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On C-automorphisms of finite groups
admitting a strongly 2-embedded subgroup

By ZHENGXING LI (Qingdao)

Abstract. Let G be a finite group with a strongly 2-embedded subgroup. It is

proved that every C-automorphism of G is inner. In particular, the normalizer property

holds for G. As a consequence, it is also obtained that every C-automorphism of finite

(TI)-groups is inner.

1. Introduction

All groups considered in this paper are finite. Let G be a finite group, ZG
its integral group ring and U(ZG) the unit group of ZG. The normalizer problem

([16, Problem 43], see also [6, Question 3.7]) of integral group rings asks whether

NU(ZG)(G) = G · Z(U(ZG)) for any group G, where NU(ZG)(G) and Z(U(ZG))

denote the normalizer of G in U(ZG) and the center of U(ZG) respectively. If

the equality is valid for G, then G is said to have the normalizer property.

C-automorphisms of groups have intimate connection with the normalizer

problem. Recall that an automorphism σ of G is called a C-automorphism if σ

satisfies the following three conditions: (I) the restriction of σ to each Sylow

subgroup of G equals the restriction of some inner automorphism of G; (II) σ is

a class-preserving automorphism; (III) σ2 ∈ Inn(G), where Inn(G) is the inner
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automorphism group of G. This definition was firstly introduced by Marciniak

and Roggenkamp in [14]. Denote by AutC(G) the group of all C-automorphisms

of G. Set OutC(G) := AutC(G)/ Inn(G). Additionally, denote by AutCol(G) the

group of all automorphisms of G which satisfy only condition (I) above. It is

known that OutC(G) = 1 implies that G has the normalizer property. In this

direction, a lot of results on C-automorphisms have appeared in the literature,

see [2]–[7], [9]–[15] for instance.

The aim of this paper is to study C-automorphisms of finite groups with a

strongly 2-embedded subgroup. Recall that a subgroup M of a group G is said to

be a strongly 2-embedded subgroup in G if the following conditions are satisfied:

(i) M < G and 2 divides |M |; (ii) If g ∈ G \M , then 2 does not divide |M ∩Mg|.
A characterization of groups with a strongly 2-embedded subgroup can be found

in [1] or the appendix in [8]. Our main result is as follows.

Theorem A. Let G be a group with a strongly 2-embedded subgroup. Then

OutC(G) = 1. In particular, the normalizer property holds for G.

A group G of even order is called a (TI)-group if two different Sylow 2-

subgroups contain only the identity element in common. This notion was intro-

duced by Suzuki [17]. As a consequence of Theorem A, we have the following

result.

Corollary B. Let G be a (TI)-group. Then OutC(G) = 1. In particular,

the normalizer property holds for G.

2. Notation and preliminaries

Let σ be an automorphism of a group G, and NEG with Nσ = N . Write σ|N
for the restriction of σ to N , and σ|G/N for the automorphism of G/N induced

by σ in the natural way. For a fixed element y ∈ G, write conj(y) for the inner

automorphism of G induced by y via conjugation. Our other notation is standard

and follows that in [8].

Lemma 2.1 ([15, Theorem 7]). If G is a group with a Sylow 2-subgroup of

order 2, then OutC(G) = 1.

Lemma 2.2. Let G be a group of odd order. Then OutC(G) = 1.

Proof. This is a consequence of Proposition 1 in [5]; see also Theorem 3.4

in [6]. �
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Lemma 2.3. Let G be a simple group. Then OutC(G) = 1.

Proof. This is a consequence of Theorem 14 in [5]. �

Lemma 2.4 ([5, Lemma 6]). Let σ ∈ Aut(G) and M E G with Mσ = M .

Suppose that σ|Q = conj(h)|Q for some h ∈ G, where Q is a Sylow subgroup

of M . Then σ fixes H = MCG(Q)EG and σ|G/H = conj(h)|G/H .

Lemma 2.5 ([2, Lemma 2]). Let N EG and let σ ∈ Aut(G) be of p-power

order, where p is a prime. Suppose that σ|N = id |N and σ|G/N = id |G/N . Then

σ|G/Op(Z(N)) = id |G/Op(Z(N)). Furthermore, if σ fixes a Sylow p-subgroup of G

element-wise, then σ ∈ Inn(G).

Lemma 2.6. Let N be a normal subgroup of a group G such that G/N is

of odd order. If OutC(N) = 1, then OutC(G) = 1. In particular, this is the case

when G has a normal Sylow 2-subgroup.

Proof. This is a consequence of Corollary 3 in [5]; see also Theorem 3.6

in [6]. �

Lemma 2.7. Suppose that G possesses a strongly 2-embedded subgroup.

Then one of the following statements holds.

(i) The Sylow 2-subgroups of G are either cyclic or quaternion groups.

(ii) G possesses a normal series 1 E G1 E G2 E G such that G1 and G/G2 are

of odd order, and G2/G1 is isomorphic to PSL2(2
n), Sz(22n−1) or PSU3(2

n)

with n ