(y) satisfy

the equation

f̂(u+ v)ĝ(u+ α̂v) = f̂(u− v)ĝ(u− α̂v), u, v ∈ Z(p∞), (14)

where α̂ is defined by formula (3). It follows from (12) that

{y ∈ Z(p∞) : f̂(y) = ĝ(y) = 1} = {0}. (15)

Statement 1(i). Assume first that c0 ̸= 1. Since p > 2, k = 0 and c0 ̸= p− 1,

we have

I ± α̂ ∈ Aut(Z(p∞)). (16)

We note that for any n the restriction of any automorphism of the group Z(p∞)

to the subgroup Z(pn) ⊂ Z(p∞) is an automorphism of the subgroup Z(pn).

Consider the restriction of equation (14) to the subgroup Z(pn). Observe that
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(Z(pn))∗ ∼= Z(pn), and the group Z(pn) contains no elements of order 2. Taking

into account that (16) holds, we can apply Lemmas 1 and 3 to the group Z(pn)

and get that the restrictions of the characteristic functions f̂(y) and ĝ(y) to

the subgroup Z(pn) take only two values: 0 and 1. Moreover, f̂(y) = ĝ(y) for

y ∈ Z(pn). Hence, the characteristic functions f̂(y) and ĝ(y) on the group Z(p∞)

take also only two values 0 and 1, and f̂(y) = ĝ(y) for y ∈ Z(p∞). Then the

standard reasoning show that µj = mK ∗Exj , where K is a compact subgroup of

X and xj ∈ X.

Assume now that c0 = 1. Since k = 0, the restriction of the automorphism α̂

to Z(p) ⊂ Z(p∞) is the identity automorphism. Hence, the restriction of equation

(14) to Z(p) takes the form

f̂(u+ v)ĝ(u+ v) = f̂(u− v)ĝ(u− v), u, v ∈ Z(p). (17)

Substituting here u = v = y, we get f̂(2y)ĝ(2y) = 1, y ∈ Z(p). Since p > 2, this

implies that

f̂(y) = ĝ(y) = 1, y ∈ Z(p),

but this contradicts to (15). Thus, µ1 and µ2 are degenerate distributions.

Statement 1(ii). Since k = 0, c0 = 1 and c1 = 0, the restriction of the

automorphism α̂ to the subgroup Z(4) ⊂ Z(2∞) is the identity automorphism.

Hence, the restriction of equation (14) to the subgroup Z(4) takes the form (17),

where u, v ∈ Z(4). Substituting in (17) u = v = y, we get

f̂(2y)ĝ(2y) = 1, y ∈ Z(4).

This implies that f̂(y) = ĝ(y) = 1 for y ∈ Z(2), but this contradicts to (15).

Thus, µ1 and µ2 are degenerate distributions. �

The proof of statement 1(iii) is based on the proof of the following proposition

which is of interest in its own right.

Proposition 1. Let X = Ωp, ξ1 and ξ2 be independent random variables

with values in X and distributions µ1 and µ2. Let α ∈ Aut(X), and α ̸= −I. If

the conditional distribution of the linear form L2 = ξ1 + αξ2 given L1 = ξ1 + ξ2
is symmetric, then either µ1 and µ2 are degenerate distributions or there exists a

closed subgroup M ⊂ Y , such that µ̂j(y) = 0 for y /∈M , j = 1, 2.

Proof. Let α = pkc ∈ Aut(X), where k ∈ Z and c ∈ ∆0
p. We can assume

without loss of generality that k ≥ 0. Otherwise we consider the linear form

L2 = α−1ξ1 + ξ2 instead of L2 = ξ1 + αξ2. Taking into account that in cases 1(i)

and 1(ii) of Theorem 1 Proposition 1 holds, it remains to consider the following

cases:
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1. p ≥ 2, k ≥ 1;

2. p > 2, k = 0, c0 = p− 1;

3. p = 2, k = 0, c0 = c1 = 1.

Obviously, we can assume without loss of generality that µ̂j(y) ≥ 0, j = 1, 2.

