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Some new characterizations of Bloch type spaces of infinite
matrices via Schur multipliers
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Abstract. We consider the infinite matrix version B(D, ℓ2) of the Bloch space.

In this paper we complement the results in the recent book [18] by deriving some new

characterizations of B(D, ℓ2) and related spaces and duals via Schur multipliers. As

applications we find the largest solid subspace of B(D, ℓ2) and its “conjugate” space

I(ℓ2) considered in [18] and [19].

1. Introduction

It has been known for a long time that there is a formal relation between

classical harmonic analysis and the theory of infinite matrices. Concerning this

knowledge including historical remarks and applications we refer to the recent

book [18] from 2014 by L. E. Persson and N. Popa and the references given

there. However, still many challenging problems in this new theory of matricial

harmonic analysis need to be investigated before we get a complete theory. The

main aim of this paper is to give the solution to some of these new problems by

presenting characterizations of Bloch type spaces of infinite matrices via Schur

multipliers.

In Section 2 we discuss and give some properties of solid spaces of infinite

matrices. One guiding observation for our investigations for this paper is the

following: clearly the matrix spaces considered in our paper, X are not solid

spaces with respect to the order relation given by A ≥ 0 if and only if aij ≥ 0;
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therefore the solid hull of these spaces S(X), as well as their solid content s(X),

that is the smallest solid superspace, respectively the largest solid subspace of X,

are of great interest.

In the case of function spaces X, the problem of finding S(X) and s(X),

with respect to usual order relation on Taylor coefficients of the functions, is an

old and difficult problem. For instance it follows from Littlewood’s theorem on

random power series [10, Theorem A.5, p. 228] that S(Hp) = H2, 2 < p < ∞,

where Hp is the usual Hardy space of order p. Much later, S. V. Kislyakov

[11] showed that S(H∞) = H2. Moreover, M. Jevtić and M. Pavlović [12]

characterized S(Hp), 0 < p < 1 and S(A1), where A1 is the Bergman space of

order 1.

In 1976 J. M. Anderson and A. Shields [2] found s(B), where B is the

Bloch space of analytic functions on the unit disk, and many other interesting

results on the Taylor coefficients of functions from B. Here the space of all coeffi-

cient multipliers from a space of analytic functions to a sequence space plays an

important role.

For some matrix spaces X, the same problem was considered by F. Lust-

Piquard [13], who showed that S(B(ℓ2))= {A |A,A∗∈ ℓ∞(ℓ2)}. Here, of course,

B(ℓ2) is the space of all bounded operators (or matrices) on ℓ2, and ℓ∞(ℓ2) is the

space of all infinite matrices (aij)i,j≥1 such that

sup1≤i

(∑∞
j=1 |aij |2

)1/2
<∞.

Some years laterA. Pelczynski and F. Sukochev [16] showed that s(B(ℓ2))

is the space of all Schur multipliers from the trace class S1 intoM1, the space of all

infinite matrices with absolutely summable entries. The space of Schur multipli-

ers is quite similar with the space of coefficient multipliers used by J. M. Ander

son and A. Shields [2].

In our paper we extend to matrix spaces some results from [2] and some

of their techniques, especially in connection with the Abel duality. Moreover we

characterize in terms of Schur multipliers s(Sq), 1 < q <∞, Sq being the Schatten

class of order q.

For two infinite matrices A = (ajk) and B = (bjk) their Schur product (or

Hadamard product) is defined to be the matrix of elementwise products:

A ∗B := (ajkbjk).

If X and Y are two linear spaces of infinite matrices the space of Schur

multipliers from X to Y is the space

(X,Y ) := {M :M ∗A ∈ Y for every A ∈ X},
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If X and Y are Banach spaces, then we consider on the space (X,Y ) the natural

norm

∥M∥(X,Y ) := sup
∥A∥X≤1

∥M ∗A∥Y .

Motivated by the papers [16] and [2] we investigate Schur multipliers on various

spaces of infinite matrices.

We recall the matrix versions of Bloch and Bergman spaces (see e.g. [19],

[14] and [18]). For a treatment of a more general case of Bloch and Bergman

spaces in the case of vector valued functions we refer to [3], [6] and [7].

For an infinite matrix A = (aij), and an integer k we call the kth-diagonal

matrix associated to A (see also [4] and [5]), denoted by Ak, the matrix whose

entries a′ij are given by

a′ij =

{
aij if j − i = k

0 otherwise.

We recall that for an upper triangular infinite matrix A, we define A(r) as follows:

A(r) := A ∗ C(r),

where C(r) is the Toeplitz matrix associated with the Cauchy kernel 1
1−r , for

0 ≤ r < 1, that is

C(r) =


1 r r2 . . .

0 1 r . . .

0 0 1 . . .
...

...
. . .

. . .

 .

Let D be the unit disk in C. The matrix version of the Bloch space, denoted

by B(D, ℓ2), consists of all upper triangular matrices A such that

∥A∥B(D,ℓ2) = sup
0≤r<1

(1− r2)∥A′(r)∥B(ℓ2) + ∥A0∥B(ℓ2) <∞,

where B(ℓ2) is the usual operator norm of the matrix A on the sequence space ℓ2
and A′(r) =

∑∞
k=0Akkr

k−1.

This space is interesting because it appears as the space of all Schur multi-

pliers from some matrix versions of the classical spaces of analytic functions H1

and BMOA, extending in the framework of infinite matrices a very nice theorem

of M. Mateljević and M. Pavlović [15].

The space B0(D, ℓ2) is the space of all upper triangular infinite matrices A

such that limr→1−(1− r2)∥(A ∗ C(r))′∥B(ℓ2) = 0.
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We denote with Sp, 1 ≤ p < ∞, the Schatten class of order p, the space of

all compact operators T with its singular value sequence {λn} ∈ ℓp (see e.g. [21]).

The Bergman–Schatten space is defined by

L1
a(D, ℓ2) := {A upper triangular matrix : ∥A∥L1

a(D,ℓ2) <∞},
where

∥A∥L1
a(D,ℓ2) :=

∫ 1

0

∥A(r)∥S12rdr.

The paper is organized as follows: In the second Section we discuss the solid

spaces for general spaces of infinite matrices and in particular we extend a result

from [16], characterizing the Schur multipliers from the Schatten class of order p,

1 < p < ∞, to the space of matrices with absolute summable entries (see Theo-

rem 2.3). Section 3 contains the main results, especially Theorems 3.3 and 3.5,

and it is devoted to the study of Schur multipliers between the spaces I(ℓ2),
B(D, ℓ2) and A(ℓ2), as well as some duality results. Finally, in the last Section

we give some applications of our results regarding the largest solid subspaces of

B(D, ℓ2) and I(ℓ2) as well as Schur multipliers from an arbitrary space of infinite

matrices X in these spaces.

2. Solid spaces of infinite matrices

For a matrix A = (aij) the corresponding matrix of absolute values is defined

by A# := (|aij |), and for a space of infinite matrices X we denote by X# the

space of all infinite matrices A such that A# ∈ X (see e.g. [16]).

A space of infinite matricesX is said to be solid, if the condition A=(aij)∈X
implies that B = (bij) ∈ X, for all matrices B with |bij | ≤ |aij |, i, j ≥ 1.

Equivalently, X is solid if

M∞ ⊂ (X,X),

where M∞ is the space of all infinite matrices with uniformly bounded entries,

equipped with the natural norm

∥A∥M∞ = sup
i,j≥1

|aij |.

Next we present some elementary properties for solid spaces of infinite matrices.

Proposition 2.1. Let X and Y be Banach spaces of infinite matrices and X

or Y be solid. Then the space of all Schur multipliers (X,Y ) from X into Y is

also a solid space.
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Proof. Let A ∈ M∞ and B ∈ (X,Y ). Assume that Y is a solid space. For

C ∈ X we observe that, since Y is solid, we get

(A ∗B) ∗ C = A ∗ (B ∗ C) ∈ Y.

Hence, (X,Y ) is a solid space. The proof of the case when X is assumed to be a

solid space is similar so the proof is complete. �

A similar result as in the case of sequences (see [2]) also holds for infinite

matrices.

Proposition 2.2. Let X be a Banach space of infinite matrices. Then there

exists the largest solid subspace of infinite matrices s(X) ⊂ X. Moreover, we

have that

s(X) = (M∞, X),

with its natural norm.

Proof. Let us take s(X) = (M∞, X). Then it is clear from Proposition 2.1

that s(X) is a solid subspace of X. If Y is another solid space with Y ⊂ X, then

we have that

A ∗B ∈ Y ⊂ X,

for every A ∈ Y and B ∈ M∞. It follows that

A ∈ (M∞, X) = s(X),

and thus s(X) is the largest solid subspace of X with

s(X) = (M∞, X). �

A. Pelczynski and F. Sukochev described in [16] the space of Schur

multipliers (B(ℓ2),M1), which maps the space of all bounded operators on ℓ2,

namely B(ℓ2), into matrices with absolutely summable entries, M1, where

M1 :=
{
A infinite matrix : A = (aij)i,j≥0 such that ∥A∥M1 =

∑
i,j

|aij | <∞
}
,

and also the space of Schur multipliers (S1,M1), where S1 is the Schatten class of

order 1 (the trace class). More precisely, in [16] the authors proved the following

identities:

(i) (B(ℓ2),M1) = S#
1 ;

(ii) (S1,M1) = B(ℓ2)
#.
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Let it call a matrix A a regular matrix if A = A1−A2, where A1, A2 ∈ B(ℓ2),

A1 ≥ 0, A2 ≥ 0.

