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Neutral stochastic differential equations driven by Brownian
motion and fractional Brownian motion in a Hilbert space

By WEIGUO LIU (Guangdong) and JIAOWAN LUO (Guangdong)

Abstract. A class of mixed neutral stochastic differential equations involving

Brownian motion and fractional Brownian motion is considered. The existence, unique-

ness and exponential stability for the solutions of these equations are discussed by means

of semigroup of operator and the fixed point principle under some suitable assumptions.

Our results extend and improve those of [2] and [11].

1. Introduction

The main object of this paper is a neutral stochastic differential equation

(NSDE) in a Hilbert space X
d[x(t)− h(t, x(t− r(t)))] = [Ax(t) + f(t, x(t− ρ(t)))]dt

+g(t, x(t− η(t)))dW (t) + σ(t)dBH(t), t ≥ 0,

x(t) = φ(t) ∈ C([−τ, 0],L2(Ω, X)), t ∈ [−τ, 0], τ > 0,

(1)

where φ is F0-measurable; r, ρ, η : [0,∞) → [0, τ ] are continuous; f, h : [0,∞) ×
X → X, g : [0,∞) × X → L0

1(Y1, X) and σ : [0,∞) → L0
2(Y2, X) are Borel

measurable functions satisfied some appropriate conditions; the integral w.r.t.

Q(1)-Brownian motion {W (t)}t≥0 on a real separable Hilbert space Y1 is Itô inte-

gral, and the integral w.r.t. Q(2)-fractional Brownian motion (fBm) {BH(t)}t≥0

Mathematics Subject Classification: 35B35, 47D03, 60H15.
Key words and phrases: Brownian motion, fractional Brownian motion, neutral stochastic dif-

ferential equation, stability.
The second author is the corresponding.

This research is supported by the NSF of China (Grant No.11271093).



236 Weiguo Liu and Jiaowan Luo

on a real separable Hilbert space Y2 is Wiener integral with the Hurst param-

eter 1/2 < H < 1; A is the infinitesimal generator of an analytic semigroup

{S(t)}t≥0 on X. For α ∈ (0, 1], it is possible to define the fractional power

(−A)α : D((−A)α) → X, which is a closed linear operator with its domain

D((−A)α) (we refer the readers to Pazy [22] for a detailed discussion on (−A)α).
As we know, on one hand, it so happens that processes in hydrodynamics,

telecommunications and finance demonstrate the availability of random noise that

can be modeled by a Brownian motion and also a so called long memory that can

be modeled with the help of fBm with Hurst index 1/2 < H < 1. Since the

seminal paper [4], mixed stochastic models containing both a standard Brownian

motion and an fBm gained a lot of attention. In recent years, there has been

considerable interest in studying this class of SDEs, see e.g. [8], [14], [19], [20],

[24], [25].

On the other hand, the future state of many stochastic or determinate sys-

tems not only depends on the present and past states (delays) but also involves

derivatives with delays. Neutral (stochastic) differential equations (N(S)DEs) are

often used to describe such kind of systems. NDE is an important area of applied

mathematics due to several reasons with non-instant transmission phenomena

such as lossless transmission lines [3], population ecology [10], heat exchanges [9],

and other engineering systems. As for NSDE, we can refer to [1], [6], [11], [12],

[13], [18] only involving Brownian motions and also refer to [2], [7], [15], [26], [17],

[16] only containing fBms. Luo [11] first used the fixed-point theory to consider

the stability for the following stochastic partial differential equations with delays.{
dx(t) = [Ax(t) + f(t, x(t− ρ(t)))]dt+ g(t, x(t− δ(t)))dW (t), t ≥ 0,

x(t) = φ(t), t ∈ [−τ, 0], τ > 0.
(2)

Boufoussi and Hajji [2] considered the NSDE driven by fBm as follows:
d[x(t)− g(t, x(t− r(t)))] = [Ax(t) + f(t, x(t− ρ(t)))]dt

+σ(t)dBH(t), t ≥ 0,

x0(t) = φ(t), t ∈ [−τ, 0], τ > 0.

(3)

They proved an existence and uniqueness result for mild solution of NSDE (3)

and established some conditions ensuring the exponential decay to zero in mean

square for the mild solution.

However, to the best of authors’ knowledge, up to now, there is no paper

which investigates mixed NSDEs. Thus, we will make the first attempt to research
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such problem in the present paper. We devote to the existence and uniqueness of

mild solution for NSDE (1) and also establish the sufficient conditions to ensure

the exponential stability for the solution of NSDE (1). We can see that equation 2)

and equation 3) are both particular cases of NSDE (1) where g = 0 and h = 0,

σ = 0 respectively, our results in the present paper extend the results of [2] and

[11]. Besides, our assumptions on coefficients ensuring the exponential decay to

zero in mean square for the mild solution are weaker than those of [2], so we also

improve and generalize the results of [2].

The rest of this paper is organized as follows. Some elements ofQ(1)-Brownian

motion and Q(2)-fBm are given in Section 2. In Section 3, we present the as-

sumptions and some lemmas, and we show the existence and uniqueness for mild

solution of NSDE (1) as well. In Section 4, we establish the sufficient conditions

which are weaker than those of [2] to ensure exponential stability for the solution.

