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On spectral variation of two-parameter matrix
eigenvalue problem

By MICHAEL GIL’ (Beer-Sheva)

Abstract. We consider the two-parameter eigenvalue problem Zjvj − λ1Aj1vj −
λ2Aj2vj = 0, where λj ∈ C; Zj , Ajk (j, k = 1, 2) are matrices. Bounds for the variation

of the spectrum of that problem under perturbations are suggested.

1. Introduction and statement of the main result

The present paper is devoted to perturbations of the eigenvalues of a two-

parameter eigenvalue problem. Multiparameter eigenvalue problems arise in nu-

merous applications, cf. [3], [6], [15]. The classical results on that problem can

be found in the books [1], [14]. For some recent presentations we refer the in-

terested reader to the papers [11], [12], [17], [18]. In particular, the paper [11]

deals with harmonic Rayleigh-Ritz extraction for the multiparameter eigenvalue

problem. Linearizations of the quadratic two-parameter eigenvalue problems are

investigated in [12]. Numerical methods to solving spectral problems for multi-

parameter polynomial matrices are explored in [17].

In the present paper we establish bounds for the spectral variations of two-

parameter eigenvalue problems. To the best of our knowledge, such bounds were

not investigated in the available literature.

Let Cn be the complex n-dimensional Euclidean space with a scalar product

(. , .), the Euclidean norm ∥.∥ =
√
(. , .) and the unit matrix I; Cn×n is the set of

n× n complex matrices.
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For an A ∈ Cn×n, ∥A∥ = supx∈Cn ∥Ax∥/∥x∥ is the spectral (operator) norm,

A∗ is the adjoint operator, λk(A) (k = 1, . . . , n) are the eigenvalues with their

multiplicities, rs(A) is the spectral radius; σ(A) denotes the spectrum, A−1 is the

inverse operator,

Np(A) := [Trace (AA∗)p/2]1/p (1 ≤ p < ∞)

is the Schatten -von Neumann norm. Besides, N2(A) = ∥A∥F is the Frobenius

(Hilbert–Schmidt) norm; ⊗ means the tensor product.

Consider the problem

Z1v1 − λ1A11v1 − λ2A12v1 = 0, Z2v2 − λ1A21v2 − λ2A22v2 = 0, (1.1)

where λ1, λ2 ∈ C; vj ∈ Cnj ; Zj , Aj1 and Aj2 ∈ Cnj×nj (j = 1, 2). Denote problem

(1.1) by Λ. If for some λ1, λ2 problem Λ has a solution v1 ̸= 0 and v2 ̸= 0, then the

pair µ̂ = (λ1, λ2) is called the eigenvalue of Λ. Besides, λ1 is the first coordinate

of µ̂ and λ2 is called the second coordinate of µ̂. It is possible that λ1 = ∞ or

(and) λ2 = ∞. The set of all the eigenvalues is the spectrum of Λ and is denoted

by Σ(Λ). Besides, the set of all the j− th coordinates (j = 1, 2) of the eigenvalues

is denoted by σj(Λ). We write Σ(Λ) = (σ1(Λ), σ2(Λ)).

Together with Λ consider the eigenvalue problem

Z̃1ṽ1 − λ̃1Ã11ṽ1 − λ̃2A12ṽ1 = 0, Z̃2ṽ2 − λ̃1Ã21ṽ2 − λ̃2Ã22ṽ2 = 0, (1.2)

where λ̃1, λ̃2 ∈ C; Z̃j , Ãj1 and Ãj2 ∈ Cnj×nj . Problem (1.2) is denoted by Λ̃.

The spectral variation of Λ̃ with respect to Λ is the pair (sv
(1)
Λ (Λ̃), sv

(2)
Λ (Λ̃)),

where

sv
(j)
Λ (Λ̃) = sup

s∈σj(Λ̃)

inf
t∈σj(Λ)

|s− t|.