We remark that B(ℓ2)
# = s(B(ℓ2)) is the largest solid subspace of B(ℓ2), or,

equivalently, is the subspace of all regular matrices from B(ℓ2), endowed with the

norm

∥A∥B(ℓ2)# = ∥A#∥B(ℓ2) = sup
|tij |≤1
i,j≥1

∥A ∗ T∥B(ℓ2),

and S#
1 = s(S1) is equipped with the norm

∥A∥S#
1
= ∥A#∥S1 = sup

|tij |≤1
i,j≥1

∥T ∗A∥S1 .

Our result is an extension of the equalities (i) and (ii) and characterizes the

space of Schur multipliers which map the space Sp, the Schatten class of order p,

1 < p <∞, into matrices with absolutely summable entries:

Theorem 2.3. Let 1 < p <∞ and 1/p+ 1/q = 1.

Then

(Sp,M1) = s(Sq) = (M∞, Sq)

with equality of the corresponding norms.

Proof. Let A ∈ (Sp,M1). We denote by ϵ = (ϵjk) the infinite matrix with

|ϵjk| ≤ 1 for all j, k ≥ 1. Then we have that

∥A∥(Sp,M1) = sup
∥B∥Sp≤1

∑
j,k

|ajkbjk| = sup
∥B∥Sp≤1

sup
|ϵjk|≤1
j,k≥1

∣∣∣∣∑
j,k

ϵjkajkbjk

∣∣∣∣
= sup

|ϵjk|≤1
j,k≥1

sup
∥B∥Sp≤1

|Tr (ϵ ∗A)tB| = sup
|ϵjk|≤1
j,k≥1

∥(ϵ ∗A)t∥Sq

= sup
|ϵjk|≤1
j,k≥1

∥ϵ ∗A∥Sq
= ∥A∥S#

q
= ∥A∥(M∞,Sq),

where Tr(·) denotes the trace of a matrix. The proof is complete. �

3. The main results

In this Section we describe the upper triangular Schur multipliers acting on

spaces of upper triangular infinite matrices (sometimes called analytic matrices,
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see e.g. the book [18, p. 2]). In the sequel we use another notation, which is more

appropriate for our aims. For the entries of the matrix A, we put

alk =

{
al,l+k, k ≥ 0, l = 1, 2, 3 . . . ,

al−k,l, k < 0, l = 1, 2, 3 . . . ,

and denote A by A = (alk)k∈Z,l≥1 and in the case of upper triangular matrices

A = (alk)k≥0,l≥1.

The first theorem asserts that all infinite matrices from B(D, ℓ2) are precisely
all upper triangular Schur multipliers from L1

a(D, ℓ2) to A′(ℓ2), where we denote

by A′(ℓ2) the space of all upper triangular matrices A, such that the diagonal

sequences, denoted by (alk)l≥1, for k ≥ 0, satisfy the following conditions:

(1) supk≥0

∑∞
l=1 |alk| <∞;

(2) there exists limr→1−
∑∞

k=0
rk

k+1

∑∞
l=1 a

l
k.

Remark. By using the uniform boundedness principle conditions (1) and (2)

imply ∥∥|A|∥∥ := sup
0≤r<1

∥B∥L1
a(D,ℓ2)≤1

∣∣∣∣ ∞∑
k=0

rk

k + 1

∞∑
l=1

alkb
l
k

∣∣∣∣ <∞.

It is easy to see that
∥∥|A|∥∥ is a norm on the space of all upper triangular

Schur multipliers UT (L1
a(D, ℓ2),A′(ℓ2)).

Our first result of this Section reads:

Theorem 3.1. Let UT (L1
a(D, ℓ2),A′(ℓ2)) be the space of upper triangular

Schur multipliers. Then we have that

UT (L1
a(D, ℓ2),A′(ℓ2)) = B(D, ℓ2)

as linear spaces.

Proof. Let 0 ≤ r < 1. In [14] (see also [18], Theorem 7.11) it is proved that

B(D, ℓ2) = L1
a(D, ℓ2)

∗ by using the duality pair

⟨A,B⟩ =
∫ 1

0

Tr[A(r)B∗(r)]2rdr =

∫ 1

0

2
∞∑
k=0

r2k+1

( ∞∑
l=1

alkb
l
k

)
dr,

where A = (alk)k≥0,l≥1 ∈ L1
a(D, ℓ2), B = (blk)k≥0,l≥1 ∈ B(D, ℓ2), and

|⟨A,B⟩| ≤ C∥A∥L1
a(D,ℓ2) · ∥B∥B(D,ℓ2) (3.1)
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for an absolute constant C > 0.