2. Preliminaries

Let (Ω,F , {Ft}t≥0,P) be a complete probability space equipped with a nor-

mal filtration {Ft}t≥0 satisfying standard assumptions. We denote by C([−τ, T ];
L2(Ω, X)) the space of all continuous functions from [−τ, T ] to L2(Ω, X). More-

over, for the real separable Hibert space X, we denote by L(Yi, X) the space

of bounded linear operators from Yi to X, i = 1, 2. We assume that {e(i)n , n =

1, 2, . . . } is a complete orthonormal basis in Yi and Q
(i) ∈ L(Yi, X) are two opera-

tor defined by Q(i)e
(i)
n = λ

(i)
n e

(i)
n with finite trace trQ(i) =

∑∞
n=1 λ

(i)
n <∞, where

λ
(i)
n , n = 1, 2, . . . , are non-negative real numbers and i = 1, 2. Then there exits a

real-valued sequence ωn(t), n = 1, 2, . . . , of one dimensional standard Brownian

motions mutually independent over (Ω,F , {Ft}t≥0,P) such that

W (t) =

∞∑
n=1

√
λ
(1)
n e(1)n ωn(t), t ≥ 0,

and the infinite dimensional cylindrical Y2-valued fBm BH(t) is defined by the

formal sum (see [7])

BH(t) =
∞∑

n=1

√
λ
(2)
n e(2)n βH

n (t), t ≥ 0,

where the sequence {βH
n (t)}n=1,2,... are stochastically independent scalar fBms

with Hurst parameter H ∈ (1/2, 1).



238 Weiguo Liu and Jiaowan Luo

Let L0
i (Yi, X) be the space of all Q(i)-Hilbert-Schmidt operators from Yi to X

i = 1, 2. Now we can show the following two definitions of norms.

Definition 2.1. ([6]) Let g ∈ L(Y1, X) and defined

∥g∥2L0
1
:= tr

(
gQ(1)g ∗

)
=

∞∑
n=1

∥∥∥√λ
(1)
n ge(1)n

∥∥∥2
X
.

If ∥g∥2L0
1
< ∞, then g is called a Q(1)-Hilbert-Schmidt operator and the space

L0
1 := L0

1(Y1, X) equipped with the inner product ⟨φ,ψ⟩L0
1
=

∑∞
n=1⟨φe

(1)
n , ψe

(1)
n ⟩

is a separable Hilbert space.

Definition 2.2. ([2]) In order to define Wiener integrals with respect to the

Q(2)-fBm, we recall that σ ∈ L(Y2, X) is called a Q(2)-Hilbert-Schmidt operator if

∥σ∥2L0
2
:= tr(σQ(2)σ∗) =

∞∑
n=1

∥∥∥√λ
(2)
n σe(2)n

∥∥∥2
X
<∞,

and that the space L0
2 := L0

2(Y2, X) equipped with the inner product ⟨φ,ψ⟩L0
2
=∑∞

n=1⟨φe
(2)
n , ψe

(2)
n ⟩ is a separable Hilbert space.

Let T > 0 be an arbitrarily given number and {βH(t)}t∈[0,T ] be the one-

dimensional fBm with Hurst parameter H ∈ (1/2, 1). This means by defini-

tion that βH is a centered Gaussian process with covariance function RH(s, t) =
1
2 (t

2H + s2H − |t− s|2H). Moreover βH has the following Wiener integral repre-

sentation

βH(t) =

∫ t

0

KH(t, s)dβ(s), (4)

where β = {β(t)}t∈[0,T ] is a Wiener process and KH(t, s) is the kernel given by

KH(t, s) = c
H
s

1
2−H

∫ t

s

(u− s)H− 3
2uH− 1

2 du

for t > s, here c
H

=
√

H(2H−1)

B(2−2H,H− 1
2 )

and B(·, ·) denotes the Beta function. We

put KH(t, s) = 0 if t ≤ s.

We will denote by H the reproducing kernel Hilbert space of the fBm. In

fact H is the closure of set of indicator functions {1[0,t], t ∈ [0, T ]} with respect to

the scalar product ⟨1[0,t], 1[0,s]⟩H = RH(t, s). The mapping 1[0,t] → βH(t) can be

extended to an isometry between H and the first Wiener chaos. We will denote
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by βH(φ) the image of φ by the previous isometry. We recall that for ψ,φ ∈ H
their scalar product in H is given by

⟨ψ,φ⟩H = H(2H − 1)

∫ T

0

∫ T

0

ψ(s)φ(t)|t− s|2H−2dsdt.

Let us consider the operator K∗
H from H to L2([0, T ]) defined by

(K∗
Hφ)(s) =

∫ T

s

φ(t)
∂K

∂t
(t, s)dt.

We refer to [21] for the proof of the fact that K∗
H is an isometry between H and

L2([0, T ]). Moreover for any φ ∈ H, we have

βH(φ) :=

∫ T

0

φ(t)dβH(t) =

∫ T

0

(K∗
Hφ)(t)dβ(t).

It follows from [21] that the elements of H may be not functions but distributions

of negative order. In order to obtain a space of functions contained in H, we

consider the linear space |H| generated by the measurable functions ψ such that

∥ψ∥2|H| := α
H

∫ T

0

∫ T

0

|ψ(s)| · |ψ(t)| · |s− t|2H−2dsdt <∞,

where α
H
= H(2H − 1). The space |H| is a Banach space with the norm ∥ψ∥|H|.