Put f(y) = µ̂1(y), g(y) = µ̂2(y). We have f(−y) = f(y) and g(−y) = g(y).

Reasoning as in the proof of statements 1(i)–1(ii) and retaining the same notation

we arrive at equation (14). Set β = I − α, γ = I + α. Substituting into equation

(14) u = v = y, we obtain

f̂(2y)ĝ(γ̂y) = ĝ(β̂y), y ∈ Z(p∞). (18)

Substituting into equation (14) u = α̂y, v = y, we get

f̂(γ̂y)ĝ(2α̂y) = f̂(β̂y), y ∈ Z(p∞). (19)

1. p ≥ 2, k ≥ 1. Since k ≥ 1, we have β̂, γ̂ ∈ Aut(Z(p∞)). Put κ = βγ−1.

Equations (18) and (19) imply

ĝ(κ̂y) = f̂(2γ̂−1y)ĝ(y), y ∈ Z(p∞), (20)

and

f̂(κ̂y) = f̂(y)ĝ(2α̂γ̂−1y), y ∈ Z(p∞). (21)

Since 0 ≤ f̂(y) ≤ 1, it follows from (20) that

ĝ(κ̂y) ≤ ĝ(y), y ∈ Z(p∞).

This implies that for any natural n the inequalities

ĝ(κ̂ny) ≤ · · · ≤ ĝ(κ̂y) ≤ ĝ(y), y ∈ Z(p∞), (22)

hold. Let y ∈ Z(p∞). Then y ∈ Z(pl) for some l, and hence κ̂y ∈ Z(pl). It

follows from this that κ̂my = y for some m, depending generally speaking on y.

Substituting in (22) n = m we get

ĝ(κ̂y) = ĝ(y), y ∈ Z(p∞). (23)

Reasoning similarly, we obtain from (21) that

f̂(κ̂y) = f̂(y), y ∈ Z(p∞). (24)

Assume that there exists a sequence of elements yn ∈ Z(p∞) such that:
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(a) the order of element yn is equal to pin , in → ∞;

(b) ĝ(yn) ̸= 0.

Then it follows from (20) and (23) that,

f̂(2γ̂−1yn) = 1. (25)

Suppose that p > 2. Then (25) implies that f̂(y) = 1 for y ∈ Z(pin), because

the order of the element 2γ̂−1yn is equal to pin , and hence the element 2γ̂−1yn
generates the subgroup Z(pin). If p = 2, then f̂(y) = 1 for y ∈ Z(2in−1),

because the order of the element 2γ̂−1yn is equal to 2in−1, and the element 2γ̂−1yn
generates the subgroup Z(2in−1). Thus, for p ≥ 2 we have f̂(y) = 1 for y ∈ Z(p∞),

and equation (14) implies that

ĝ(u+ α̂v) = ĝ(u− α̂v), u, v ∈ Z(p∞).

It follows from this that ĝ(2α̂y) = 1 for y ∈ Z(p∞), and hence ĝ(y) = 1 for

y ∈ Z(p∞), because 2α̂ is an epimorphism. We proved that µ1, and µ2 are

degenerate distributions.

The similar reasoning shows that if there exists a sequence of elements zn ∈
Z(p∞) such that:

(a) the order of the element zn is equal to pjn , jn → ∞;

(b) f̂(zn) ̸= 0,

then µ1, and µ2 are also degenerate distributions.

From what has been said it follows that if µ1, and µ2 are nondegenerate

distributions, then there exists n such that f̂(y) = ĝ(y) = 0 for y /∈ Z(pn).

Proposition 1 in case 1 follows directly from this.