We first prove that B(D, ℓ2) ⊂ UT (L1
a(D, ℓ2),A′(ℓ2)). We observe that

sup
k≥0

2

k + 1

∞∑
l=1

|alk| ≤ ∥A∥L1
a(D,ℓ2),

and

sup
k≥0, l≥1

|blk| ≤ ∥B∥B(D,ℓ2).

Then it follows

sup
k≥0

2

k + 1

∞∑
l=1

|alk||blk| ≤ ∥A∥L1
a(D,ℓ2) · ∥B∥B(D,ℓ2)

for all k, consequently the condition (1) is satisfied.

Now let 0 < ρ < 1. Then we have that

|⟨A(ρ), B⟩| =
∣∣∣∣ ∫ 1

0

[ ∞∑
k=0

ρkr2k
( ∞∑

l=1

alkb
l
k

)]
(2rdr)

∣∣∣∣
≤

∫ 1

0

∞∑
k=0

ρkr2k
( ∞∑

l=1

|alk| |blk|
)
2rdr

≤
∫ 1

0

( ∞∑
k=0

(k + 1)ρkr2k
)
· ∥A∥L1

a(D,ℓ2) · ∥B∥B(D,ℓ2)rdr

=
1

2

∫ 1

0

1

(1− ρr2)2
dr · ∥A∥L1

a(D,ℓ2) · ∥B∥B(D,ℓ2)

=
1

2(1− ρ)
· ∥A∥L1

a(D,ℓ2) · ∥B∥B(D,ℓ2).

Therefore the series
∑∞

k=0 ρ
kr2k

(∑∞
l=1 a

l
kb

l
k

)
can be integrated term by term,

and thus

⟨A(ρ), B⟩ =
∞∑
k=0

ρk

k + 1

∞∑
l=1

alkb
l
k, for all 0 ≤ ρ < 1. (3.2)

Now using (3.1) we find that

|⟨A(ρ), B⟩ − ⟨A,B⟩| ≤ ∥A(ρ)−A∥L1
a(D,ℓ2) · ∥B∥B(D,ℓ2).

We claim that

lim
ρ→1−

∥A(ρ)−A∥L1
a(D,ℓ2) = 0. (3.3)
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Indeed, for A ∈ L1
a(D, ℓ2), the integral means M1(r,A) =

1
2π

∫ 2π

0
∥A(reiθ)∥S1dθ,

0 ≤ r < 1, are increasing functions of r, and, obviously,

M1(r,A(ρ)) =M1(rρ,A).

Consequently,

M1(r,A−A(ρ)) ≤ 2M1(r,A).

But it is easy to observe that A ∈ L1
a(D, ℓ2) if and only if M1(r,A) ∈

L1([0, 1], rdr), and that ∥A(ρz)−A(z)∥S1 → 0 uniformly on the compact subsets

of D, whenever ρ→ 1−, which implies that

lim
ρ→1−

M1(r,A−A(ρ)) = 0,

for all r ∈ [0, 1).

Thus, by using the dominated convergence theorem, we obtain that

∥A−A(ρ)∥L1
a(D,ℓ2) = 2

∫ 1

0

M1(r,A−A(ρ))rdr → 0,

whenever ρ→ 1−, i.e. (3.3) is proved.

From (3.2) and (3.3) we get that

lim
ρ→1

∞∑
k=0

ρk

k + 1

∞∑
l=1

alkb
l
k = lim

ρ→1
⟨A(ρ), B⟩ = ⟨A,B⟩,

for A ∈ L1
a(D, ℓ2) and B ∈ B(D, ℓ2). Consequently the condition (2) is satisfied

for A ∗B.

It follows that A ∗B ∈ A′(ℓ2), that is

B(D, ℓ2) ⊂ UT (L1
a(D, ℓ2),A′(ℓ2)). (3.4)

Conversely, let ψ ∈ (L1
a(D, ℓ2))

∗. Then, by using the arguments in the proof

of Theorem 7.11 in [18], it follows that there is an absolute constant C > 0 and

B ∈ B(D, ℓ2) such that

ψ(A) = ⟨A,B⟩, for all A ∈ L1
a(D, ℓ2)

and ∥ψ∥ ≥ C∥B∥B(D,ℓ2).

It follows that

(L1
a(D, ℓ2))

∗ ⊂ B(D, ℓ2).