Now, let ψ(s), s ∈ [0, T ], be a function with values in L0
2(Y2, X). The Wiener

integral of ψ with respect to BH is defined by∫ t

0

ψ(s)dBH(s) =

∞∑
n=1

∫ t

0

√
λ
(2)
n ψ(s)e(2)n dβH

n (s)

=
∞∑

n=1

∫ t

0

√
λ
(2)
n K∗

H(ψe(2)n )(s)dβn(s), (5)

where βn is the standard Brownian motion used to present βH
n as in (4).

The following lemma is the directly result of Proposition 2.1 of [15] and

Lemma 2 of [7].

Lemma 2.1. For any φ : [0, T ] → L0
2(Y2, X) and 0 ≤ a ≤ b ≤ T , if∑∞

n=1

√
λ
(2)
n <∞ and

∑n
k=1

√
λ
(2)
k (φe

(2)
n )(t) is uniformly convergent for t ∈ [0, T ]

as n→ ∞, then we have

E
∥∥∥∥ ∫ b

a

φ(s)dBH(s)

∥∥∥∥2
X

≤ κ
H
(b− a)2H−1

∫ b

a

E∥φ(s)∥2L0
2
ds, H ∈ (1/2, 1),

here κH = H(2H − 1)
√

H(2H−1)

B(2−2H,H− 1
2 )

= cHαH .



240 Weiguo Liu and Jiaowan Luo

3. Existence and Uniqueness

Lemma 3.1 (see Theorem 2.2 in Chapter 1 and Theorem 6.13 in Chapter 2

of [22]). Supposed that A is the infinitesimal generator of an analytic semigroup

of uniformly bounded linear operators {S(t)}t≥0 on the separable Hilbert space

X. It is well known that there exist some constants M ≥ 1, λ ∈ R such that

∥S(t)∥ ≤ Meλt, for t ≥ 0, and moreover, if 0 ∈ ρ(−A), where ρ(−A) is the

resolvent set of −A, then,
(a) for any α ≥ 0, the subspace D((−A)α) is dense in X with the norm

∥h∥2α := sup
t∈R

E∥(−A)αh(t, x(t))∥2X , h ∈ D((−A)α),

(b) for each x ∈ D((−A)α), we have S(t)(−A)αx = (−A)αS(t)x,
(c) the fractional power (−A)α satisfies that ∥(−A)αS(t)x∥X≤Mαe

−λtt−α∥x∥X ,

t > 0, for any x ∈ X, where Mα ≥ 1 and λ > 0.

Definition 3.1. A X-valued process {x(t), t ∈ [−τ, T ]} is called a mild of

NSDE (1) if

(1) x(t) ∈ C([0, T ],L2(Ω, X)) is adapted to {Ft}t∈[0,T ] and x(t) = φ(t) for t ∈
[−τ, 0],

(2) For arbitrary t ∈ [0, T ], x(t) satisfies the integral equation

x(t) = S(t)[x(0)− h(0, x(0− r(0)))] + h(t, x(t− r(t)))

+

∫ t

0

AS(t− u)h(u, x(u− r(u)))du+

∫ t

0

S(t− u)f(u, x(u− ρ(u)))du

+

∫ t

0

S(t− u)g(u, x(u− η(u)))dW (u) +

∫ t

0

S(t− u)σ(u)dBH(u), a.s.. (6)

In order to establish the existence and uniqueness of mild solution to NSDE

(1) the following hypothesises are imposed.

(H1) A is the infinitesimal generator of an analytic semigroup of bounded linear

operators {S(t)}t∈[0,T ] on X and 0 ∈ ρ(−A). Note that from Lemma 3.1, if we

fix some T > 0 then, for any t ∈ [0, T ] and 0 < α < 1, there exit some constants

M ≥ 1 and M1−α > 1 such that

∥S(t)∥ ≤M and ∥(−A)1−αS(t)∥ ≤ M1−α

t1−α
.

(H2) The functions f : [0,+∞)×X → X and g : [0,+∞)×X → L0
1(Y1, X) satisfy

the Lipschitz and linear growth conditions, i.e., there exist positive constants Ci,
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i = 1, 2, 3, 4, such that, for all t ≥ 0 and x, y ∈ X,

∥f(t, x)− f(t, y)∥2X ≤ C2
1∥x− y∥2X , ∥f(t, x)∥2X ≤ C2

2 (1 + ∥x∥2X),

∥g(t, x)− g(t, y)∥2L0
1
≤ C2

3∥x− y∥2X , ∥g(t, x)∥2L0
1
≤ C2

4 (1 + ∥x∥2X).

(H3) For the function h : [0,+∞) × X → X, there exist positive constants Ci,

i = 5, 6, and α ∈ (1/2, 1) such that h is D((−A)α)-valued and satisfies, for all

t ∈ [0, T ] and x, y ∈ X,

(i) ∥(−A)αh(t, x)− (−A)αh(t, y)∥2X ≤ C2
5∥x− y∥2X ,

(ii) ∥(−A)αh(t, x)∥2X ≤ C2
6 (1 + ∥x∥2X),

(iii) the constants C5 and α satisfy the following inequality k := C5∥(−A)−α∥ < 1.

(H4) The function (−A)αh is continuous in the quadratic mean sense in time, i.e.,

for all s, t ∈ [0, T ] and all x ∈ X, lim
t→s

E∥(−A)αh(t, x)− (−A)αh(s, x)∥2X = 0.

(H5) The function σ : [0, T ] → L0
2(Y2, X) satisfies

∫ T

0
∥σ(s)∥2L0

2
ds <∞, ∀T > 0.

