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Minus partial order in Rickart rings

By DRAGAN S. DJORDJEVIĆ (Nǐs), DRAGAN S. RAKIĆ (Nǐs)
and JANKO MAROVT (Maribor)

Abstract. The minus partial order is already known for complex matrices and

bounded linear operators on Hilbert spaces. The notion is extended to Rickart rings and

it is proved that this relation is a partial order. Some well-known results are generalized.

1. Introduction and motivation

Let A be a ring with the unit 1. If M ⊆ A, then the right annihilator of M

is denoted by M◦ = {x ∈ A : (∀m ∈ M)mx = 0}, and the left annihilator of M

is denoted by ◦M = {x ∈ A : (∀m ∈ M)xm = 0}. M◦ is the right ideal of A,

and ◦M is a left ideal of A. Particularly, if a ∈ A and M = {a}, then we shortly

use a◦ = {a}◦ and ◦a = ◦{a}.
The set of idempotents of A is denoted by A• = {p ∈ A : p2 = p}.
A ring A is a Rickart ring, if for every a ∈ A there exist some p, q ∈ A• such

that a◦ = pA and ◦a = Aq. Note that if A is a Rickart ring, then A has a unity

element. The proof is similar to that used for Rickart ∗-rings [1].
Let H be a Hilbert space, L(H) the set of all bounded linear operators on H,

and let R(A) and N (A) denote the range and the null-space of A ∈ L(H). If
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M ⊆ H, we will denote byM the norm-closure ofM inH. For a finite dimensional

Hilbert space H Hartwig [3] defined a partial order in L(H) in the following

way:

A ≼ B if and only if rank(B −A) = rank(B)− rank(A).

He also observed that there exists another equivalent definition of this order,

namely

A ≼ B if and only if A−A = A−B and AA− = BA−,

where A− is a generalized inner inverse of A, i.e. AA−A = A. The partial order

≼ is thus usually called the minus partial order.

In [6] Šemrl extended the minus partial order in L(H) for an arbitrary

Hilbert space H. The notion of a rank of an operator (equivalently, a rank of a

finite complex matrix) can not be applied for bounded linear operators on general

Hilbert spaces. Moreover, A ∈ L(H) has a generalized inner inverse if and only if

its image is closed. Since Šemrl could not use the notion of rank of an operator

and since he did not want to restrict his attention only to closed range operators,

he found a new approach how to extend the minus partial order. He introduced

another equivalent definition of the minus partial order: for A,B ∈ L(H), where

H is a finite dimensional Hilbert space, we have A ≼ B if and only if there exist

idempotent operators P,Q ∈ L(H) such that R(P ) = R(A), N (Q) = N (A),

PA = PB and AQ = BQ. Recall that the range of an idempotent operator

P ∈ L(H), where H can be a general Hilbert space, is closed. Using the same

equations, only adding the closure on R(A) Šemrl extended the concept of the

minus partial order in L(H) for an arbitrary Hilbert space H:

Definition 1.1. Let H be a Hilbert space and let A,B ∈ L(H). Then A ≼ B

if and only if there exists idempotents P,Q ∈ (L(H))• such that the following

hold:

(1) R(P ) = R(A);

(2) N (A) = N (Q);

(3) PA = PB;

(4) AQ = BQ.

Šemrl proved that ≼ is indeed a partial order in B(H). Moreover, it is proved

in [6] that Šemrl’s definition is a proper extension of Hartwig’s definition of the

minus partial order of matrices. Also, in [5], the minus partial order is generalized

on Banach space operators which have generalized inverses.

We prove the following result, which allows us to consider the algebraic ver-

sion of the minus partial order. First, we need the following auxiliary statement.
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Lemma 1.1. Let H, K, L, N , N ̸= {0}, be Hilbert spaces, A1 ∈ L(H,L)

and A2 ∈ L(K,L). Then the following statements are equivalent:

(1) For every B ∈ L(L,N) the following equivalence holds:

(BA1 = 0 and BA2 = 0) if and only if B = 0;

(2) R(A1) +R(A2) = L.

Proof. (1) =⇒ (2): Suppose that R(A1) +R(A2) ̸= L. Then there exists

a non-trivial closed subspace L1 of L, such that R(A1) +R(A2) ⊕ L1 = L. Let

B1 ∈ L(L1, N) be any non-zero bounded linear operator, and define B ∈ L(L,N)

as follows:

Bx =

{
0, x ∈ R(A1) +R(A2),

B1x, x ∈ L1.

Obviously, B ̸= 0, BA1 = 0 and BA2 = 0.

(2) =⇒ (1): Obvious. �

Definition 1.2. Let H be a Hilbert space and let A,B ∈ L(H). Then we

write A ≼ B if and only if there exist idempotent operators P,Q ∈ L(H) such

that the following hold:

(1) ◦A = L(H) · (I − P );

(2) A◦ = (I −Q) · L(H);

(3) PA = PB;

(4) AQ = BQ.

Theorem 1.2. The minus partial order given by Definition 1.1 is on L(H)

equivalent to the order given by Definition 1.2.

Proof. Let A,B ∈ L(H) and suppose that A ≼ B in the sense of Defini-

tion 1.1. Thus, there exist idempotents P,Q ∈ (L(H))• such that R(P ) = R(A),

N (A) = N (Q), PA = PB and AQ = BQ. Let us prove that A ≼ B in the

sense of Definition 1.2. It is sufficient to show that ◦A = L(H) · (I − P ) and

A◦ = (I −Q) · L(H).

Let D ∈ L(H). Then D(I − P )A = 0, since R(A) ⊆ R(P ) = N (I − P ).

Thus, L(H) · (I − P ) ⊆ ◦A. On the other hand, suppose that D ∈ ◦A. Then

DA = 0 so R(A) ⊆ N (D) since N (D) is closed. We obtain R(P ) ⊆ N (D) and

thus we have DP = 0. Therefore

D = D(P + I − P ) = D(I − P ) ∈ L(H) · (I − P ).

Hence, ◦A = L(H) · (I − P ).
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If D ∈ L(H), since R(I−Q) = N (Q) = N (A), we get A(I−Q)D = 0. Thus,

(I − Q) · L(H) ⊆ A◦. On the other hand, let D ∈ A◦. Then R(D) ⊆ N (A) =

N (Q), so QD = 0. We obtain

D = (Q+ I −Q)D = (I −Q)D ∈ (I −Q) · L(H).

Therefore, A◦ = (I −Q) · L(H).

Let us now prove that Definition 1.2 implies Definition 1.1. Suppose that

A ≼ B, A,B ∈ L(H), in the sense of Definition 1.2. There exist idempotents

P,Q ∈ (L(H))• such that ◦A = L(H) · (I − P ), A◦ = (I −Q) · L(H), PA = PB

and AQ = BQ. It is sufficient to show that R(P ) = R(A) and N (A) = N (Q).

From ◦A = L(H) ·(I−P ) we get (I−P )A = 0, so R(A) ⊆ N (I−P ) = R(P ), and

consequently R(A) ⊆ R(P ), since R(P ) is closed. Since H = R(P )⊕N (P ), every

operator from L(H) has a 2× 2 matrix form with respect to this decomposition.

Particularly, from R(A) ⊆ R(P ), we obtain the following:

A =

[
A1 A2

0 0

]
:

[
R(P )

N (P )

]
→

[
R(P )

N (P )

]
.

Now we use the fact ◦A = L(H) · (I − P ). Notice that C ∈ L(H) · (I − P ) if and

only if C = C(I − P ), that is, if and only if CP = 0. Also,

P =

[
IR(P ) 0

0 0

]
:

[
R(P )

N (P )

]
→

[
R(P )

N (P )

]
.

If

C =

[
C1 C2

C3 C4

]
:

[
R(P )

N (P )

]
→

[
R(P )

N (P )

]
,

then CP = 0 is equivalent to C1 = 0 and C3 = 0. On the other hand, CA = 0

holds if and only if [
C1A1 C1A2

C3A1 C3A2

]
= 0.

So we have the following conclusion. For arbitrary operators C1 ∈ L(R(P )) and

C3 ∈ L(R(P ),N (P )), we have the equivalence:

(C1A1 = 0, C1A2 = 0, C3A1 = 0, C3A2 = 0) ⇐⇒ (C1 = 0, C3 = 0). (1)

One of the subspaces R(P ) or N (P ) is not the zero subspace. Without loss of

generality suppose that R(P ) ̸= {0}. Set C3 = 0. Now (1) becomes

(C1A1 = 0, C1A2 = 0) ⇐⇒ C1 = 0,
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for any C1 ∈ L(R(P )). From Lemma 1.1 we obtain that R(A1) +R(A2) = R(P ).

Since R(A) = R(A1) +R(A2) we have R(A) = R(P ).

Now, from the condition A◦ = (I −Q) · L(H), using the result we have just

proved, the following hold:

A◦ = (I −Q) · L(H) ⇐⇒ ◦(A∗) = L(H) · (I −Q∗) ⇐⇒ R(Q∗) = R(A∗)

⇐⇒ R(I −Q) = N (Q) = N (A).

Hence, A ≼ B in the sense of Definition 1.2. �

2. Results in rings

Previous Theorem 1.2 suggests the following definition of the minus partial

order. Since some preliminary results can be proved in a general setting, we shall

in this section use that A is a ring with the unit 1.

Definition 2.1. Let A be a ring with the unit 1, and let a, b ∈ A. Then

we write a ≼ b if and only if there exists idempotents p, q ∈ A• such that the

following hold:

(1) ◦a = A(1− p);

(2) a◦ = (1− q)A;

(3) pa = pb;

(4) aq = bq.

We call ≼ the minus partial order on A. In the next section we will prove

that when A is a Rickart ring, ≼ is indeed a partial order.

Notice that from (1) we obtain (1− p)a = 0 so a = pa. Similarly, a = aq.

We need some auxiliary results.

Lemma 2.1. Let p, q ∈ A•. Then

(1) A(1− p) = ◦p;

(2) (1− q)A = q◦.

Proof. We have A(1− p) ⊆ ◦p, since (1− p)p = 0. Suppose that for u ∈ A,

up = 0. Then u = u(1− p) ∈ A(1− p). The proof of (ii) is similar. �

It follows that we can replace the conditions (1) and (2) of Definition 2.1 by

the conditions ◦a = ◦p and a◦ = q◦ respectively.

Lemma 2.2. Let p ∈ A• and a ∈ A. Then
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(1) (◦p)◦ = pA;

(2) ◦a = A(1− p) ⇐⇒ (◦a)◦ = (◦p)◦.

Proof. (1): By Lemma 2.1,

(◦p)◦ = (A(1− p))
◦
= {u ∈ A : (∀x ∈ A) x(1− p)u = 0}

= {u ∈ A : (1− p)u = 0} = pA.

(2): If ◦a = A(1 − p) then (◦a)◦ = (◦p)◦ by Lemma 2.1. Now, suppose that

(◦a)◦ = (◦p)◦ i.e. (◦a)◦ = pA. Let u ∈ ◦a. As p ∈ pA = (◦a)◦ we have up = 0

so u = u(1 − p) ∈ A(1 − p). On the other hand, suppose that u ∈ A(1 − p) i.e.

up = 0. As a ∈ (◦a)◦ = pA we have a = pa so ua = upa = 0. �

In the same manner we obtain the following lemma.

Lemma 2.3. Let q ∈ A• and a ∈ A. Then

(i) ◦(q◦) = Aq;

(ii) a◦ = (1− q)A ⇐⇒ ◦(a◦) = ◦(q◦).

It follows that we can replace the conditions (1) and (2) of Definition 2.1 by

the conditions (◦a)◦ = pA and ◦(a◦) = Aq respectively.

Our definition of order ≼ is a proper extension of well known partial order

on the set of idempotents.

Theorem 2.4. Let a, b ∈ A•. Then a ≼ b if and only if ab = ba = a.

Proof. Suppose that a, b ∈ A• and ab = ba = a. By Lemma 2.1 we

have ◦a = A(1 − a), a◦ = (1 − a)A and by assumption aa = ab, aa = ba so

a ≼ b. Now suppose that a ≼ b. There exist p, q ∈ A• as in Definition 2.1 so

ab = (pa)b = (pb)b = pb = a and ba = b(aq) = b(bq) = bq = a. �

Recall that von Neumann regular ring is a ring A such that for every a ∈ A
there exists an x ∈ A such that axa = a. The following theorem shows that,

when A is a von Neumann regular ring, ≼ order coincides with well known minus

partial order which is defined by a ≤ b if there exists an x ∈ A such that ax = bx

and xa = xb where axa = a. Thus, the minus partial order in von Neumann

regular ring is defined in the same way as in L(H) where H is a finite dimensional

Hilbert space.

Theorem 2.5. Suppose that A is a von Neumann regular ring with the

unit 1 and let a, b ∈ A. Then a ≼ b if and only if a ≤ b.
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Proof. Suppose that a ≼ b and let p, q ∈ A• be as in Definition 2.1. Since

A is von Neumann regular ring, there exists an x ∈ A such that axa = a.

Set y = qxp. We have aya = a(qxp)a = axa = a, ay = aqxp = bqxp = by,

ya = qxpa = qxpb = yb so a ≤ b.

Now suppose that a ≤ b. There exists an x ∈ A such that axa = a, ax = bx,

xa = xb. Set p = ax and q = xa. Then p ∈ A• and 1 − p ∈ ◦a. On the other

hand if u ∈ ◦a then up = u(ax) = 0, so u = u(1 − p), ◦a = A(1 − p). Moreover,

pa = axa = axb = pb. Similarly, q ∈ A•, a◦ = (1− q)A, aq = bq, so a ≼ b. �

Since we can not use decompositions of spaces induced by projections, we

have to use idempotents appropriately.

Remark 2.1. We say that equality 1 = e1 + e2 + · · · + en, where e1, e2, . . . ,

en ∈ A•, is a decomposition of the identity of the ring A if ei and ej are orthogonal

for i ̸= j, i.e. eiej = 0 for i ̸= j. Let 1 = e1 + · · · + en and 1 = f1 + · · · + fn be

two decompositions of the identity of a ring A. For any x ∈ A we have

x = 1 · x · 1 = (e1 + · · ·+ en)x(f1 + · · ·+ fn) =
n∑

i,j=1

eixfj ,

and above sum defines a decomposition of A into a direct sum of groups:

A =

n⊕
i,j=1

eiAfj . (2)

It is convenient to write x as a matrix

x =

x11 . . . x1n

...
. . .

...

xn1 . . . xnn


e×f

,

where xij = eixfj ∈ eiAfj .

If x = (xij)e×f and y = (yij)e×f , then it is obvious that x + y = (xij +

yij)e×f . Moreover, if 1 = g1 + · · · + gn is a decomposition of the identity of

A and z = (zij)f×g, then, by the orthogonality of idempotents involved, xz =

(
∑n

k=1 xikzkj)e×g. Thus, if we have decompositions of the identity of A, then the

usual algebraic operations in A can be interpreted as simple operations between

appropriate n× n matrices over A.

When ei = fi, i = 1, n, the decomposition (2) is known as the two-sided

Peirce decomposition of the ring A, [4]. When n = 2, e1 = p and f1 = q then we

write

x =

[
x11 x12

x21 x22

]
p×q
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We prove the following result.

Theorem 2.6. Let A be a ring with the unit, and let a, b ∈ A. Then a ≼ b

if and only if there exists idempotents p, q ∈ A• such that the following three

conditions hold:

(1) a =
[
a1 0
0 0

]
p×q

and b =
[
a1 0
0 b1

]
p×q

;

(2) If z ∈ Ap and za1 = 0, then z = 0;

(3) If z ∈ qA and a1z = 0, then z = 0.

Proof. Suppose that a ≼ b and let p, q ∈ A• be corresponding idempotents.

As we have seen a = pa = aq = paq, so

a =

[
a1 0

0 0

]
p×q

.

Let

b =

[
b4 b2
b3 b1

]
p×q

.

From p(b− a) = 0 we get[
p 0

0 0

]
p×p

[
b4 − a1 b2

b3 b1

]
p×q

=

[
p(b4 − a1) pb2

0 0

]
p×q

= 0,

implying that p(b4−a1) = 0 and pb2 = 0. Since pa1 = a1, pb4 = b4, and pb2 = b2,

we get a1 = b4 and b2 = 0. Analogously, from (b− a)q = 0 we get b3 = 0. Thus,

the statement (1) of this theorem is proved.

In order to prove the statement (2), suppose that z ∈ Ap and za1 = 0. Since

a =
[
a1 0
0 0

]
p×q

we get za = 0, so z ∈ ◦a = A(1 − p) = ◦p, i.e. z = zp = 0. The

statement (3) can be proved proved in the same manner.

Now, we suppose that there exists idempotents p, q ∈ A• such that state-

ments (1)–(3) of this theorem hold. We immediately obtain

p(a− b)=

[
p 0

0 0

]
p×p

[
0 0

0 −b1

]
p×q

=0 and (a− b)q=

[
0 0

0 −b1

]
p×q

[
q 0

0 0

]
q×q

=0.

Now, we prove that ◦a = A(1 − p). If y ∈ A(1 − p), then y =
[ 0 y2

0 y4

]
q×p

. It

is easy to see that ya = 0. Thus, we established A(1− p) ⊆ ◦a.
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To prove the opposite inclusion, suppose that z ∈ ◦a. Then z = [ z1 z2
z3 z4 ]q×p

and

0 = za =

[
z1a1 0

z3a1 0

]
q×q

.

We conclude z1a1 = z3a1 = 0. Since z1, z3 ∈ Ap, (2) shows that z1 = z3 = 0.

Thus, z =
[
0 z2
0 z4

]
q×p

∈ A(1− p). Hence, we proved ◦a ⊆ A(1− p).

In the same manner we can prove that a◦ = (1− q)A. �

3. The minus partial order in Rickart rings

The idempotents in Definition 2.1 need not be unique. Write

LP(a) := {p ∈ A• : ◦a = A(1− p)},

RP(a) := {q ∈ A• : a◦ = (1− q)A}.

When A is Rickart ring then LP(a) and RP(a) are nonempty. Lemma 2.1 gives

characterizations LP(a) = {p ∈ A• : ◦a = ◦p} and RP(a) = {q ∈ A• : a◦ = q◦}.

Lemma 3.1. Let a ∈ A, p ∈ LP(a) and q ∈ RP(a). (Such idempotents exist

if A is a Rickart ring.) Then

(1) LP(a) =
{
[ p p1

0 0 ]p×p : p1 ∈ pA(1− p)
}
;

(2) RP(a) =
{[ q 0

q1 0

]
q×q

: q1 ∈ (1− q)Aq
}
.

Proof. From (1 − p)a = 0 = a(1 − q) we conclude that a =
[
a1 0
0 0

]
p×q

. If

p′ = [ p p1

0 0 ]p×p then p′2 = p′. Since 1 =
[ p 0
0 1−p

]
p×p

we also have

(1− p′)a =

[
0 −p1
0 1− p

]
p×p

[
a1 0

0 0

]
p×q

= 0. (3)

If u = [ u1 u2
u3 u4

]p×p ∈ ◦a then u1a = 0 and u3a = 0 so u1 = u1p = 0 and u3 =

u3p = 0. On the other side, if u1 = 0 and u3 = 0 then it is clear that ua = 0.