Moreover,

UT (L1
a(D, ℓ2),A′(ℓ2)) ⊂ (L1

a(D, ℓ2))
∗,
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since if A ∗ B ∈ A′(ℓ2) for all A ∈ L1
a(D, ℓ2) then, by the previously remark,∥∥|B|

∥∥ <∞, and we can define ψ ∈ [L1
a(D, ℓ2)]

∗ as

ψ(A) = ⟨A,B⟩ = lim
ρ→1

∞∑
k=0

ρk

k + 1

∞∑
l=1

alkb
l
k

and

∥ψ∥ = sup
∥A∥L1

a(D,ℓ2)≤1

|⟨A,B⟩| ≤ sup
0≤ρ<1

∥A∥L1
a(D,ℓ2)≤1

∣∣∣∣ ∞∑
k=0

ρk

k + 1

∞∑
l=1

alkb
l
k

∣∣∣∣ ≤ ∥∥|B|
∥∥ <∞.

Consequently,

UT (L1
a(D, ℓ2),A′(ℓ2)) ⊂ B(D, ℓ2).

The proof is complete by combining this embedding with (3.4). �

We define

I(ℓ2) :=
{
A upper triangular matrices :

∥A∥I(ℓ2) := ∥A0∥S1 +

∫ 1

0

∥A′(r)∥S12rdr <∞
}
.

For the proof of our next result in this Section we need the following Lemma

of independent interest:

Lemma 3.2. Let I(ℓ2)∗ be the topological dual of I(ℓ2). Then

I(ℓ2)∗ = B(D, ℓ2),

where the duality is given by

⟨A,B⟩ = lim
ρ→1−

∞∑
k=0

ρk
∞∑
l=1

alkb
l
k,

for A = (alk)k≥0, l≥1 ∈ I(ℓ2) and B = (blk)k≥0, l≥1 ∈ B(D, ℓ2). The norms are

equivalent.

Proof. Let ψ ∈ I(ℓ2)∗. Since I(ℓ2) is the space of all upper triangular

matrices A such that A′ ∈ L1
a(D, ℓ2), I(ℓ2) is a normed subspace of L1

a(D, ℓ2)

and, we can use the Hahn–Banach Theorem to get an extension ψ̃ ∈ L1
a(D, ℓ2)

∗

such that

∥ψ∥ = ∥ψ̃∥.
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Taking into account that B ∈ B(D, ℓ2) is the dual space of L1
a(D, ℓ2) (see e.g.

Theorem 7.11 in [18]) there exists a unique B̃ ∈ B(D, ℓ2) such that

ψ(A) = ψ̃(A′) = lim
ρ→1

∞∑
k=0

2kρk

2k + 1

∞∑
l=1

alk b̃
l
k.

Hence, taking

Bk =
2k

2k + 1
B̃k, k = 0, 1, 2, . . . ,

it follows that B ∈ B(D, ℓ2),

∥B∥B(D,ℓ2) ≈ ∥B̃∥B(D,ℓ2) ≈ ∥ψ∥,

and

ψ(A) = lim
ρ→1−

∞∑
k=0

ρk
∞∑
l=1

alkb
l
k, for all A ∈ I(ℓ2).

Therefore

I(ℓ2)∗ ⊂ B(D, ℓ2)

and

∥ψ∥ = ∥ψ̃∥ ≥ C∥B∥B(D,ℓ2).

Conversely, let B ∈ B(D, ℓ2). It defines a linear functional ψ̃ ∈ L1
a(D, ℓ2)

∗,

ψ̃(A) = lim
ρ→1−

∞∑
k=0

ρk
∞∑
l=1

alkb
l
k

such that ∥ψ̃∥ ≈ ∥B∥B(D,ℓ2).

Consequently, taking ψ = ψ̃|I(ℓ2), we obtain that

∥ψ∥ ≤ C2∥B∥B(D,ℓ2)

and B(D, ℓ2) ⊂ I(ℓ2)∗. The proof is complete. �

Our next result shows that the Bloch space of upper triangular infinite ma-

trices can be regarded as the space of Schur multipliers between the predual of

the Bloch space and the space of all Abel summable matrices, A(ℓ2) defined as all

upper triangular matrices A with absolutely summable diagonals such that

sup
k≥0

∞∑
l=1

|alk| <∞, lim
r→1−

∞∑
k=0

rk
∞∑
l=1

alk
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exists, and similarly as in the previously remark it follows that

sup
0≤r<1

∥B∥I(ℓ2)≤1

∣∣∣∣ ∞∑
k=0

rk
∞∑
l=1

alkb
l
k

∣∣∣∣ <∞.

We are now ready to formulate our next result.

Theorem 3.3. It yields that

B(D, ℓ2) = UT (I(ℓ2),A(ℓ2))

as linear spaces.