Theorem 3.1. If conditions (H1)–(H5) hold for some α ∈ (1/2, 1), then, for

all T > 0, NSDE (1) has a unique mild solution on [−r, T ] in the mean-square

sense.

Proof. Let BT := C([−r, T ],L2(Ω, X)) be the subspace of all continuous

functions from [−r, T ] into L2(Ω, X) with the norm ∥ξ∥BT
= sup

u∈[−r,T ]

(E∥ξ(u)∥2)1/2.
Fix T > 0 and let us consider the set

UT = {x ∈ BT : x(s) = φ(s), for s ∈ [−r, 0]}.

UT is a closed subset of BT provided with the norm ∥ · ∥BT
. Evidently, BT and

UT are both Banach spaces. We define the operator ψ on UT by ψ(x)(t) = φ(t)

for t ∈ [−r, 0] and for t ∈ [0, T ]

(ψx)(t) = S(t)[x(0)− h(0, x(0− r(0)))] + h(t, x(t− r(t)))

+

∫ t

0

AS(t− u)h(u, x(u− r(u)))du+

∫ t

0

S(t− u)f(u, x(u− ρ(u)))du

+

∫ t

0

S(t− u)g(u, x(u− η(u)))dW (u) +

∫ t

0

S(t− u)σ(u)dBH(u). (7)

To obtain the existence and uniqueness of the solution to NSDE (1), it is enough

to show that the operator ψ has a unique fixed point in X. For this purpose,
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the proof is divided into the following three steps by using Banach fixed point

theorem.

Step 1. We claim that ψ(UT ) ⊂ UT . For this, we let x(t) ∈ UT , t ∈ [−τ, T ].
Evidently, for t ∈ [−r, 0], (ψx)(t) = φ(t) ∈ UT . Let t ∈ [0, T ], it follows from (7)

that

∥(ψx)(t)∥2X ≤ 6
∥∥S(t)[x(0)− h(0, x(0− r(0)))]

∥∥2
X
+ 6

∥∥h(t, x(t− r(t)))
∥∥2
X

+ 6
∥∥∥∫ t

0

AS(t−u)h(u, x(u− r(u)))du
∥∥∥2
X
+ 6

∥∥∥∫ t

0

S(t−u)f(u, x(u− ρ(u)))du
∥∥∥2
X

+ 6
∥∥∥∫ t

0

S(t− u)g(u, x(u− η(u)))dW (u)
∥∥∥2
X
+ 6

∥∥∥∫ t

0

S(t− u)σ(u)dBH(u)
∥∥∥2
X

=: 6
6∑

i=1

∥Pi(t)∥2X . (8)

From assumption (H1), we have

E∥P1(t)∥2X ≤ME∥φ(0)− h(0, φ(−r(0)))∥2X . (9)

The bound of (−A)−α and condition (ii) of (H3) imply that

E∥P2(t)∥2X ≤ C2
6∥(−A)−α∥2(1 + E∥x(t− r(t))∥2X). (10)

From Hölder inequality, Fubini’s theorem, Lemma 3.1, assumptions (H1) and (ii)

of (H3), we get

E∥P3(t)∥2X ≤ t

∫ t

0

E∥(−A)1−αS(t− u)(−A)αh(u, x(u− r(u)))∥2Xdu

≤ C2
6 tM1−α

∫ t

0

(t− u)α−1(1 + E∥x(u− r(u))∥2X)du. (11)

By Hölder inequality, Fubini’s theorem, assumptions (H1) and (H2), we have

E∥P4(t)∥2X ≤ C2
2 tM

∫ t

0

(1 + E∥x(u− ρ(u))∥2X)du. (12)

By using BDG type of inequality for stochastic convolutions (see [23]), assump-

tions (H1) and (H2), we can obtain

E∥P5(t)∥2X ≤M2

∫ t

0

E∥g(u, x(u− η(u)))∥2L0
1
du

≤ C2
4M

2

∫ t

0

(1 + E∥x(u− η(u))∥2X)du. (13)
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Lemma 2.1, assumptions (H1) and (H5) indicate that

E∥P6(t)∥2X ≤ κ
H
t2H−1M2

∫ t

0

∥σ(u)∥2L0
2
du <∞. (14)

Plugging (9)–(14) into (8) and noting that r(t), ρ(t), η(t) ∈ [0, τ ], we can obtain

(ψx)(t) ∈ UT if x(t) ∈ UT for t ∈ [0, T ].

Step 2. For arbitrary x ∈ UT , let us prove that t → ψ(x)(t) is continuous

on the interval [0, T ] in the L2-sense. Let 0 < t < T and |δ| be sufficiently small

then, for any fixed x ∈ UT , we have

∥ψ(x)(t+ δ)− ψ(x)(t)∥2X ≤ 6∥(S(t+ δ)− S(t))[x(0)− h(0, x(−r(0)))]∥2X
+ 6∥(−A)−α(−A)α[h(t+ δ, x(t+ δ − r(t+ δ)))− h(t, x(t− r(t)))]∥2X

+ 6
∥∥∥∫ t

0

A(S(δ)− I)S(t− u)h(u, x(u− r(u)))du

+

∫ t+δ

t

AS(t+ δ − u)h(u, x(u− r(u)))du
∥∥∥2
X

+ 6
∥∥∥∫ t

0

(S(δ)− I)S(t− u)f(u, x(u− ρ(u)))du

+

∫ t+δ

t

S(t+ δ − u)f(u, x(u− ρ(u)))du
∥∥∥2
X

+ 6
∥∥∥∫ t

0

(S(δ)− I)S(t− u)g(u, x(u− η(u)))dW (u)