From
[
0 u2
0 u4

]
p×p

[ p p1

0 0 ]p×p = 0 we conclude ◦a ⊆ ◦p′. Now, (3) and Lemma 2.1

give ◦a = A(1− p′), that is p′ ∈ LP(a).

Suppose now that p′ = [ p2 p1
p3 p4 ]p×p ∈ LP(a). Then ◦p′ = ◦a = ◦p, so

0 = (1− p′)p =

[
p− p2 −p1
−p3 1− p− p4

]
p×p

[
p 0

0 0

]
p×p

=

[
p− p2 0

−p3 0

]
p×p
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and hence p2 = p and p3 = 0. From ◦a ⊆ ◦p′ it follows

0 =

[
0 u2

0 u4

]
p×p

[
p p1
0 p4

]
p×p

=

[
0 u2p4
0 u4p4

]
p×p

,

so u4p4 = 0, for every u4 ∈ (1 − p)A(1 − p). Setting u4 = 1 − p we get p4 = 0.

Thus, the statement (1) of the theorem is proved. In the same manner we can

prove the statement (2). �

Corollary 3.2. Let a, b ∈ A. Suppose that a ≼ b and let p, q ∈ A• be

corresponding idempotents. Then

{p′ ∈ LP(a) : a = p′b} =


[
p p1
0 0

]
p×p

: p1 ∈ pA(1− p), p1b1 = 0


{q′ ∈ RP(a) : a = bq′} =


[
q 0

q1 0

]
q×q

: q1 ∈ (1− q)Aq, b1q1 = 0

 , (4)

where b1 is as in Theorem 2.6.

Proof. We will prove only the equality (4); the proof of the other one is

analogous. Since a ≼ b, Theorem 2.6 gives

a =

[
a1 0

0 0

]
p×q

, b =

[
a1 0

0 b1

]
p×q

.

If p′ belongs to the set on the right hand side of (4) then, by Lemma 3.1,

p′ ∈ LP(a). Also,

p′b =

[
p p1
0 0

]
p×p

[
a1 0

0 b1

]
p×q

=

[
a1 p1b1
0 0

]
p×q

=

[
a1 0

0 0

]
p×q

= a.

To prove the opposite inclusion, suppose that p′ ∈ LP(a) and a = p′b.

Lemma 3.1 leads to p = [ p p1

0 0 ]p×p. Now, a = p′b gives[
a1 0

0 0

]
p×q

= a = p′b =

[
a1 p1b1
0 0

]
p×q

,

so p1b1 = 0. �
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However, to prove that ≼ is actually a partial order, we need the assumption

that A is Rickart ring.

We now prove the main result of this section.

Theorem 3.3. Let A be a Rickart ring. Then ≼ is a partial order in A.

Proof. Since A is a Rickart ring, for any a ∈ A there exist idempotents

p, q ∈ A•, such that ◦a = A(1 − p) and a◦ = (1 − q)A. Now the reflexivity of ≼
follows.

To prove the antisymmetry, suppose that a ≼ b and b ≼ a. Then

a =

[
a1 0

0 0

]
p×q

, b =

[
a1 0

0 b1

]
p×q

, (5)

and there exist r, s ∈ A• such that b = ra = as. Let r = [ r1 r2
r3 r4 ]p×p. We have[

a1 0

0 b1

]
p×q

= b = ra =

[
r1a1 0

r3a1 0

]
p×q

,

so b1 = 0 and hence a = b.

