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Real hypersurfaces of non–flat complex space forms in terms of
the Jacobi structure operator

By THEOHARIS THEOFANIDIS (Thessaloniki) and PH. J. XENOS (Thessaloniki)

Abstract. Real hypersurfaces satisfying the condition ϕl = lϕ, (l = R(., ξ)ξ), have

been studied by many authors, under at least one more condition, since the class of these

hypersurfaces is too large. Moreover the operator l has been studied satisfying other

conditions, including ∇ξl = 0 and lA = Al. Even more, not much work has been done

on the last equation. In the present paper we study condition ϕl = lϕ, combined with

either ∇ξl = 0 or lA = Al. All conditions are restricted in subspaces of the tangent

space, in order to produce larger classes.

0. Introduction

An n-dimensional Kaehlerian manifold of constant holomorphic sectional cur-

vature c is called complex space form, which is denoted by Mn(c). A complete

simply connected complex space form is a complex projective space CPn if c > 0,

a complex hyperbolic space CHn if c < 0, or a complex Euclidean space Cn if

c = 0. The induced almost contact metric structure of a real hypersurface M of

Mn(c) will be denoted by (ϕ, ξ, η, g).

Homogeneous real hypersurfaces in CPn, were classified by R. Takagi [16].

J. Berndt [1] classified real hypersurfaces with principal structure vector fields

in CHn.

Another class of real hypersurfaces were studied by Okumura [14], and

Montiel and Romero [12]. They classified real hypersurfaces satisfying ϕA =
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Aϕ, in CPn and CHn respectively. In both cases, real hypersurfaces were cate-

gorized as type A, described in Section 1. For more details and examples on real

hypersurfaces of type A, we refer to [13].

A Jacobi field along geodesics of a given Riemannian manifold (M, g) plays

an important role in the study of differential geometry. It satisfies a well known

differential equation which inspires Jacobi operators. For any vector field X,

the Jacobi operator is defined by RX : RX(Y ) = R(Y,X)X, where R denotes the

curvature tensor and Y is a vector field on M . RX is a self-adjoint endomorphism

in the tangent space of M , and is related to the Jacobi differential equation, which

is given by ∇γ́(∇γ́Y ) + R(Y, γ́)γ́ = 0 along a geodesic γ on M , where γ́ denotes

the velocity vector along γ on M .

In a real hypersurface M of a complex space form Mn(c), c ̸= 0, the Jacobi

operator on M with respect to the structure vector field ξ, is called the Jacobi

structure operator and is denoted by lX = Rξ(X) = R(X, ξ)ξ.

Many authors have studied real hypersurfaces from many points of view.

Certain authors have studied real hypersurfaces under the condition ϕl = lϕ,

equipped with one or two additional conditions. U-H. Ki et al. [9] classified real

hypersurfaces in complex space forms satisfying i) ϕl = lϕ and A2ξ = θAξ + τξ

(θ is a function, τ is constant) ii) ϕl = lϕ and Qξ = σξ (where Q is the Ricci

operator, σ is constant). U-Hang Ki [7] classified real hypersurfaces in complex

hyperbolic space satisfying ϕl = lϕ and lQ = Ql. U-H. Ki et al. [8], classified real

hypersurfaces in complex space forms satisfying ϕl = lϕ, lQ = Ql, and additional

conditions on the mean curvature. U-H. Ki et al. [10] studied real hypersurfaces

in complex space forms satisfying ϕl = lϕ and lQ = lQ ([7], [8], [9], [10]).

Other authors have studied real hypersurfaces under the conditions ∇X l = 0

(X ∈ TM) or ∇ξl = 0 [5], [11], [15].

In the present paper, we consider ϕl = lϕ (commuting structure Jacobi op-

erator) and ∇ξl = 0 (Reeb parallel structure Jacobi operator). Both conditions

are restricted on the distribution on M : ker(η), (ker(η)⊥ = span{ξ}). Namely we

prove:

Theorem 0.1. Let M be a real hypersurface of a complex space form Mn(c),

(n > 2) (c ̸= 0), satisfying ϕl = lϕ on ker(η). If ∇ξl = 0 holds on ker(η) or on

span{ξ}, then M is a Hopf hypersurface. Furthermore, if η(Aξ) ̸= 0, then M is

locally congruent to a model space of type A.