+

∫ t+δ

t

S(t+ δ − u)g(u, x(u− η(u)))dW (u)
∥∥∥2
X

+ 6
∥∥∥∫ t

0

(S(δ)− I)S(t− u)σ(u)dBH(u) +

∫ t+δ

t

S(t+ δ − u)σ(u)dBH(u)
∥∥∥2
X

=: 6
6∑

i=1

∥Ji(δ)∥2X . (15)

J1(δ) → 0 can follow directly from the strong continuity of S(t) and Lebesgue

dominated theorem, that is,

lim
δ→0

E∥J1(δ)∥2X = 0. (16)

The bound of operator (−A)−β yields

∥J2(δ)∥2X ≤ 2∥(−A)−α∥2E∥(−A)αh(t+ δ, x(t+ δ − r(t+ δ)))
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− (−A)αh(t, x(t+ δ − r(t+ δ)))∥2X
+ 2∥(−A)−α∥2E∥(−A)αh(t, x(t+ δ − r(t+ δ)))− (−A)αh(t, x(t− r(t)))∥2X .

Then, by conditions (i) of (H3), (H4) and the continuity of r(t), we get

lim
δ→0

E∥J2(δ)∥2X = 0. (17)

For the third term J3(δ), we suppose that δ > 0 (Similar estimates hold for δ < 0),

by Hölder inequality, we have

∥J3(δ)∥2X ≤ t

∫ t

0

∥(S(δ)− I)(−A)1−αS(t− u)(−A)αh(u, x(u− r(u)))∥2Xdu

+
∣∣∣ ∫ δ

0

∥(−A)1−αS(u)(−A)αh(t+ δ − u, x(t+ δ − u− r(t+ δ − u)))∥Xdu
∣∣∣2

=: J31(δ) + J32(δ).

By using S(0) = I, the strong continuity of S(t) and the Lebesgue dominated

theorem, we can conclude that limδ→0 E|J31(δ)| = 0.

It follows from assumptions (H1), (ii) of (H3) and Hölder inequality that

E|J32(δ)| ≤
C2

6M
2
1−αδ

2α−1

2α− 1

∫ δ

0

(1 + E∥x(t+ δ − u− r(t+ δ − u)))∥2X)du.

Due to the fact that 1
2 < α < 1, it implies limδ→0 E|J32(δ)| = 0.

So we can obtain that

lim
δ→0

E∥J3(δ)∥2X = 0. (18)

From Hölder inequality, assumptions (H1) and (H3), a similar computation to

J3(δ) can be used to show

lim
δ→0

E∥J4(δ)∥2X = 0. (19)

Let δ > 0 (Similar estimates hold for δ < 0). The fifth term J5(δ) can be esti-

mated as

∥J5(δ)∥2X ≤
∥∥∥∥∫ t

0

(S(δ)− I)S(t− u)g(u, x(u− η(u)))dW (u)

∥∥∥∥2
X

+

∥∥∥∥∫ δ

0

S(u)g(t+ δ − u, x(t+ δ − u− η(t+ δ − u)))dW (u)

∥∥∥∥2
X

=: J51(δ) + J52(δ).
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From condition (H1) and BDG type of inequality for stochastic convolutions, we

get

E|J51(δ)| ≤M2

∫ t

0

∥(S(δ)− I)g(u, x(u− η(u)))∥2L0
1
du.

By using S(0) = I, the strong continuity of S(t), assumption (H2) and the

Lebesgue dominated theorem, we can conclude that limδ→0 E|J51(δ)| = 0.

Again by BDG type of inequality for stochastic convolutions, assumption

(H2), we have

E|J52(δ)| ≤M2C2
4

∫ δ

0

(1 + E∥x(t+ δ − u− η(t+ δ − u))∥2X)du.

So, the following desired result holds,

lim
δ→0

E∥J5(δ)∥2X = 0. (20)

For the term J6(δ), assumption (H1) and Lemma 2.1 imply

E∥J6(δ)∥2X ≤ 2E
∥∥∥∥ ∫ t

0

(S(δ)− I)S(t− u)σ(u)dBH(u)

∥∥∥∥2
X

+ 2E
∥∥∥∥∫ t+δ

t

S(t+ δ − u)σ(u)dBH(u)

∥∥∥∥2
X

≤ 2κ
H
t2H−1

∫ t

0

E∥(S(δ)− I)S(t− u)σ(u)∥2L0
2
du

+ 2E

∥∥∥∥∥
∫ δ

0

S(u)σ(t+ δ − u)dBH(u)

∥∥∥∥∥
2

X

≤ 2κ
H
t2H−1M2

∫ t

0

E∥(S(δ)− I)σ(u)∥2L0
2
du

+ 2κ
H
δ2H−1M2

∫ δ

0

E∥σ(t+ δ − u)∥2L0
2
du.

By using S(0) = I, the strong continuity of S(t), assumption (H5) and the

Lebesgue dominated theorem, we can conclude that

lim
δ→0

E∥J6(δ)∥2X = 0. (21)

Inequalities (15)–(21) together imply that limδ→0 E∥ψ(x)(t+ δ)−ψ(x)(t)∥2X = 0.