Introduce the (n1n2)× (n1n2)-matrices

K0 = A11⊗A22−A12⊗A21, K1 = Z1⊗A22−A12⊗Z2, K2 = A11⊗Z2−Z1⊗A21

and

K̃0 = Ã11 ⊗ Ã22 − Ã12 ⊗ Ã21, K̃1 = Z̃1 ⊗ Ã22 − Ã12 ⊗ Z̃2,

K̃2 = Ã11 ⊗ Z̃2 − Z̃1 ⊗ Ã21,

and put

q(Kl) = ∥Kl − K̃l∥ (l = 0, 1, 2).

Now we are in a position to formulate the main result of the paper.
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Theorem 1.1. Let both matrices K0 and K̃0 be invertible. Then for any

p ≥ 2 and j = 1, 2 we have

(sv
(j)
Λ (Λ̃))n1n2

≤ q(Kj) + q(K0)rs(K̃
−1
0 K̃j)

| det(K0)|(n1n2 − 1)(n1n2−1)/p
(Np(Kj) + rs(K̃

−1
0 K̃j)Np(K0))

n1n2−1. (1.3)

The proof of this theorem is presented in the next section. In Section 3 we

suggest an estimate for the spectral radius rs(K̃
−1
0 K̃j) of matrix K̃−1

0 K̃j .

Letting p → ∞ in (1.3), we arrive at the inequality

(sv
(j)
Λ (Λ̃))n1n2

≤ q(Kj) + q(K0)rs(K̃
−1
0 K̃j)

| det(K0)|
(∥Kj∥+ rs(K̃

−1
0 K̃j)∥K0∥)n1n2−1 (j = 1, 2). (1.4)

2. Proof of Theorem 1.1

Consider the pencil T (z) = A−zB (z ∈ C), where A and B are n×n-matrices.

A number µ is a characteristic value of T (.) if detT (µ) = 0, it is a regular point

of T (.) if detT (µ) ̸= 0. The set of all characteristic values of T (.) is the spectrum

of T (.) and is denoted by Σ(T (.)). Put rs(T (.)) := sup{|µ| : µ ∈ Σ(T (.))}.
A pencil T̃ (z) = Ã− zB̃ with n× n matrices Ã and B̃ will be considered as

a perturbation of T (z). It is assumed that B and B̃ are invertible.

The value

varT (.)(T̃ (.)) := sup
s∈Σ(T̃ (.))

inf
t∈Σ(T (.))

|s− t|

is called the spectral variation of T̃ (.) with respect to T (.).

Set qA = ∥A− Ã∥ and qB = ∥B̃ −B∥.

Lemma 2.1. For any p ≥ 2, one has

(svT (.)(T̃ (.)))
n ≤ qA + qBrs(T̃ (.))

(n− 1)(n−1)/p|det(B)|
(Np(A) + rs(T̃ (.))Np(B))n−1. (2.1)

In particular,

(svT (.)(T̃ (.)))
n ≤ qA + qBrs(T̃ (.))

| det(B)|
(∥A∥+ rs(T̃ (.))∥B∥)n−1. (2.2)
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Proof. Let λ be a characteristic value of T (.) and y = y(λ) ∈ Cn the

corresponding eigenvector: (A − λB)y = 0. Then B−1Ay = λy. Hence it easily

follows that Σ(T (.)) and σ(B−1A) coincide.

Now let µ be a characteristic value of T̃ (.) and x = x(µ) ∈ Cn the corre-

sponding normed eigenvalue: T̃ (µ)x = 0. Take an orthonormal basis e1, . . . , en
(dependent on µ) in such a way that e1 = x. Since T̃ (µ)e1 = 0, by the Hadamard

inequality

| det(T (µ))| ≤
n∏

k=1

∥T (µ)ek∥ = ∥T (µ)e1 − T̃ (µ)e1∥
n∏

k=2

∥T (µ)ek∥.