J. T. Cho and U-H. Ki in [4] classified real hypersurfaces M of a projective

space satisfying ϕl = lϕ and lA = Al on M . In the present paper we generalize
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this result, studying the real hypersurfaces of any complex space form satisfying

ϕl = lϕ on ker(η) and lA = Al on ker(η) or on span{ξ}. We prove:

Theorem 0.2. Let M be a real hypersurface of a complex space form Mn(c),

(n > 2) (c ̸= 0), satisfying ϕl = lϕ on ker(η). If lA = Al holds on ker(η) or on

span{ξ}, then M is a Hopf hypersurface. Furthermore, if η(Aξ) ̸= 0, then M is

locally congruent to a model space of type A.

For the case of CPn in order to determine real hypersurface of type A, the

technical assumption η(Aξ) ̸= 0 is needed. Actually, there is a non-homogeneous

tube with Aξ = 0 (of radius π
4 ) over a certain Kaehler submanifold in CPn,

when its focal map has constant rank on M [3]. For Hopf hypersurfaces in CHn,

(n > 2) it is known that the associated principal curvature of ξ never vanishes

[1]. However, in CH2 there exists a Hopf hypersurface with Aξ = 0 [6].

We must also notice that equation (∇ξl)X = 0, X ∈ ker(η), is equivalent to

(∇ξl)X = µξ, X ∈ ker(η) and µ is a real valued function. Indeed, (∇ξl)X = 0

implies (∇ξl)X = µξ, where µ = 0. Conversely if (∇ξl)X = µξ holds ∀X ∈ ker(η),

then by putting −X instead of X we have −(∇ξl)X = µξ which is combined with

(∇ξl)X = µξ to give µ = 0.

1. Preliminaries

Let Mn be a Kaehlerian manifold of real dimension 2n, equipped with an

almost complex structure J and a Hermitian metric tensor G. Then for any

vector fields X and Y on Mn(c), the following relations hold:

J2X = −X, G(JX, JY ) = G(X,Y ), ∇̃J = 0

where ∇̃ denotes the Riemannian connection of G of Mn.

Now, let M2n−1 be a real (2n − 1)-dimensional hypersurface of Mn(c), and

denote by N a unit normal vector field on a neighborhood of a point in M2n−1

(from now on we shall write M instead of M2n−1). For any vector field X tangent

to M we have JX = ϕX + η(X)N , where ϕX is the tangent component of JX,

η(X)N is the normal component, and

ξ = −JN, η(X) = g(X, ξ), g = G|M .

By properties of the almost complex structure J , and the definitions of η and

g, the following relations hold [2]:

ϕ2 = −I + η ⊗ ξ, η ◦ ϕ = 0, ϕξ = 0, η(ξ) = 1 (1.1)
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g(ϕX, ϕY ) = g(X,Y )− η(X)η(Y ), g(X,ϕY ) = −g(ϕX, Y ). (1.2)

The above relations define an almost contact metric structure on M de-

noted by (ϕ, ξ, g, η). For (ϕ, ξ, g, η), we can define a local orthonormal basis

{V1, V2, . . . Vn−1, ϕV1, ϕV2, . . . ϕVn−1, ξ}, called a ϕ-basis on M . Furthermore, let

A be the shape operator with respect to N , and denote by ∇ the Riemannian

connection of g on M . Then, A is symmetric and the following equations are

satisfied

∇Xξ = ϕAX, (∇Xϕ)Y = η(Y )AX − g(AX,Y )ξ. (1.3)

As the ambient space Mn(c) is of constant holomorphic sectional curvature c,

the equations of Gauss and Codazzi are respectively given by

R(X,Y )Z =
c

4
[g(Y, Z)X − g(X,Z)Y + g(ϕY,Z)ϕX − g(ϕX,Z)ϕY

−2g(ϕX, Y )ϕZ] + g(AY,Z)AX − g(AX,Z)AY, (1.4)

(∇XA)Y − (∇Y A)X =
c

4
[η(X)ϕY − η(Y )ϕX − 2g(ϕX, Y )ξ]. (1.5)

The tangent space TpM , for every point p ∈ M , is decomposed as following

TpM = ker(η)⊥ ⊕ ker(η)

where ker(η)⊥ = span{ξ} and ker(η) is defined as following

ker(η) = {X ∈ TpM : η(X) = 0}.