Hence, we conclude that the function t → ψ(x)(t) is continuous on [0, T ] in the

L2−sense.
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Step 3: Now, we are going to show that ψ is a contraction mapping in UT1

with some T1 ≤ T to be specified later. Let x, y ∈ UT by using the inequality

(a+ b+ c+ d)2 ≤ 1
ka

2 + 3
1−k b

2 + 3
1−k c

2 + 3
1−kd

2, where k = C5∥(−A)−α∥ < 1, we

obtain for any fixed t ∈ [0, T ]

∥ψ(x)(t)− ψ(y)(t)∥2X

≤ 1

k
∥(−A)−α∥2 · ∥(−A)αh(t, x(t− r(t)))− (−A)αh(t, y(t− r(t)))∥2X

+
3

1− k

∥∥∥∫ t

0

(−A)1−αS(t−u)(−A)α[h(u, x(u− r(u)))−h(u, y(u− r(u)))]du
∥∥∥2
X

+
3

1− k

∥∥∥ ∫ t

0

S(t− u)[f(u, x(u− ρ(u)))− f(u, y(u− ρ(u)))]du
∥∥∥2
X

+
3

1− k

∥∥∥ ∫ t

0

S(t− u)[g(u, x(u− η(u)))− g(u, y(u− η(u)))]dW (u)
∥∥∥2
X
.

From assumption (H1), Lipschitz property of (−A)αh, f and g combined with

Hölder’s inequality and BDG type of inequality for stochastic convolutions, we

have

E∥ψ(x)(t)− ψ(y)(t)∥2X ≤ kE∥x(t− r(t))− y(t− r(t))∥2X

+
3C2

5M
2
1−αt

2α−1

(1− k)(2α− 1)

∫ t

0

E∥x(u− r(u))− y(u− r(u))∥2Xds

+
3tM2C2

1

1− k

∫ t

0

E∥x(u− ρ(u))− y(u− ρ(u))∥2Xds

+
3M2C2

3

1− k

∫ t

0

E∥x(u− η(u))− y(u− η(u))∥2Xds.

Theorefore

sup
u∈[−r,t]

E∥ψ(x)(u)− ψ(y)(u)∥2X ≤ γ(t) sup
u∈[−r,t]

E∥x(u)− y(u)∥2X ,

where γ(t) = k +
3C2

5M
2
1−α

(1−k)(2α−1) t
2α +

3M2C2
1

1−k t2 +
3M2C2

3

1−k t. By condition (iii) of (H3),

we have γ(0) = k = C5∥(−A)−β∥ < 1. Then there exists 0 < T1 ≤ T such that

0 < γ(T1) < 1 and ψ is a contraction mapping on UT1 and therefore the operator

ψ has a unique fixed point, which is a mild solution of NSDE (1) on [−r, T1]. This
procedure can be repeated in order to extend the solution to the entire interval

[−r, T ] in finitely many steps. �

Remark 3.1. We mention that the existence of a unique mild solution of

NSDE (1) can still be guaranteed due to the fact that (17) remains true if as-

sumption (H4) is replace by the following hypothesis
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(H4’) for all x ∈ C([0, T ],L2(Ω, X)),

lim
t→s

E∥(−A)αh(t, x(t))− (−A)αh(s, x(s))∥2X = 0.

The above result has been proved by Boufoussi and Hajji [2] in a particular

case g ≡ 0. Therefore, our result is an improvement and extension to that of [2].

4. Exponential Stability

In this section, in order to establish some sufficient conditions ensuring the

exponential decay to zero in mean square for mild solution of NSDE (1), some

further assumptions are given as follows:

(H6) ∃λ > 0 and ∃M > 0 such that ∥S(t)∥ ≤Me−λt, for ∀ t ≥ 0.

(H7) For any t ≥ 0, functions f , g, h satisfy

∥f(t, 0)∥2X ≤ P1e
−λt, ∥g(t, 0)∥2L0

1
≤ P2e

−λt, ∥(−A)αh(t, 0)∥2X ≤ P3e
−λt,

where P1, P2, P3 are three non-negative real numbers.

(H8) The function σ : [0,+∞) → L0
2(Y2, X) satisfies∫ ∞

0

eλu∥σ(u)∥2L0
2
du <∞.

Let us recall the following lemma (see Lemma 3.1 of [5]).

Lemma 4.1. For γ > 0, there exist three positive constants: λi > 0 (i =

1, 2, 3) and a function y : [−τ,+∞) → [0,∞). If λ2 +
λ3

γ < 1 and the following

inequality

y(t) ≤


λ1e

−γt + λ2 supθ∈[−τ,0] y(t+ θ)

+λ3
∫ t

0
e−γ(t−s) supθ∈[−τ,0] y(s+ θ)ds, t ≥ 0,

λ1e
−γt, t ∈ [−τ, 0], τ > 0

holds. Then one has y(t) ≤ M1e
−µt, (t ≥ −τ), where µ is a positive root of the

algebra equation: λ2 +
λ3

γ−µe
µτ = 1 and M1 = max

{λ1(γ−µ)
λ3eµτ , λ1

}
> 0.

Now we give our main result of this section.
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Theorem 4.1. Supposed that the conditions (H1)–(H8) hold, then the mild

solution of NSDE (1) is exponentially stable in mean square moment if the fol-

lowing inequality

k +
4M2

1−αC
2
5Γ(2α− 1)λ1−2α

λ(1− k)
+

4M2C2
1

λ2(1− k)
+

4M2C2
3

λ(1− k)
< 1 (22)

holds.