2. p > 2, k = 0, c0 = p− 1. Since p > 2, we have β̂ ∈ Aut(Z(p∞)). We find

from equation (18) that

ĝ(y) = f̂(2β̂−1y)ĝ(γ̂β̂−1y), y ∈ Z(p∞). (26)

Since 0 ≤ ĝ(y) ≤ 1, we find from (26) that

ĝ(y) ≤ f̂(2β̂−1y), y ∈ Z(p∞). (27)

Reasoning similarly we get from (19) that

f̂(y) = f̂(γ̂β̂−1y)g(2α̂β̂−1y), y ∈ Z(p∞). (28)
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Taking into account that 0 ≤ f̂(y) ≤ 1, this implies that

f̂(y) ≤ ĝ(2α̂β̂−1y), y ∈ Z(p∞). (29)

Inequalities (27) and (29) imply the inequalities

ĝ(y) ≤ f̂(2β̂−1y) ≤ ĝ(4α̂β̂−2y),

f̂(y) ≤ ĝ(2α̂β̂−1y) ≤ f̂(4α̂β̂−2y), y ∈ Z(p∞). (30)

Reasoning as in the proof of case 1, we find from (30) that

ĝ(y) = ĝ(4α̂β̂−2y), f̂(y) = f̂(4α̂β̂−2y), y ∈ Z(p∞). (31)

We find from (30) and (31) that

ĝ(y) = f̂(2β̂−1y), f̂(y) = ĝ(2α̂β̂−1y), y ∈ Z(p∞). (32)

It follows from (32) (28) and (26) that if ĝ(y0) ̸= 0 for some y0 ∈ Z(p∞), then

ĝ(γ̂β̂−1y0) = 1, and if f̂(y0) ̸= 0, then f̂(γ̂β̂−1y0) = 1. We complete the proof as

in case 1.

3. p = 2, k = 0, c0 = c1 = 1. Put β = 2β1, γ = 2γ1. Then β̂1 ∈ Aut(Z(2∞)),

and γ̂1 is an epimorphism. It follows from (18) that

f̂(y)ĝ(γ̂1y) = ĝ(β̂1y), y ∈ Z(2∞). (33)

Similarly, we find from (19) that

f̂(γ̂1y)ĝ(α̂y) = f̂(β̂1y), y ∈ Z(2∞). (34)

It follows from (33) and (34) that

ĝ(y) = f̂(β̂−1
1 y)ĝ(γ̂1β̂

−1
1 y), f̂(y) = f̂(γ̂1β̂

−1
1 y)ĝ(α̂β̂−1

1 y), y ∈ Z(2∞).

Hence,

ĝ(y) ≤ f̂(β̂−1
1 y), f̂(y) ≤ ĝ(α̂β̂−1

1 y).

This implies that

ĝ(y) ≤ f̂(β̂−1
1 y) ≤ ĝ(α̂β1

−2y), f̂(y) ≤ ĝ(α̂β̂−1
1 y) ≤ f̂(α̂β̂−2

1 y).

We complete the proof as in case 2. Proposition 1 is proved completely. �
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Proof of statements 1(iii). Observe that in case 1(iii) α ̸= −I. Reasoning
as in the proof of statements 1(i) and 1(ii) and retaining the same notation we

arrive at equation (14). Put

Ef̂ = {y ∈ Z(p∞) : f̂(y) ̸= 0}, Eĝ = {y ∈ Z(p∞) : ĝ(y) ̸= 0},

Bf̂ = {y ∈ Z(p∞) : f̂(y) = 1}, Bĝ = {y ∈ Z(p∞) : ĝ(y) = 1}.

Since p > 2 and k = 1, we have 2γ̂−1 ∈ Aut(Z(p∞)). Moreover, since k = 1,

obviously, (20), (21), (23) and (24) hold. Taking this into account, we find from

(20) and (23) that Eĝ ⊂ Bf̂ . Analogously, we find from (21) and (24) that

pEf̂ ⊂ Bĝ. If µ2 is a nondegenerate distribution, then Bĝ is a proper subgroup

of Z(p∞), and hence Bĝ = Z(pn) for some n. Since Bĝ ⊂ Eĝ ⊂ Bf̂ , it follows

from (15) that Bĝ = {0}. If Bf̂ = {0}, then Eĝ ⊂ Bf̂ = {0}, and hence µ2 is an

idempotent distribution. If Bf̂ ̸= {0}, then pBf̂ ⊂ pEf̂ ⊂ Bĝ = {0}. This implies

that Bf̂ = Ef̂ = Z(p), and hence µ1 is an idempotent distribution. �

5. Proof of statements 2(i)–2(iv)

Taking into account that the conditional distribution of the linear form L2

given L1 is symmetric if and only if the conditional distribution of the linear

form α−1L2 given L1 is symmetric, we may assume without loss of generality

that k ≥ 0, and hence the restriction of α ∈ Aut(Ωp) to the subgroup ∆p is a

continuous endomorphism of ∆p. We retain the notation α for this restriction.