Based on the above decomposition, by virtue of (1.3), we decompose the vector

field Aξ in the following way

Aξ = αξ + βU (1.6)

where β = |ϕ∇ξξ| and U = − 1
βϕ∇ξξ ∈ ker(η), provided that β ̸= 0.

If the vector field Aξ is expressed as Aξ = αξ, then ξ is called a principal

vector field. Differentiation of a function f along a vector field X will be denoted

by (Xf). All manifolds and vector fields of this paper are assumed to be connected

and of class C∞.

Finally, we mention the theorems ofOkumura [14], andMontiel, Romero

[12], who proved respectively the following theorems.

Theorem 1.1. Let M be a real hypersurface of CPn, n ≥ 2. If it satisfies

g((Aϕ− ϕA)X,Y ) = 0

for any vector fields X and Y , then M is a tube of radius r over one of the

following Kaehlerian submanifolds:
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(A1) a hyperplane CPn−1, where 0 < r < π
2 ,

(A2) a totally geodesic CP k (0 < k ≤ n− 2), where 0 < r < π
2 .

Theorem 1.2. Let M be a real hypersurface of CHn, n ≥ 2. If it satisfies

g((Aϕ− ϕA)X,Y ) = 0

for any vector fields X and Y , then M is locally congruent to one of the following:

(A0) a self – tube, that is, horosphere,

(A1) a geodesic hypershere or a tube over a hyperplane CHn−1,

(A2) a tube over a totally geodesic CHk (1 ≤ k ≤ n− 2).

2. Auxiliary relations

In the study of real hypersurfaces in a complex space form Mn(c), c ̸= 0, it

is a crucial condition that the structure vector field ξ is principal. The purpose

of this paragraph is to prove this condition.

Let V be the open subset of points p of M , where α ̸= 0 in a neighborhood of

p and V0 be the open subset of points p of M such that α = 0 in a neighborhood

of p. Since α is a smooth function on M , then V ∪V0 is an open and dense subset

of M .

Lemma 2.1. Let M be a real hypersurface in a complex space form Mn(c)

(c ̸= 0), satisfying ϕl = lϕ on ker(η). Then, β = 0 on V0.

Proof. From (1.6) we have Aξ = βU on V0. Then (1.4) for X = U and

Y = Z = ξ yields

lU =
c

4
U + g(Aξ, ξ)AU − g(AU, ξ)Aξ =

c

4
U − g(U,Aξ)Aξ =

( c

4
− β2

)
U =⇒

ϕlU =
( c

4
− β2

)
ϕU.

In the same way, from (1.4) for X = ϕU , Y = Z = ξ we obtain

lϕU =
c

4
ϕU.

The last two equations yield β = 0. �
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Remark 1. We have proved that on V0, Aξ = 0ξ i.e., ξ is a principal vector

field on V0. Now we define on V the set V ′ of points p where β ̸= 0 in a

neighborhood of p and the set V ′′ of points p where β = 0 in a neighborhood of p.

Obviously ξ is principal on V ′′. In what follows we study the open subset V ′ of

M and define the following classes

A = hypersurfaces satisfying ϕl = lϕ and lA = Al on ker(η),

B = hypersurfaces satisfying ϕl = lϕ and lA = Al on span{ξ},

C = hypersurfaces satisfying ϕl = lϕ and ∇ξl = µξ on ker(η),

D = hypersurfaces satisfying ϕl = lϕ and ∇ξl = µξ on span{ξ}.

Lemma 2.2. Let M be a real hypersurface of a complex space form Mn(c)

(c ̸= 0), satisfying ϕl = lϕ on ker(η). Then the following relations hold on the set

V ′ of classes A, B, C, D:

AU =

(
β2

α
− c

4α

)
U + βξ, AϕU = − c

4α
ϕU (2.1)

∇ξξ = βϕU, ∇Uξ =

(
β2

α
− c

4α

)
ϕU, ∇ϕUξ =

c

4α
U (2.2)

∇ξU = W1, ∇UU = W2, ∇ϕUU = W3 −
c

4α
ξ (2.3)

∇ξϕU = ϕW1 − βξ, ∇UϕU = ϕW2 +

(
c

4α
− β2

α

)
ξ, ∇ϕUϕU = ϕW3. (2.4)

where W1, W2, W3 are vector fields on ker(η) satisfying W1,W2,W3 ⊥ U .