Proof. We consider first A ∈ UT (I(ℓ2),A(ℓ2)), which implies that

A ∗B ∈ A(ℓ2),

for every B ∈ I(ℓ2), i.e. the limit

lim
r→1−

∞∑
k=0

rk
∞∑
l=1

alkb
l
k

exists.

We denote by ψ(B) the previous limit. Then we have that

sup
∥B∥I(ℓ2)≤1

|ψ(B)| ≤ ∥A∥(I(ℓ2),A(ℓ2)) <∞,

which in its turn implies that ψ ∈ (I(ℓ2))∗. By using Lemma 3.2 and that

⟨A,B⟩ = ψ(B), for every B ∈ I(ℓ2),

it follows that A ∈ B(D, ℓ2).
Therefore we obtain that

UT (I(ℓ2),A(ℓ2)) ⊂ B(D, ℓ2).

Conversely, if A ∈ B(D, ℓ2) and B ∈ I(ℓ2), by Lemma 3.2 (see also the proof

of Lemma 7.7 in [1]) there exists

lim
r→1−

∞∑
k=0

rk
( ∞∑

l=1

alkb
l
k

)
and

sup
k

∞∑
l=1

|alk||blk| ≤ ∥A∥B(D,ℓ2) · ∥B∥I(ℓ2) <∞.

Thus A ∗B ∈ A(ℓ2), that is

B(D, ℓ2) ⊂ UT (I(ℓ2),A(ℓ2)).

The proof is complete. �
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In [19] (see also [18]) was introduced and studied the closed Banach subspace

B0,c(D, ℓ2) of the little Bloch space B0(D, ℓ2). This space consists in all upper

triangular matrices whose diagonals are compact operators. Our next result shows

that the space B0,c(D, ℓ2) is the predual of the space I(ℓ2). More precisely we

have:

Theorem 3.4. It yields that B0,c(D, ℓ2)
∗ = I(ℓ2) with equivalence of norms.

Proof. We use some ideas from the proof of Theorem 2.4 in [1]. By the

Hahn–Banach theorem it follows that

∥G∥I(ℓ2) = sup
Φ ̸=0

|Φ(G)|
∥Φ∥I(ℓ2)∗

.

Then, by using Lemma 3.2, we get that

C1∥G∥I(ℓ2) ≤ sup
F ̸=0

|⟨F,G⟩|
∥F∥B(D,ℓ2)

≤ C2∥G∥I(ℓ2),

where

⟨F,G⟩ = lim
ρ→1−

∞∑
k=0

ρk
∞∑
l=1

f lk · glk,

F = (f lk)k≥0, l≥1 and G = (glk)k≥0, l≥1.

Let Φ ∈ B0,c(D, ℓ2)
∗ be given and let El

k, k ≥ 0, l ≥ 1, be the matrix

having the entry 1 on the lth place on the kth diagonal, and 0 otherwise, i.e.

El
k = (eji )i≥0,j≥1, where

eji =

{
1, if i = k and j = l

0, otherwise.

We define blk := Φ(El
k), k ≥ 0, l ≥ 1, and for fixed k ≥ 0, Bk := (blk)l≥1.

Then G =
∑∞

k=0Bk, the series being a formal one.

First we show that (blk)l≥1 is an absolutely summing sequence for every k ≥ 0.

For fixed n ≥ 1, and k ≥ 0, we have that

∣∣∣∣Φ( n∑
l=1

f lkE
l
k

)∣∣∣∣ = ∣∣∣∣ n∑
l=1

f lkb
l
k

∣∣∣∣ ≤ ∥Φ∥B0,c(D,ℓ2)∗ ·
∥∥∥∥ n∑

l=1

f lkE
l
k

∥∥∥∥
B0,c(D,ℓ2)

≤ ∥Φ∥B0,c(D,ℓ2)∗ · ∥Fk∥B0,c(D,ℓ2),

where Fk = (f lk)l≥1 and F = (f lk)k≥0, l≥1 ∈ B0,c(D, ℓ2).
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Since

sup
l≥1

|f lk| ∼ ∥Fk∥B0,c(D,ℓ2) ≤ C∥F∥B0,c(D,ℓ2),

for all k ≥ 0 and for all F ∈ B0,c(D, ℓ2), it follows that

n∑
l=1

|blk| = sup
sup
l≥1

|f l
k|≤1

∣∣∣∣ n∑
l=1

f lkb
l
k

∣∣∣∣ ≤ C∥Φ∥B0,c(D,ℓ2)∗ ,

where C > 0 is an absolute constant.

Consequently,
∞∑
l=1

|blk| ≤ C∥Φ∥B0,c(D,ℓ2)∗ ,

for all k ≥ 0.