Hence,

| det(T (µ))| ≤ ∥T (µ)− T̃ (µ)∥
n∏

k=2

∥T (µ)ek∥. (2.3)

Besides,

∥T (µ)− T̃ (µ)∥ ≤ ∥A− Ã∥+ ∥µ(B − B̃)∥ ≤ qA + qBrs(T̃ ). (2.4)

In addition, by the inequality between the arithmetic and geometric means, for

any µ ∈ Σ(T̃ (.)) we have

n∏
k=2

∥T (µ)ek∥p ≤

(
1

n− 1

n∑
k=2

∥T (µ)ek∥p
)n−1

.

Due to [5, Theorem 4.7, p. 82],

n∑
k=1

∥T (µ)ek∥p ≤ Np
p (T (µ))

and therefore,

n∏
k=2

∥T (µ)ek∥

≤ (Np(A) + |µ|Np(B))n

(n− 1)(n−1)/p
≤ 1

(n− 1)(n−1)/p
(Np(A) + rs(T̃ (.))Np(B))n−1.

Now (2.3) implies

| det(T (µ))| ≤ 1

(n− 1)(n−1)/p
(qA + qBrs(T̃ ))(Np(A) + rs(T̃ )Np(B))n−1.
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But

|det(T (µ))| = | det(B) det(B−1A−µI)| ≥ | det(B)|min
k

|λk(B
−1A)− µ|n. (2.5)

So

min
k

|λk(B
−1A)− µ|n≤ (qA+qBrs(T̃ ))

| det(B)|(n−1)(n−1)/p
(Np(A)+rs(T̃ )Np(B))n−1. (2.6)

Hence, taking into account that Σ(T̃ (.)) and σ(B̃−1Ã) coincide, we get (2.1).

Letting in (2.1) p → ∞ we obtain (2.2), since Np(A) → ∥A∥ as p → ∞. This

completes the proof. �

The literature on the linear matrix pencils is rather rich, cf. the interesting

recent papers [4], [13], [16], [20] and references therein. In particular, the paper

[13] deals with condition numbers of a nondefective multiple eigenvalue of a non-

symmetric matrix pencil. In the paper [20] the sensitivity of multiple eigenvalues

of nonsymmetric matrix pencils is investigated. In [16] localization of the eigen-

values of positive definite matrices is investigated. To the best of our knowledge,

inequalities of the type (2.1) and (2.2), which we apply below were not established

in the available literature.

Furthermore, if B = I, then det(B) = 1, rs(T̃ (.)) = rs(Ã) and (2.2) implies

(svA(Ã))
n ≤ ∥A− Ã∥(∥A∥+ rs(Ã))n−1. (2.7)

Here naturally, svA(Ã) is the spectral variation of Ã with respect to A:

svA(Ã) := sup
s∈σ(Ã)

inf
t∈σ(A)

|s− t|.

Since, rs(Ã) ≤ ∥Ã∥, inequality (2.7) slightly refines the well-known (Elsner) in-

equality

(svA(Ã))
n ≤ ∥A− Ã∥(∥A∥+ ∥Ã∥)n−1,

cf. [19]. In addition, (2.1) implies

(svA)(Ã)
n ≤ ∥A− Ã∥

(n− 1)(n−1)/p
(Np(A) + rs(Ã))

n−1. (2.8)

Proof of Theorem 1.1. Following Atkinson [1], multiply the equation

Z1v1 − λ1A11v1 − λ2A12v1 = 0 in the Kronecker sense on the right by A22v2:

(Z1 − λ1A11 − λ2A12)v1 ⊗A22v2 = 0.
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Rewrite this equation as

(Z1 ⊗A22 − λ1A11 ⊗A22 − λ2A12 ⊗A22)v̂ = 0, (2.9)

where v̂ = v1 ⊗ v2. Now multiply the equation Z2v2 − λ2A21v2 − λ2A22v2 = 0 in

the Kronecker sense on the left by A12v1. Then

(A12 ⊗ Z2 − λ1A12 ⊗A21 − λ2A12 ⊗A22)v̂ = 0.