Proof. From (1.4) we get

lX =
c

4
[X − η(X)ξ] + αAX − g(AX, ξ)Aξ (2.5)

which, for X = U yields

lU =
c

4
U + αAU − βAξ. (2.6)

The scalar products of (2.6) with U (resp. ϕU) yield

g(AU,U) =
γ

α
− c

4α
+

β2

α
, (2.7)

g(AU, ϕU) =
1

a
g(lU, ϕU) (2.8)
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respectively, where γ = g(lU, U) = g(ϕlU, ϕU) = g(lϕU, ϕU).

The second relation of (1.2) for X = U , Y = lU , the condition ϕl = lϕ and

the symmetry of the operator l imply:

g(lU, ϕU) = 0.

The above equation and (2.8) imply

g(AU, ϕU) = 0. (2.9)

The symmetry of A and (1.6) imply

g(AU, ξ) = β. (2.10)

From relations (2.7), (2.9) and (2.10), we obtain

AU =

(
γ

α
− c

4α
+

β2

α

)
U + βξ + λW (2.11)

where W ∈ span{U, ϕU, ξ}⊥ and λ = g(AU,W ). Combining (2.11) with (2.6) we

obtain lU = γU + λαW . Acting on this relation with the tensor field ϕ and by

virtue of ϕl = lϕ we take lϕU = γϕU + λαϕW . On the other hand by virtue

of (2.5) we have lϕU = c
4ϕU + αAϕU . From the last two relations we obtain

AϕU =
(
γ
α − c

4α

)
ϕU + λϕW .

On class A

Since lA = Al holds on ker(η) we have lAW = AlW . This relation because of (2.5)

and (2.11) implies λβAξ = 0 and so λ = 0. Since λ = 0, equations lAU = AlU ,

(2.6) and (2.11) yield γ = 0, therefore we have the first of (2.1). Moreover from

(2.5) we have lϕU = c
4ϕU + αAϕU which is written as ϕlU = c

4ϕU + αAϕU

(ϕl = lϕ). From ϕlU = c
4ϕU + αAϕU and γ = λ = 0 we obtain the second of

(2.1). Using (1.3) for X ∈ {ξ, U, ϕU} and by virtue of (2.1) we obtain (2.2). It is

well known that:

Xg(Y,Z) = g(∇XY, Z) + g(Y,∇XZ). (2.12)

Let us set ∇ξU = W1 and ∇UU = W2. If we use (2.2) and (2.12), it is easy

to verify that g(∇ξU,U) = 0 = η(∇ξU) and g(∇UU,U) = 0 = η(∇UU) which

means W1⊥{ξ, U} and W2⊥{ξ, U}.
On the other hand using (2.12) and the third of (2.2) we find η(∇ϕUU) =

− c
4α and g(∇ϕUU,U) = 0 which means that ∇ϕUU is decomposed as ∇ϕUU =

W3 − c
4αξ, W3⊥{U, ξ}. Now, by virtue of (1.3) and (2.3) for X = ξ, Y = U and

X = Y = U and X = ϕU, Y = U , we get (2.4).



182 Theoharis Theofanidis and Ph. J. Xenos

On class B

We analyze equation lAξ = Alξ by virtue of (1.6), (2.6) and (2.11) and we have

γU +λαW = 0. Since W ⊥ U we have γ = λ = 0. The rest of the proof is similar

to the one in class A.

On class C

The scalar product of (∇ξl)ϕU = 0 with ξ, the symmetry of l and (2.12) yield

g(lϕU, ϕU) = γ = 0. In addition (∇ξl)ϕW = 0 holds. So, the scalar product of

the previous equation with ξ, the symmetry of l and (2.12) yield g(lϕU, ϕW ) = 0,

which, by virtue of (2.5), the second of (2.1) and γ = 0, yields λ = 0. The rest of

the proof is similar to the one in class A.