Next we show that

Φ(F ) = ⟨F,G⟩ = lim
ρ→1−

∞∑
k=0

ρk
∞∑
l=1

f lkb
l
k,

for every F ∈ B0,c(D, ℓ2).

Let 0 ≤ r < 1 and Fr =
∑∞

k=0 r
kFk. Since ∥Fk∥B0,c(D,ℓ2) ≤ ∥F∥B0,c(D,ℓ2) for

every k ≥ 0, the previous series is absolutely summing in B0,c(D, ℓ2).

We also notice that

Φ(Fk) =
∞∑
l=1

f lkΦ(E
l
k) =

∞∑
l=1

f lkb
l
k,

the last series being summable since (f lk)
∞
l=1 ∈ c0, and (blk)

∞
l=1 ∈ ℓ1, for every

k ≥ 0.

Hence,

Φ(Fr) =

∞∑
k=0

rkΦ(Fk) =

∞∑
k=0

rk
∞∑
l=1

f lkb
l
k,

and

|Φ(Fr)| ≤
∞∑
k=0

rk
∞∑
l=1

|f lk| |blk| ≤
C

1− r
∥F∥B0,c(D,ℓ2) · ∥Φ∥B0,c(D,ℓ2)∗ .

Since Fr → F in B0,c(D, ℓ2), as r → 1−, (see [18], p. 162) it follows that

Φ(F ) = lim
r→1−

Φ(Fr) = lim
r→1−

∞∑
k=0

rk
∞∑
l=1

f lkb
l
k = ⟨F,G⟩, (3.5)
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for all F ∈ B0,c(D, ℓ2).

Now, let 0 < ρ < 1. We observe that

Gρ =

∞∑
n=0

ρnBn ∈ I(ℓ2),

and

∥Bn∥I(ℓ2) ≤ C∥Φ∥B0,c(D,ℓ2)∗ ,

for every n ≥ 0.

If F ∈ B0,c(D, ℓ2), then, by using (3.5), we find that

|⟨F,Gρ⟩| = |⟨Fρ, G⟩| = |Φ(Fρ)| ≤ ∥Φ∥B0,c(D,ℓ2)∗ · ∥Fρ∥B0,c(D,ℓ2)

≤ ∥Φ∥B0,c(D,ℓ2)∗ · ∥F∥B0,c(D,ℓ2).

From Lemma 3.2 we have that

∥Gρ∥I(ℓ2) ≤ C−1
1 sup

F ̸=0

|⟨F,Gρ⟩|
∥F∥B0,c(D,ℓ2)

≤ C−1
1 · ∥Φ∥B0,c(D,ℓ2)∗ .

Hence, G ∈ I(ℓ2), and
∥G∥I(ℓ2) ≤ C−1

1 · ∥Φ∥B0,c(D,ℓ2)∗ .

We conclude that B0,c(D, ℓ2)
∗ ⊂ I(ℓ2). The converse inclusion follows in the same

way as in the last part of the proof of Lemma 3.2, so we omit the details. The

proof is complete. �

In our last result of this Section we prove that the space of all upper trian-

gular Schur multipliers from the space little Bloch whose diagonals are compact

operators into the space of Abel summable matrices is exactly the space I(ℓ2).

Theorem 3.5. It yields that

I(ℓ2) = UT (B0,c(D, ℓ2),A(ℓ2))

as linear spaces.

Proof. If A ∈ I(ℓ2) and B ∈ B0,c(D, ℓ2), it follows that A ∗ B ∈ A(ℓ2) by

the proof of Theorem 3.3.

Hence,

I(ℓ2) ⊂ UT (B0,c(D, ℓ2),A(ℓ2)).

Conversely, let A ∈ UT (B0,c(D, ℓ2),A(ℓ2)). Then, for B ∈ B0,c(D, ℓ2) we

have that A ∗B ∈ A(ℓ2), that is

⟨A,B⟩ = lim
r→1−

∞∑
k=0

rk
( ∞∑

l=1

alkb
l
k

)
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exists. Let us denote ψ(B) = limr→1−
∑∞

k=0 r
k
(∑∞

l=1 a
l
kb

l
k

)
. Then it follows that

sup
∥B∥B0,c(D,ℓ2)≤1

|ψ(B)| ≤ ∥A∥(B0,c(D,ℓ2),A(ℓ2)) <∞.

Since ψ ∈ B0,c(D, ℓ2)
∗ and ⟨A,B⟩ = ψ(B), from Theorem 3.4 we obtain that

A ∈ I(ℓ2). Therefore
UT (B0,c(D, ℓ2),A(ℓ2)) ⊂ I(ℓ2)

and the proof is complete. �

4. Applications

In this last Section we give some applications of our results.