We will construct in cases 2(i)–2(iv) independent random variables ξ1 and ξ2 with

values in ∆p and distributions µ1 and µ2 such that the conditional distribution

of the linear form L2 = ξ1 + αξ2 given L1 = ξ1 + ξ2 is symmetric, whereas

µ1, µ2 /∈ I(∆p). Considering ξj as independent random variables with values

in Ωp, we prove statements 2(i)–2(iv). Taking into account Lemma 1 it suffices

to construct non-idempotent distributions µj on the group ∆p such that their

characteristic functions satisfy equation (5). We note that the groups Z(p∞)

and ∆p are the character groups of one another, and the value of a character

y = l
pn ∈ Z(p∞) at an element x = (x0, x1, . . . , xn, . . . ) ∈ ∆p is defined by the

formula

(x, y) = exp

{(
x0 + x1p+ · · ·+ xn−1p

n−1
)2πil
pn

}
.

Moreover, any topological automorphism of the group ∆p is the multiplication

by an element of ∆0
p. For c = (c0, c1, . . . , cn, . . . ) ∈ ∆0

p, the restriction of the
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automorphism c̃ ∈ Aut(Z(p∞)) to the subgroup Z(pn) ⊂ Z(p∞) is of the form

c̃y = sny, y ∈ Z(pn), where sn = c0 + c1p+ c2p
2 + · · ·+ cn−1p

n−1. Observe also

that α̃ = pk c̃, and

A(Z(p∞), pl∆p) = Z(pl). (35)

Put f(y) = µ̂1(y), g(y) = µ̂2(y). In these notation equation (5) takes the

form

f(u+ v)g(u+ α̃v) = f(u− v)g(u− α̃v), u, v ∈ Z(p∞). (36)

Statement 2(i). Consider on the group ∆p the distribution µ = am∆p +(1−
a)mp∆p , where 0 < a < 1. It follows from (1) and (35) that the characteristic

function µ̂(y) is of the form

µ̂(y) =


1, y = 0;

1− a, y ∈ Z(p);

0, y /∈ Z(p).

(37)

Let us check that the characteristic functions f(y) = g(y) = µ̂(y) satisfy equation

(36). Consider 3 cases:

1. u, v ∈ Z(p). Since c0 = p − 1, we have α̃y = −y for y ∈ Z(p), and the

restriction of equation (36) to the subgroup Z(p) takes the form

f(u+ v)g(u− v) = f(u− v)g(u+ v), u, v ∈ Z(p). (38)

Since f(y) = g(y), (38) holds.

2. Either u ∈ Z(p), v /∈ Z(p), or u /∈ Z(p), v ∈ Z(p). Then u ± v /∈ Z(p).

This implies that f(u ± v) = 0, and hence both sides of equation (36) are equal

to zero.

3. u, v /∈ Z(p). If u+ v, u+ α̃v ∈ Z(p), then

(I − α̃)v ∈ Z(p). (39)

Since p > 2, k = 0 and c0 = p − 1, we have I − α ∈ Aut(∆p), and hence

I−α̃ ∈ Aut(Z(p∞)). Then (39) implies that v ∈ Z(p), contrary to the assumption.

Thus, either u + v /∈ Z(p) or u + α̃v /∈ Z(p), and the left-hand side of equation

(36) is equal to zero. Similarly we check that the right-hand side of equation (36)

is also equal to zero. Thus, (36) holds.