On class D

We analyze (∇ξl)ξ = 0 and obtain βlϕU = 0 ⇒ lϕU = 0. We analyze lϕU = 0

using (2.5) and AϕU =
(
γ
α − c

4α

)
ϕU + λϕW , and we have γϕU + λαϕW = 0.

This relation and the linear independency of the vector fields ϕU and ϕW yield

γ = λ = 0. The rest of the proof is similar to the one in class A. �

Lemma 2.3. Let M be a real hypersurface of a complex space form Mn(c)

(c ̸= 0), of class A, B, C, or D. Then on V ′ we have g(∇ξU, ϕU) = −4α and

g(∇UU, ϕU) = −4β + c
4αβ

(
c
4α − β2

α

)
.

Proof. Putting X = U , Y = ξ in (1.5), we obtain

(∇UA)ξ − (∇ξA)U = − c

4
ϕU.

Combining the last equation with (1.6), and Lemma 2.2 it follows:

(Uα)ξ + (Uβ)U + βW2 +

(
− c

4α
+

β2

α

)
c

4α
ϕU

−ξ(− c

4α
+

β2

α
)U −

(
− c

4α
+

β2

α

)
W1 − (ξβ)ξ +AW1 = 0.

Taking the scalar products of the last relation with ξ and U respectively, we

obtain

(Uα) = (ξβ) (2.13)

and

(Uβ) =

(
ξ

(
β2

α
− c

4α

))
. (2.14)

Combining the last three equations we have

AW1 =
c

4α

(
c

4α
− β2

α

)
ϕU +

(
β2

α
− c

4α

)
W1 − βW2. (2.15)
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The scalar product of (2.15) with ϕW1 yields:

βg(ϕW1,W2) = −g(AW1, ϕW1).

But from (2.5) we have

g(lϕW1,W1) = g(ϕW1, lW1) = αg(AW1, ϕW1).

Moreover g(lϕW1,W1) = g(ϕW1, lW1) = −g(W1, ϕlW1) = −g(W1, lϕW1) which

means that

g(lϕW1,W1) = 0.

The above relations lead to g(ϕW1,W2) = 0 which, by virtue of (2.15) implies

g(AW1, ϕW2) = 0.

In what follows we define the following functions:

κ1 = g(W1, ϕU) κ2 = g(W2, ϕU), κ3 = g(W3, ϕU).

Putting X = ϕU , Y = ξ in (1.5), we obtain

AϕW1 =

[
3βc

4α
+ αβ − (ϕUα)

]
ξ −

[
(ϕUβ) +

c

4α

(
c

4α
− β2

α

)
− β2

]
U

+
c

4α2
(ξα)ϕU − c

4α
ϕW1 − βW3. (2.16)

The scalar product of (2.16) with ξ implies

(ϕUα) =
3βc

4α
+ αβ + κ1β. (2.17)

Using the A is symmetric and ϕ is skew-symmetric, by taking the scalar product

of (2.16) with U we have

g(ϕW1, AU) = −(ϕUβ)− c

4α

(
c

4α
− β2

α

)
+ β2 +

c

4α
g(W1, ϕU)

which, eventually (with the aid of Lemma 2.2 and the definition of κ1) yields

(ϕUβ) =
c

4α

(
β2

α
− c

4α

)
+ β2 + κ1

β2

α
. (2.18)

Due to (2.5), (2.15) and (2.16) the condition ϕlW1 = lϕW1 implies

β2ϕW1 − αβϕW2 + α

[
(ϕUα)− 3βc

4α
− αβ

]
ξ + α[(ϕUβ)− β2]U + αβW3

= κ1βAξ +
c

4α
(ξα)ϕU.
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Taking the scalar product of the last relation with U we have

−2κ1β
2 + αβκ2 + α(ϕUβ)− αβ2 = 0.

If in the above relation we replace the term κ1 using (2.17) we obtain

−2β(ϕUα) +
3β2c

2α
+ αβ2 + αβκ2 + α(ϕUβ) = 0. (2.19)

The relation (∇UA)ϕU − (∇ϕUA)U = − c
2ξ, using Lemma 2.2 implies

c

4α2
(Uα)ϕU +

[
c

2α

(
β2

α
− c

4α

)
+ β2 − (ϕUβ)

]
ξ

+

[
− 3βc

4α
+

β3

α
+

(
ϕU

(
c

4α
− β2

α

))]
U − c

4α
ϕW2 −AϕW2

+AW3 +

(
c

4α
− β2

α

)
W3 = 0. (2.20)

The scalar product of the above relation with U yields

κ2β
2

α
− 3βc

4α
+

β3

α
+ ϕU

(
c

4α
− β2

α

)
= 0.