For a space of upper triangular infinite matrices X we denote the Abel dual

by Xa = UT (X,A(ℓ2)), where A(ℓ2) is the space of all Abel summable matrices.

We also denote the Köthe dual by XK = UT (X,M1). It is clear that X
K ⊂ Xa.

More generally, we denote by XH = UT (X,H), where H is a fixed space of

infinite matrices.

It is known that in [2] is obtained that the largest solid subspace of the Abel

dual of a sequence space coincides with the Köthe dual of the same sequence

space. The extension in the case of infinite matrices is the following:

Proposition 4.1. Let X or Y be two spaces of analytic matrices. Then we

have s(Xa) = XK .

Proof. Let us observe first that UT (X,Y ) ⊂ UT (Y H , XH). SinceXHHH =

XH it follows that UT (XH , Y H) = UT (Y HH , XHH). From Proposition 2.2 we

have that

s(Xa) = UT (M∞, X
a) = UT (Xaa,M1) ⊂ UT (X,M1) = XK .

Conversely, XK is solid and XK ⊂ Xa so that

XK ⊂ s(Xa).

The proof is complete. �

Remark 4.2. If X is solid, then

Xa = XK

while in the general case we only have

XK ⊂ Xa.
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Our next result describes the largest solid subspace of Schur multipliers be-

tween two spaces of infinite matrices.

Proposition 4.3. Let X and Y be two spaces of analytic matrices. Then

(X, s(Y )) = s((X,Y )).

Proof. Let A be in (X, s(Y )). In view of Proposition 2.2 this is equivalent

to that

A ∗B ∗ C ∈ Y,

for every B ∈ X and for every C ∈ M∞ i.e.

A ∗ C ∈ (X,Y ), for every C ∈ M∞,

which in its turn means that A ∈ s((X,Y )). �

Finally, as applications of our previous results, we are able to give a complete

description of the largest solid subspace of B(D, ℓ2) and I(ℓ2) in terms of the

Köthe dual. Moreover, for an arbitrary space of infinite matrices X, the Schur

multipliers from X to the largest solid subspace of B(D, ℓ2) (or I(ℓ2)) is exactly
the largest solid subspace of the solid space of multipliers from X to B(D, ℓ2)
(respectively I(ℓ2)).

Theorem 4.4. The following identities hold:

(i) s(B(D, ℓ2)) = I(ℓ2)K with equivalence of norms;

(ii) s(I(ℓ2)) = B0,c(D, ℓ2)
K with equivalence of norms.

Proof. Indeed, from Theorem 3.3 we have that B(D, ℓ2) = I(ℓ2)a, and

therefore, by applying Proposition 4.1, we find that the identity (i) holds.

The statement (ii) follows from Theorem 3.5 and Proposition 4.1. �

Corollary 4.5. Let X be a space of analytic matrices. Then

(a) UT (X, s(B(D, ℓ2))) = UT (X, I(ℓ2)K) = s(UT (X,B(D, ℓ2)));

(b) UT (X, s(I(ℓ2))) = UT (X,B0,c(D, ℓ2)
K) = s(UT (X, I(ℓ2))).

Proof. The first equality in (a) follows from Theorem 4.4 (i) and applying

Proposition 4.3 we obtain the second one.

The equalities in (b) follows from Proposition 4.3 and Theorem 4.4 (ii). �
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Conjecture. Influenced by [2] we conjecture that

B(D, ℓ2)K = M(2, 1),

where M(2, 1) is the space of all upper triangular matrices A = (alk)k≥0,l≥1 such

that {( ∑
k∈In

∥Ak∥2
)1/2}∞

n=0

∈ ℓ1,

where ∥Ak∥∞ = supl≥1 |alk| and In = {k : 2n ≤ k < 2n+1}, (n = 0, 1, . . . ).

Final remark. In the literature there are some papers studying the notion of

pointwise domination property, which is obviously related to the present notion

of a solid space.

A matrix space X has the pointwise domination property, if |aij | ≤ bij for

all i, j ∈ N and B = (bij) ∈ X implies A = (aij) ∈ X. This property has

been investigated by B. Simon in his monograph [20] in the context of Schatten

classes. Clearly S2 has this property, and from this he derived that Sp has the

pointwise domination property if p is an even integer (Theorem 2.13). Moreover,

V. V. Peller [17] proved that all other Sp, when p is not an even integer, fail to

have this property. Subsequently the domination property was further studied,

see e.g. [9]. The case of Lorentz-Schatten classes was considered in [8].

It seems to be interesting that although the domination property looks very

closely related to the definition of solid matrix spaces, it leads to completely

different results (for instance for Schatten classes) and requires other techniques.
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