We have to show transitivity. Let a ≼ b and b ≼ c. Then there exist idempo-

tents p, q, r, s ∈ A• such that a and b have the matrix forms as in (5), ◦a1 = ◦p,

a◦1 = q◦ and ◦b = A(1− r) = ◦r, b◦ = (1− s)A = s◦, b = rc = cs. Suppose that

r =

[
r1 r2
r3 r4

]
p×p

and c =

[
c1 c2
c3 c4

]
p×q

.

Since

0 = (1− r)b =

[
p− r1 −r2
−r3 1− p− r4

]
p×p

[
a1 0

0 b1

]
p×q

=

[
(p− r1)a1 −r2b1
−r3a1 (1− p− r4)b1

]
p×q

,

◦a1 = ◦p shows that 0 = (p − r1)p = p − r1 and 0 = r3p = r3. Also, r2b1 = 0.

From b = rc we conclude that[
a1 0

0 b1

]
p×q

=

[
p r2
0 r4

]
p×p

[
c1 c2
c3 c4

]
p×q

=

[
c1 + r2c3 c2 + r2c4

r4c3 r4c4

]
p×q

,
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so

a1 = c1 + r2c3 and 0 = c2 + r2c4. (6)

Let p′ = [ p r2
0 0 ]p×p. From Corollary 3.2 it follows that

◦a = A(1− p′) and a = p′b. (7)

Since,

p′c =

[
c1 + r2c3 c2 + r2c4

0 0

]
p×q

,

(6) shows that

p′c = a. (8)

Similar consideration shows that if s = [ s1 s2
s3 s4 ]q×q than s1 = q, s2 = 0 and that

for q′ =
[

q 0
s3 0

]
q×q

we have

a◦ = (1− q′)A, a = bq′ = cq′. (9)

By definition, from (7)–(9) we obtain that a ≼ c. �

Moreover, from the proof of Theorem 3.3 it follows that if a ≼ b and b ≼ c

then there exist common idempotents p′ and q′ showing that a ≼ b and a ≼ c.

Theorem 3.4. Let A be a Rickart ring and a, b ∈ A. Then a ≼ b if and

only if there exist decompositions of the identity of the ring A

1 = e1 + e2 + e3, 1 = f1 + f2 + f3

such that the following five conditions hold:

(1) a =
[
a1 0 0
0 0 0
0 0 0

]
e×f

and b =
[ a1 0 0

0 b1 0
0 0 0

]
e×f

;

(2) If z ∈ Ae1 and za1 = 0, then z = 0;

(3) If z ∈ f1A and a1z = 0, then z = 0;

(4) If z ∈ Ae2 and zb1 = 0, then z = 0;

(5) If z ∈ f2A and b1z = 0, then z = 0.

Proof. “If” part follows from Theorem 2.6. Now, suppose that a ≼ b. By

Theorem 2.6 we have

a =

[
a1 0

0 0

]
p×q

and b =

[
a1 0

0 b1

]
p×q

,
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such that z = 0 whenever z ∈ Ap and za1 = 0, and z = 0 whenever z ∈ qA and

a1z = 0. A is a Rickart ring so there exist r, s ∈ A• such that ◦b1 = A(1−r) = ◦r

and b◦1 = (1−s)A = s◦. Notice that pr = 0. Indeed, since b1 ∈ (1−p)A(1−q), we

have pb1 = 0 and therefore p ∈ ◦b1 = ◦r. Let r′ := r−rp(1−r) = r−rp = r(1−p).

We have r′ ∈ A• since r′2 = (r − rp)(r − rp) = r − rp = r′. Our next claim

is that ◦b1 = ◦r′. If ub1 = 0 then ur = 0 so ur′ = 0. On the other hand,

(1− r′)b1 = (1− r + rp)rb1 = 0, due to b1 = rb1. Thus

◦b1 = ◦r′ = A(1− r′). (10)

Next, pr = 0 implies pr′ = 0. Moreover, r′p = r(1− p)p = 0. Set e1 = p, e2 = r′,

and e3 = 1− p− r′. Then 1 = e1 + e2 + e3 is decomposition of the identity of the

ring A and from (10) it follows that zb1 = 0 implies z = 0 when z ∈ Ae2.