Statement 2(ii). Consider on the group ∆2 the distribution µ = am∆2+

(1−a)m2∆2 , where 0 < a < 1. Then the characteristic function µ̂(y) is represented
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by formula (37) for p = 2. Let us check that the characteristic functions f(y) =

g(y) = µ̂(y) satisfy equation (36). Since k = 0 and c0 = c1 = 1, the restriction of

the automorphism α̃ ∈ Aut(Z(2∞)) to the subgroup Z(2n) ⊂ Z(2∞) is of the form

α̃y = my, y ∈ Z(2n), where m = 1+2+c22
2+ · · ·+cn−12

n−1 = 4l−1. Consider 3

cases: 1. u, v ∈ Z(2); 2. either u ∈ Z(2), v /∈ Z(2) or u /∈ Z(2), v ∈ Z(2); 3.

u, v /∈ Z(2). In cases 1 and 2 the reasoning is the same as in case 2(i).

Consider case 3, i.e. assume that u, v /∈ Z(2), and prove first that if u+v, u+

α̃v ∈ Z(2), then u− v, u− α̃v ∈ Z(2), and (36) holds. To prove this note that the

inclusions u+ v, u+ α̃v ∈ Z(2) are possible only in the following cases.

(a) u + v = 0 and u + α̃v = 0. This implies that (α̃ − I)v = (m − 1)v =

2(2l − 1)v = 0. Hence, v ∈ Z(2), but this contradicts to the assumption.

(b) u+ v = 1
2 and u+ α̃v = 1

2 . The reasoning is the same as in case (a).

(c) u + v = 0 and u + α̃v = 1
2 . This implies that (α̃ − I)v = (m − 1)v =

2(2l − 1)v = 1
2 . It follows from this that either v = 1

4 , u = 3
4 , or v = 3

4 ,

u = 1
4 . In both cases u− v = 1

2 , u− α̃v = u−mv = 0, and hence (36) holds.

(d) u+ v = 1
2 , u+ α̃v = 0. The reasoning is the same as in case (c).

Reasoning similarly we verify that if u−v, u− α̃v ∈ Z(2), then u+v, u+ α̃v ∈
Z(2), and (36) holds.

Statement 2(iii). Consider on the group ∆2 the distributions µ1 = am2∆2
+

(1− a)m4∆2
and µ2 = am∆2

+ (1− a)m2∆2
, where 0 < a < 1. It follows from (1)

and (35) that that the characteristic function µ̂1(y) is of the form

µ̂1(y) =


1, y ∈ Z(2);

1− a, y ∈ Z(4);

0, y /∈ Z(4).

Moreover, the characteristic function µ̂2(y) is represented by formula (37) for

p = 2. Let us check that the characteristic functions f(y) = µ̂1(y) and g(y) =

µ̂2(y) satisfy equation (36). Consider 3 cases:

1. u, v ∈ Z(4). Obviously, we can assume that u ̸= 0, v ̸= 0. Since either

c0 = 1, c1 = 0 or c0 = c1 = 1, the restriction of the automorphism c̃ to the

subgroup Z(4) is of the form: either c̃y = y or c̃y = −y, y ∈ Z(4). Thus, the

restriction of equation (36) to the subgroup Z(4) either takes the form

f(u+ v)g(u+ 2v) = f(u− v)g(u− 2v), u, v ∈ Z(4), (40)

or

f(u+ v)g(u− 2v) = f(u− v)g(u+ 2v), u, v ∈ Z(4). (41)

Consider equation (40). Equation (41) can be considered analogously.
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(a) u = v = 1
2 . Then u± v = 0, 2v = 0. Hence, f(u± v) = 1, g(u± 2v) = g(u)

and (40) holds.

(b) u = 1
2 , v ∈

{
1
4 ,

3
4

}
. Then f(u ± v) = f(v). Since u ± 2v = 0, we have

g(u± 2v) = 1, and (40) holds.

(c) u ∈
{

1
4 ,

3
4

}
, v = 1

2 . Then f(u±v) = f(u). Since 2v = 0, we have g(u±2v) =

g(u), and (40) holds.

(d) u, v ∈
{

1
4 ,

3
4

}
. This implies that u ± 2v /∈ Z(2). Hence g(u ± 2v) = 0, and

both sides of equation (40) are equal to zero.