Subtracting with equation from (2.9) we arrive at the relation

(Z1 ⊗A22 −A12 ⊗ Z2 − λ1(A11 ⊗A22 −A12 ⊗A21))v̂ = 0.

Or (K1 − λ1K0)v̂ = 0. So λ1 belongs to the spectrum of the pencil K1 − zK0.

Similarly one can check that any λ2 ∈ σ2(Λ) belongs to the spectrum of the

pencil K2 − zK0.

Now the assertion of Theorem 1.1 directly follows from Lemma 2.1. �

3. A bound for rs(K̃
−1
0 K̃j)

We need the following result.

Lemma 3.1. Let A be an invertible n× n-matrix. Then

∥A−1 detA∥ =

n−1∏
k=1

sk(A),

where sk(A) (k = 1, . . . , n) are the singular numbers of A counted with their

multiplicities in the decreasing order.

Proof. First, let A be a positive definite Hermitian matrix and λn(A) =

mink=1,...,n λk(A). Then ∥A−1∥ = λ−1
n (A) and

∥A−1 detA∥ =
n−1∏
k=1

λk(A). (3.1)

Now let A be arbitrary invertible. Then the matrix B∗ = AA is positive definite,

∥B−1∥ = ∥A−1∥2, λk(B) = s2k(A) and detB = detAA∗ = |detA|2. Hence,

replacing in (3.1) A for B we obtain the required result. �
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Corollary 3.2. Let A be an invertible n× n-matrix. Then

∥A−1 detA∥ ≤
Nn−1

p (A)

(n− 1)(n−1)/p
(1 ≤ p < ∞) (3.2)

and

∥A−1 detA∥ ≤ ∥A∥n−1. (3.3)

Indeed, due the latter lemma and the inequality between the arithmetic and

geometric mean values we get

∥A−1 detA∥p =
n−1∏
k=1

spk(A) ≤
[
(n− 1)−1

n−1∑
k=1

spk(A)

]n−1

≤ [(n− 1)−1Np
p (A)]

n−1,

proving (3.2). Taking into account that sj(A) ≤ ∥A∥, we obtain (3.3).

Since rs(K̃
−1
0 K̃j) ≤ ∥K̃−1

0 K̃j∥ ≤ ∥K̃−1
0 ∥∥K̃j∥, (3.2) and (3.3) give us a bound

for the quantity rs(K̃
−1
0 K̃j), provided we have a lower bound for det(K̃0). Such

a bound is discussed below.

Let ∥A∥Cn mean an arbitrary operator norm of n× n matrix A. Recall that

∥A∥ is the spectral norm. Let A and Ã be n×n-matrices. The following inequality

is well-known [2, p. 107]:

| detA− det Ã| ≤ nMn−1
2 ∥A− Ã∥, (3.4)

where M2 := max{∥A∥, ∥Ã∥}. The spectral norm is unitarily invariant, but often

is not easy to compute that norm. To the best of our knowledge, for non-spectral

norms, the similar inequalities were not published in available literature. It is

supposed that for a given matrix norm, there is a constant αn independent of A,

such that

| detA| ≤ αn∥A∥nCn . (3.5)

Lemma 3.3. Let condition (3.5) hold. Then

| detA− det Ã| ≤ γn ∥A− Ã∥Cn (∥A− Ã∥Cn + ∥A+ Ã∥Cn)n−1, (3.6)

where

γn :=
αnn

n

2n−1(n− 1)n−1
.

Proof. Let X and Y be complex normed spaces with norms ∥.∥X and ∥.∥Y ,
respectively, and F be a Y -valued function defined on X. Assume that F (C+λC̃)

(λ ∈ C) is an entire function for all C, C̃ ∈ X. That is, for any ϕ ∈ Y ∗, the
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functional ⟨ϕ, F (C + λC̃)⟩ defined on Y is an entire scalar valued function of λ.