Now, set f1 = q, f2 = (1−q)s and f3 = 1−f1−f2. With similar consideration

we can show that 1 = f1 + f2 + f3 is the decomposition of the identity of the ring

A and that condition (5) of this theorem holds. Of course, statements (2) and

(3) are satisfied by Theorem 2.6 since e1 = p and f1 = q. As ◦b1 = A(1− r) and

b◦1 = (1− s)A we have e2bf2 = r(1− p)b(1− q)s = rb1s = b1. The statement (1)

is proved. �

Note that the statements (1)–(5) of the previous theorem are equivalent to

e1 ∈ LP(a), e2 ∈ LP(b− a), f1 ∈ RP(a), f2 ∈ RP(b− a).

Corollary 3.5. Suppose that A is a Rickart ring and a, b ∈ A. Then a ≼ b

if and only if b− a ≼ b.

We give one more characterization of minus partial order.

Theorem 3.6. Let A be a Rickart ring and a, b ∈ A. Then a ≼ b if and only

if there exists idempotents e1 ∈ LP(a), e2 ∈ LP(b−a), f1 ∈ RP(a), f2 ∈ RP(b−a)

such that e1e2 = 0 and f2f1 = 0.

Proof. The “only if” part follows from Theorem 3.4. In order to prove “if”

part suppose that e1 ∈ LP(a), e2 ∈ LP(b − a) and e1e2 = 0. Then e1a = a and

e1b = e1a + e1(b − a) = a + e1e2(b − a) = a. Similarly, from f2f1 = 0 where

f1 ∈ RP(a), f2 ∈ RP(b− a) it follows that af1 = a and bf1 = af1 + (b − a)f1 =

a+ (b− a)f2f1 = a. By definition, a ≼ b. �

We conclude this section with the following remark.
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Remark 3.1. Suppose that a ≼ b and let us follow the notation of Theo-

rem 3.4. Let us prove that

e1 + e2 ∈ LP(b) and f1 + f2 ∈ RP(b),

i.e. ◦(e1 + e2) =
◦b and (f1 + f2)

◦ = b◦. From (1) of Theorem 3.4 it follows that

b = (e1 + e2)b so z(e1 + e2) = 0 implies zb = 0. On the other hand suppose that

z = [zij ]e×e ∈ ◦b. Then

0 = zb =

z11a1 z12b1 0

z21a1 z22b1 0

z31a1 z32b1 0


e×f

.

By Theorem 3.4 we obtain that z11 = z12 = z21 = z22 = z31 = z32 = 0. Now it is

easy to see that z(e1 + e2) = 0. Similarly we can show that (f1 + f2)
◦ = b◦.

We next show that e1A ∩ e2A = {0}, Af1 ∩ Af2 = {0} and

(e1 + e2)A = e1A+ e2A and A(f1 + f2) = Af1 +Af2.

First, as we know e1e2 = e2e1 = 0. Now if e1x = e2y for some x, y ∈ A then

e1x = e1e1x = e1e2y = 0. It is clear that (e1 + e2)A ⊆ e1A + e2A. Finally, for

x, y ∈ A we have e1x+ e2y = (e1 + e2)(e1x+ e2y) so (e1 + e2)A = e1A+ e2A. In

the same manner we can show that Af1∩Af2 = {0} and A(f1+f2) = Af1+Af2.

We have no proof for the opposite implication:

If there exist e1 ∈ LP(a), e2 ∈ LP(b − a), e3 ∈ LP(b), f1 ∈ RP(a), f2 ∈
RP(b− a), f3 ∈ RP(b) and if e1A ∩ e2A = {0}, Af1 ∩ Af2 = {0} and

e3A = e1A+ e2A and Af3 = Af1 +Af2,

then a ≼ b. Therefore we suggest treating it as an open problem.
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UNIVERSITY OF NIŠ
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