Proof. By virtue of the inequality (22), we can find a number ε > 0 small

enough such that

k +
4M2

1−αC
2
5Γ(2α− 1)λ1−2α

(λ− ε)(1− k)
+

4M2C2
1

λ(λ− ε)(1− k)
+

4M2C2
3

(λ− ε)(1− k)
< 1. (23)

Let µ = λ− ε. If x(t) is the mild solution of NSDE (1), then we have

E∥x(t)∥2X ≤ 1

k
E∥h(t, x(t− r(t)))∥2X

+
12

1− k
E∥S(t)x(0)∥2X +

12

1− k
E∥S(t)h(0, x(−r(0)))∥2X

+
4

1− k
E
∥∥∥∥∫ t

0

AS(t− u)h(u, x(u− r(u)))du

∥∥∥∥2
X

+
4

1− k
E
∥∥∥∥∫ t

0

S(t− u)f(u, x(u− ρ(u)))du

∥∥∥∥2
X

+
4

1− k
E
∥∥∥∥∫ t

0

S(t− u)g(u, x(u− η(u)))dW (u)

∥∥∥∥2
X

+
12

1− k
E
∥∥∥∥∫ t

0

S(t− u)σ(u)dBH(u)

∥∥∥∥2
X

=:

7∑
i=1

Ii(t). (24)

By assumptions (H7) and (i) of (H3), and noting that 0 < µ < λ, we get

I1(t) ≤
∥(−A)−α∥2

k

(
E∥(−A)αh(t, x(t− r(t)))− (−A)αh(t, 0)∥2X

+E∥(−A)αh(t, 0)∥2X
)
≤ kE∥x(t− r(t))∥2X +K1e

−µt, (25)

where K1 = ∥(−A)−α∥2P3

k .

Assumption (H6) yields

I2(t) ≤ K2e
−2λt ≤ K2e

−µt, (26)
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where K2 = 12M2

1−k E∥φ(0)∥2X .

It follows from assumptions (H6), (H7) and (i) of (H3) that

I3(t) ≤ K3e
−2λt ≤ K3e

−µt, (27)

where K3 = 12∥(−A)−α∥2M2

1−k (C2
5E∥φ(−r(0))∥2X + P3).

From (c) of Lemma 3.1, Hölder inequality, assumptions (i) of (H3) and (H7),

we derive

I4(t) ≤
4

1− k
E
∣∣∣∣∫ t

0

∥(−A)1−αS(t− u)(−A)αh(u, x(u− r(u)))∥Xdu
∣∣∣∣2

≤
4M2

1−αΓ(2α− 1)λ1−2α

1− k

∫ t

0

e−λ(t−u)E∥(−A)αh(u, x(u− r(u)))∥2Xdu

≤
4M2

1−αC
2
5Γ(2α− 1)λ1−2α

1− k

∫ t

0

e−λ(t−u)E∥x(u− r(u))∥2Xdu+K4e
−µt, (28)

where K4 =
4M2

1−αΓ(2α−1)λ1−2αP3

(1−k)(λ−µ) .

Using Hölder inequality, assumptions (H2), (H6) and (H7), we obtain

I5(t) ≤
4

1− k
E
∣∣∣∣∫ t

0

∥S(t− u)f(u, x(u− ρ(u)))∥Xdu
∣∣∣∣2

≤ 4M2

λ(1− k)

∫ t

0

e−λ(t−u)E ∥f(u, x(u− ρ(u)))− f(u, 0) + f(u, 0)∥2X du

≤ 4M2C2
1

λ(1− k)

∫ t

0

e−λ(t−u)E∥x(u− ρ(u))∥2Xdu+K5e
−µt, (29)

where K5 = 4M2P1

λ(1−k)(λ−µ) .

By BDG type of inequality for stochastic convolutions, assumptions (H2),

(H6) and (H7) imply that

I6(t) ≤
4

1− k

∫ t

0

E∥S(t− u)g(u, x(u− η(u)))∥2L0
1
du

≤ 4M2

1− k

∫ t

0

e−λ(t−u)E∥g(u, x(u− η(u)))− g(u, 0) + g(u, 0)∥2L0
1
du

≤ 4M2C2
3

1− k

∫ t

0

e−λ(t−u)E∥x(u− η(u))∥2Xdu+K6e
−µt, (30)

where K6 = 4M2P2

(1−k)(λ−µ) . From assumption (H6), (H8) and Lemma 2.1, we have

I7(t) ≤
12κ

H

1− k
t2H−1

∫ t

0

E∥S(t− u)σ(u)∥2L0
2
du
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≤ 12M2κ
H

1− k
t2H−1e−λt

∫ t

0

eλu∥σ(u)∥2L0
2
du. (31)

Condition (H8) ensures the existence of a positive constant K7 such that

12M2κ
H

1− k
t2H−1e−(λ−µ)t

∫ t

0

eλu∥σ(u)∥2L0
2
du ≤ K7 for all t ≥ 0.

Then I7(t) ≤ K7e
−µt.