2. Either u ∈ Z(4), v /∈ Z(4) or u /∈ Z(4), v ∈ Z(4). Then u ± v /∈ Z(4).

Hence f(u± v) = 0 and both sides of equation (40) are equal to zero.

3. u, v /∈ Z(4). If u+ v ∈ Z(4) and u+ α̃v ∈ Z(2), then

(I − α̃)v ∈ Z(4). (42)

Since k = 1, we have I−α ∈ Aut(∆2), and hence I− α̃ ∈ Aut(Z(2∞)). Then (42)

implies that v ∈ Z(4), contrary to the assumption. Hence, either u+ v /∈ Z(4) or

u + α̃v /∈ Z(2). This implies that the left-hand side of equation (36) is equal to

zero. Reasoning analogously, we verify that the right-hand side of equation (36)

is also equal to zero. Thus, (36) holds.

Statement 2(iv). Consider on the group ∆p the distributions

µ1 = ampk−1∆p
+(1−a)mpk∆p

and µ2 = am∆p+(1−a)mpk−1∆p
, where 0 < a < 1.

It follows from (1) and (35) that the characteristic functions µ̂1(y) and µ̂2(y) are

of the form

µ̂1(y) =


1, y ∈ Z(pk−1);

1− a, y ∈ Z(pk) \ Z(pk−1);

0, y /∈ Z(pk).

µ̂2(y) =


1, y = 0;

1− a, y ∈ Z(pk−1) \ {0};
0, y /∈ Z(pk−1).

(43)

Let us check that the characteristic functions f(y) = µ̂1(y) and g(y) = µ̂2(y)

satisfy equation (36). Consider 3 cases:

1. u, v ∈ Z(pk). Since α = pkc, we have α̃v = 0, and hence the restriction of

equation (36) to the subgroup Z(pk) takes the form

f(u+ v)g(u) = f(u− v)g(u), u, v ∈ Z(pk). (44)
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(a) u ∈ Z(pk−1). Then f(u± v) = f(v), and equation (44) holds.

(b) u ∈ Z(pk)\Z(pk−1). Then g(u) = 0, and both sides of equation (44) are

equal to zero.

2. Either u ∈ Z(pk), v /∈ Z(pk) or u /∈ Z(pk), v ∈ Z(pk). Then u±v /∈ Z(pk).

This implies that f(u± v) = 0, and both sides of equation (36) are equal to zero.

3. u, v /∈ Z(pk). If u+ v ∈ Z(pk), u+ α̃v ∈ Z(pk−1), then

(I − α̃)v ∈ Z(pk). (45)

Since k ≥ 1, we have I−α ∈ Aut(∆p), and hence I− α̃ ∈ Aut(Z(p∞)). Then (45)

implies that v ∈ Z(pk), contrary to the assumption. Hence, either u+v /∈ Z(pk) or

u+ α̃v /∈ Z(pk−1). This implies that the left-hand side of equation (36) is equal to

zero. Reasoning analogously, we verify that the right-hand side of equation (36)

is also equal to zero. Thus, (36) holds. Theorem 1 is proved.

Let X = ∆p. We remind that each automorphism α ∈ Aut(∆p) is the

multiplication by an element cα ∈ ∆0
p. Let ξ1 and ξ2 be independent random

variables with values in the group ∆p. Then we can consider ξj as independent

random variables with values in the group Ωp. Moreover, it is obvious that the

multiplication by an element c ∈ ∆0
p is a topological isomorphism of the group

Ωp. This implies that statements 1(i) and 1(ii) in Theorem 1 are also valid for

the group ∆p. Taking into account that in the proof of statements 2(i) and 2(ii)

in Theorem 1 the corresponding independent random variables take values in the

subgroup ∆p ⊂ Ωp, we conclude that the following theorem holds.

Theorem 2. Let X = ∆p. Let α = c = (c0, c1, . . . , cn, . . . ) ∈ ∆0
p be an arbi-

trary topological automorphism of the group X. Then the following statements

hold.