Expanding the last relation and by virtue of (2.19) we get(
− 3β2

α2
+

c

4α2

)
(ϕUα) +

3β

α
(ϕUβ) +

3β3c

2α3
+

3βc

4α
= 0.

Combining the last equation with (2.17) and (2.18) we obtain κ1 = −4α.

The scalar product of (2.15) with ϕU because of κ1 = −4α, yields κ2 = −4β +
c

4αβ

(
c
4α − β2

α

)
. �

Lemma 2.4. Let M be a real hypersurface of a complex space form Mn(c)

(c ̸= 0), of class A, B, C, or D. Then the structure vector field ξ is principal

on M .

Proof. The scalar products of (2.16) and (2.20) with ϕU , yield (ξα) =
4α2β

c κ3 and (Uα) = 4αβ2

c κ3. Combining the last two relations with (2.13) and

(2.14) we have

(ξα) =
4α2β

c
κ3, (Uα) = (ξβ) =

4αβ2

c
κ3, (Uβ) =

(
β +

4β3

c

)
κ3. (2.21)
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Using (1.5) for X = ϕW2, Y = ξ we have

∇ϕW2Aξ −A∇ϕW2ξ −∇ξAϕW2 +A∇ξϕW2 =
c

4
W2,

which, from (1.6) is further decomposed as

(ϕW2α)ξ + αϕAϕW2 + (ϕW2β)U + β∇ϕW2U −AϕAϕW2

−∇ξAϕW2 +A∇ξϕW2 =
c

4
W2.

Taking the scalar product with ξ and by using (1.6), (2.12), (2.21), Lemmas 2.2,

2.3 and W1⊥ϕW2 we obtain

(ϕW2α) = κ3

(
16αβ3

c
+ β(

β2

α
− c

4α
)

)
. (2.22)

On the other hand from (1.5) we get

∇W3Aξ −A∇W3ξ −∇ξAW3 +A∇ξW3 = − c

4
ϕW3

which, by virtue of (1.6) is further decomposed as

(W3α)ξ+αϕAW3+(W3β)U +β∇W3U −A∇W3ξ−∇ξAW3+A∇ξW3 = − c

4
ϕW3.

Taking the scalar product of the last equation with ξ and by making use of Lem-

ma 2.2, (2.12) and (2.21)we obtain

(W3α) = 3β
( c

4α
− α

)
κ3. (2.23)

In a similar way equation (1.5) yields (∇ϕW1A)U − (∇UA)ϕW1 = 0, which

by virtue of Lemma 2.2 is further analyzed as(
ϕW1

(
β2

α
− c

4α

))
U +

(
β2

α
− c

4α

)
∇ϕW1U

+ (ϕW1β)ξ + βϕAϕW1 −A∇ϕW1U −∇UAϕW1 +A∇UϕW1 = 0.

The scalar product of the above equation with ξ and using g(ϕW1,W2) = 0, (2.21)

and Lemmas 2.2, 2.3, leads to

(ϕW1β) = 4ακ3

(
β +

4β3

c

)
. (2.24)
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Now the calculation of Lie bracket [ϕU, ξ]β, by virtue of (2.18), Lemma 2.3

and (2.21), results to

[ϕU, ξ]β = ϕU(ξβ) + κ3

[
− βc

2α
+

24αβ3

c

]
.

On the other hand from Lemma 2.2, (2.21) and (2.24) we obtain

[ϕU, ξ]β = (∇ϕUξ −∇ξϕU)β = βκ3

[
c

4α
+

β2

α
− 4α− 12αβ2

c

]
.