Substituting (25)–(31) into (24), we get

E∥x(t)∥2X ≤


γe−µt + k sup−τ≤u≤0 E∥x(t+ u)∥2X

+k′
∫ t

0
e−µ(t−s) sup−τ≤u≤0 E∥x(s+ u)∥2Xds, t ≥ 0,

γe−µt, t ∈ [−τ, 0],

where

γ = max

{
7∑

i=1

Ki, sup
−τ≤u≤0

E∥φ(u)∥2X

}
and

k′ =
4M2

1−αC
2
5Γ(2α− 1)λ1−2α

1− k
+

4M2C2
1

λ(1− k)
+

4M2C2
3

1− k
.

Thus, according to Lemma 4.1, we can complete the proof. �

Remark 4.1. Note that (H7) implies conditions: f(t, 0) ≡ 0, g(t, 0) ≡ 0,

(−A)αh(t, 0) ≡ 0, which are imposed in [11]. Moreover, if h ≡ 0 and σ ≡ 0 of

NSDE (1), then, the inequality (22) can be written as 3M2
(C2

1

λ +C2
2

)
< λ, which

is the same as (3.2) of [11] in the case that p = 2. So, as a particular case of our

paper, the result of [11] is improved and generalized.

Remark 4.2. We also remark that if (H7) is replaced by the following condi-

tion

(H7’) ∥f(t, x)∥2X ≤ Q1∥x∥2X + P1e
−λt, ∥g(t, x)∥2L0

1
≤ Q2∥x∥2X + P2e

−λt,

∥(−A)αh(t, x)∥2X ≤ Q3∥x∥2X + P3e
−λt,

where Q1, Q2, Q3, P1, P2, P3 are some non-negative real numbers, then, Theo-

rem 4.1 remains true. This result was proved by Boufoussi and Hajji [2] in the

particular case g ≡ 0. At this point, the inequality (22) can be replaced by

k +
4M2

1−αQ3Γ(2α− 1)λ1−2α

λ(1− k)
+

4M2Q1

λ2(1− k)
< 1

accordingly. It is easy to see that (H7) in our paper is weaker than (H7’) in [2],

therefore, our results improve and extend those of [2].
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5. Applications

Let us consider the following initial-boundary value problem-neutral stochas-

tic heat differential equation-with finite variable delays driven by both a Brownian

motion and an fBm:

d[u(t, ζ)−H(t, u(t− r(t), ζ))] =

[
∂2

∂2ζ
u(t, ζ) + F (t, u(t− ρ(t), ζ))

]
dt

+G(t, u(t− η(t), ζ))dW (t) + Σ(t)dBH(t), t ≥ 0,

u(t, 0) = u(t, π) = 0, t ≥ 0,

u(t, ζ) = φ(t, ζ)∈C([−τ, 0],L2(Ω, X)), t∈ [−τ, 0], τ > 0, 0≤ ζ ≤π,

(32)

whereW is a Brownian motion on a real separable Hilbert space Y1, B
H is an fBm

on a real separable Hilbert space Y2, F,H : R+×X → X G : R+×X → L0
1(Y1, X),

Σ : R+ → L0
2(Y2, X).

To study this system, we consider the space X = L2([0, π],R) and the oper-

ator A : D(A) ⊂ X → X given by Ay = y′′ with

D(A) = {y ∈ X : y′, y′′ ∈ X, y(0) = y(π) = 0}.

It is well known that A is the infinitesimal generator of an analytic semigroup

{S(t)}t≥0 onX. Furthermore, A has discrete spectrum with eigenvalues−n2, n∈N
and the corresponding normalized eigenfunctions given by

en :=

√
2

1
sinnx, n = 1, 2 .

In addition (en)n∈N is a complete orthonormal basis in X and

S(t)x =
∞∑

n=1

e−n2t⟨x, en⟩en,

for x ∈ X and t ≥ 0. It follows from this representation that S(t) is compact for

every t > 0 and that ∥S(t)∥ ≤ e−t for every t ≥ 0.

By using Theorem 3.1, if we impose suitable conditions on functions F , G,

H, Σ to verify assumptions (H2)-(H5) and on the delay functions r(·), ρ(·), η(·)
to verify assumptions on Theorem 3.1, we can conclude that the system (32) has

a unique mild solution on [−r, T ] for all T > 0 in the mean-square sense.

Furthermore, by using Theorem 4.1, if we suppose that the assumptions

(H2)–(H8) on functions F , G, H, Σ and inequality (22) hold as well, then the

mild solution of system (32) is exponentially stable in mean square moment.
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Example 5.1. Consider the semilinear neutral stochastic heat equation with

finite variable delays

d[u(t, ζ)− 1
2u(t− cos t, ζ)] =

[
∂2

∂2ζ
u(t, ζ)− ϵu(t−sin t,ζ)

1+|u(t−sin t,ζ)| − e−t

]
dt

+

[
ϵu(t− cos t, ζ)

1 + |u(t− cos t, ζ)|
+ e−t

]
dW (t) + e−tdBH(t), t ≥ 0,

u(t, 0) = u(t, π) = 0, t ≥ 0,

u(t, ζ) = φ(t, ζ) ∈ C([−1, 0],L2(Ω, X)), t ∈ [−1, 0], 0 ≤ ζ ≤ π,

(33)

Obviously, by Theorem 3.1, for any given ϵ, (33) has a unique mild solution.

Furthermore, by Theorem 4.1, we can also deduce that if

1

2
+

2M2
1−αΓ(2α− 1)

∥(−A)−α∥2
+ 16ϵ2 < 1,

then the mild solution of this equation is exponentially stable in mean square

moment, where A = ∂2

∂2ζ , one can refer [22] for the expression of M1−α and

∥(−A)−α∥.
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