In [7] (see also Lemma 2.14.1 from [9]), the following result has been proved:

Let F (C + λC̃) (λ ∈ C) be an entire function for all C, C̃ ∈ X and there be

a monotone non-decreasing function G : [0,∞) → [0,∞), such that

∥F (C)∥Y ≤ G(∥C∥X) (C ∈ X). (3.7)

Then for all C, C̃ ∈ X we have

∥F (C)− F (C̃)∥Y ≤ ∥C − C̃∥X G

(
1 +

1

2
∥C + C̃∥X +

1

2
∥C − C̃∥X

)
. (3.8)

Furthermore, take C = A, C̃ = Ã and F (A + λÃ) = det(A + λÃ). Then due to

(3.5) we have (3.7) with G(∥A∥Cn) = αn∥A∥nCn . Now (3.8) implies the inequality

| detA− det Ã| ≤ αn∥A− Ã∥Cn

(
1 +

1

2
∥A− Ã∥Cn +

1

2
∥A+ Ã∥Cn

)n

. (3.9)

For a constant c > 0 put A1 = cA and Ã1 = cÃ. Then by (3.9)

| detA1 − det Ã1| ≤ ∥A1 − Ã1∥Cnαn

(
1 +

1

2
∥A1 − Ã1∥Cn +

1

2
∥A1 + Ã1∥Cn

)n

.

But ∥A1∥Cn = c∥A∥Cn , ∥Ã1∥Cn = c∥Ã∥Cn and

|detA1 − det Ã1| = cn| detA− det Ã|.

Thus,

cn| detA− det Ã| ≤ cαn∥A− Ã∥Cn(1 + cb)n, (3.10)

where

b =
1

2
∥A− Ã∥Cn +

1

2
∥A+ Ã∥Cn .

Denote x = bc. Then from inequality (3.10) we obtain

| detA− det Ã| ≤ αnb
n−1∥A− Ã∥Cn

(1 + x)n

xn−1
.

Minimize the function

f(x) =
(1 + x)n

xn−1
, x > 0.

Simple calculation show that

min
x≥0

f(x) =
nn

(n− 1)n−1
.

So

| detA− det Ã| ≤ αnn
n

(n− 1)n−1
bn−1∥A− Ã∥Cn .

This is the assertion of the lemma. �
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For the spectral norm inequality (3.6), can be worse than (3.4). Indeed, for

the spectral norm we have αn = 1. If we take A = aÃ with a positive constant

a < 1, then ∥A− Ã∥+ ∥A+ Ã∥ = 2∥Ã∥ = 2M2, but

γn2
n−1 = n

(
1 +

1

n− 1

)n−1

≥ n.

Furthermore, due to the inequality between the arithmetic and geometric mean

values,

|detA|p =

n∏
k=1

|λk(A)|p ≤

(
1

n

n∑
k=1

|λk(A)|p
)n

.

Thus,

| detA| ≤ 1

nn/p
Nn

p (A).

So in this case αn = 1
nn/p and γn = ζn,p, where

ζn,p :=
nn

2n−1nn/p(n− 1)n−1
.

Now (3.6) implies

Corollary 3.4. One has

| detA− det Ã| ≤ ∆p(A),

where

∆p(A) := ζn,pNp(A− Ã) (Np(A− Ã) +Np(A+ Ã))n−1.

Note that in [9, Corollary 3.3] a result weaker than the previous corollary

proved for the normN1(.). The latter corollary gives us the invertibility conditions

for K̃0. Moreover, Corollaries 3.2 and 3.4 imply

∥K̃−1
0 ∥ ≤ ∥K̃0∥n−1

| det K̃0|
≤ ∥K̃0∥n−1

| det(K0)| −∆p(K0)
(| det(K0)| > ∆p(K0)).

We thus have proved

Corollary 3.5. On has

rs(K̃
−1
0 K̃j) ≤

∥K̃j∥∥K̃0∥n−1

|det(K0)| −∆p(K0)
, provided | det(K0)| > ∆p(K0).

Other bounds for other bounds for rs(K̃
−1
0 K̃j) and therefore for the spectral

radius of the two parameter eigenvalue problem can be found in the paper [10]

and references given therein.
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