Equalizing the above two relations we get

ϕU(ξβ) = βκ3

[
3c

4α
+

β2

α
− 4α− 36αβ2

c

]
. (2.25)

In a similar way, combining (2.18), (2.21), (2.22), (2.23) and Lemmas 2.2,

2.3, the Lie bracket [ϕU,U ]α yields

[ϕU,U ]α = ϕU(Uα) + 3βκ3

[
α+

8αβ2

c
− c

4α

]
[ϕU,U ]α = (∇ϕUU −∇UϕU)α = βκ3

[
c

α
− 5α− 12αβ2

c
− β2

α

]
.

From the above equations we obtain

ϕU(Uα) = βκ3

[
7c

4α
− 8α− 36αβ2

c
− β2

α

]
. (2.26)

Because of (2.13) from (2.25) and (2.26) we obtain

β

α
[c− 4α2 − 2β2]κ3 = 0.

Let us assume there is a point p ∈ V ′ such that κ3 ̸= 0 in a neighborhood

around p. Then we have c = 4α2 + 2β2. Differentiating the last equation along ξ

and by virtue of (2.21) and κ3 ̸= 0 we take 2α2+β2 = 0 which is a contradiction.

So κ3 = 0 ⇒ (Uα) = (ξα) = 0 ⇒ [U, ξ]α = 0. But the last equation, because of

Lemma 2.2 yields (
β2

α
− c

4α

)
(ϕUα)− (W1α) = 0. (2.27)
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On the other hand from (1.5) for X = W1, Y = ξ, taking the scalar product

with ξ, using the Lemmas 2.2, 2.3 we have (W1α) = β|W1|2 − β(4α2 + 3c). The

last relation, (2.27), (2.17) and Lemma 2.3 lead to

12(5α2 + β2)c+ 64α4 = 16α2(|W1|2 + 3β2) + 3c2. (2.28)

Because of (2.28) f(ω) = 64ω2+60cω+12cβ2, where ω = α2, is positive for every

ω, β. This holds if and only if the discriminant of f(ω) is negative for all β, c.

But this is not true, hence we have a contradiction. Therefore V ′ is empty and

the real hypersurface M consists only of V0 and V ′′ i.e., the Reeb vector field ξ

is principal and M is a Hopf hypersurface. �

3. Proof of theorems

From Lemma 2.4:

Aξ = αξ, α = g(Aξ, ξ). (3.1)

We consider a ϕ-basis {Vi, ϕVi, ξ}, (i = 1, 2, . . . n− 1). From (2.5) and (3.1)

we obtain

lX =
c

4

[
X − η(X)ξ

]
+ αAX − η(X)α2ξ. (3.2)

(3.2) for X = Vi implies

lVi =
c

4
Vi + αAVi. (3.3)

Applying ϕ to (3.3) we obtain

ϕlVi =
c

4
ϕVi + αϕAVi, i = 1, . . . , n− 1. (3.4)

The relation (3.2) for X = ϕVi yields

lϕVi =
c

4
ϕVi + αAϕVi. (3.5)

Comparing (3.4) with (3.5), and by making use of the condition ϕl = lϕ we

have

(Aϕ− ϕA)Vi = 0, i = 1, . . . , n− 1. (3.6)

On the other hand the action of ϕ on (3.5) yields

ϕ(lϕVi) =
c

4
ϕ2Vi + αϕAϕVi, (3.7)
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which, by virtue of (1.1), is written in the form

(ϕl)ϕVi = − c

4
Vi + α(ϕA)ϕVi, (3.8)

Moreover, the calculation of (lϕ)ϕVi by virtue of (1.1) and (3.3) yields:

(lϕ)ϕVi = lϕ2Vi = −lVi = − c

4
Vi − αAVi = − c

4
Vi + αAϕ2Vi

= − c

4
Vi + αAϕϕVi ⇐⇒ (lϕ)ϕVi = − c

4
Vi + α(Aϕ)ϕVi. (3.9)

Comparing (3.8) and (3.9), and by making use of the condition ϕl = lϕ we

have

(Aϕ− ϕA)ϕVi = 0 (3.10)

for every i = 1, . . . , n− 1. But from (1.1) and (3.1) we also have

(Aϕ− ϕA)ξ = 0. (3.11)

So, (3.6), (3.10) and (3.11) imply that Aϕ = ϕA. This result and the Theo-

rems 1.1 and 1.2 complete the proof of Theorems 0.1 and 0.2. �
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