1. Let ξ1 and ξ2 be independent random variables with values in X and distri-

butions µ1 and µ2. Assume that the conditional distribution of the linear

form L2 = ξ1 + αξ2 given L1 = ξ1 + ξ2 is symmetric. Then

1(i) If p > 2 and c0 ̸= p − 1, then µj = mK ∗ Exj , where K is a compact

subgroup of X and xj ∈ X. Moreover, if c0 = 1, then µ1 and µ2 are

degenerate distributions.

1(ii) If p = 2, c0 = 1 and c1 = 0, then µ1 and µ2 are degenerate distributions.

2. If one of the following conditions holds:

2(i) p > 2, c0 = p− 1;

2(ii) p = 2, c0 = c1 = 1,
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then there exist independent random variables ξ1 and ξ2 with values inX and

distributions µ1 and µ2 such that the conditional distribution of the linear

form L2 = ξ1 + αξ2 given L1 = ξ1 + ξ2 is symmetric whereas µ1, µ2 /∈ I(X).

Remark 1. Assume that in Theorem 1 p > 2, k = 0, c0 ̸= 1 and c0 ̸= p − 1.

This implies in particular, that I − α ∈ Aut(∆p), and hence

I − α̃ ∈ Aut(Z(p∞)). (46)

Let ξ1 and ξ2 be independent identically distributed random variables with values

in ∆p and distribution m∆p . We check that the conditional distribution of the

linear form L2 = ξ1 + αξ2 given L1 = ξ1 + ξ2 is symmetric. By Lemma 1, it

suffices to verify that the characteristic functions f(y) = g(y) = m̂∆p(y) satisfy

equation (36). It follows from (1) that

m̂∆p(y) =

{
1, y = 0;

0, y ̸= 0.

Obviously, it suffices to check that equation (36) holds when u ̸= 0, v ̸= 0. Thus,

assume that u ̸= 0, v ̸= 0. If u + v = 0 and u + α̃v = 0, then (I − α̃)v = 0.

Taking into account (46), this implies that v = 0, contrary to the assumption.

Thus, either u + v ̸= 0 or u + α̃v ̸= 0, and hence the left-hand side of equation

(36) is equal to zero. Reasoning analogously we show that the right-hand side of

equation (36) is also equal to zero. So, equation (36) holds. This example shows

that statement 1(i) in Theorem 1 can not be strengthened to the statement that

both µ1 and µ2 are degenerate distributions.

Assume that conditions 1(iii) of Theorem 1 hold, i.e. p > 2 and |k| = 1. We

can assume without loss of generality that k = 1. Let ξ1 and ξ2 be independent

random variables with values in the group ∆p and distributions µ1 = am∆p +

(1− a)mp∆p , where 0 < a < 1, and µ2 = m∆p . Then the characteristic functions

f(y) = µ̂1(y) and g(y) = µ̂2(y) are defined by formulas (43) for k = 1. Obviously,

the proof that the characteristic functions f(y) and g(y) satisfy equation (36),

given in the proof of statement 2(iv), remains true for k = 1 too. Thus, statement

1(iii) can not be strengthened to the statement that both distributions µ1, µ2 ∈
I(X).

Remark 2. Compare Theorem 1 with Heyde’s characterization theorem for

two independent random variables on the real line X = R. It is easy to see that

this theorem can be formulated in the following way. Let ξ1 and ξ2 be independent

random variables with values in the group X = R and distributions µ1 and µ2.
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Let α ̸= −I. If the conditional distribution of the linear form L2 = ξ1+αξ2 given

L1 = ξ1 + ξ2 is symmetric, then µj are Gaussian. Thus, on the real line the only

condition α ̸= −I, obviously, necessary, is sufficient for characterization of the

Gaussian distribution.

It follows from Theorem 1 that on the group of p-adic numbers X = Ωp

the state of affairs is more complicated. On the one hand, much more severe

constrains for α (conditions 1(i) for p > 2 and 1(ii) for p = 2) are necessary

and sufficient for characterization of the idempotent distribution. On the other

hand, there exist α (satisfying conditions 1(iii)) such that the symmetry of the

conditional distribution of the linear form L2 = ξ1+αξ2 given L1 = ξ1+ξ2 implies

that the only one of the distributions µj is idempotent. This effect is absent on

the real line.
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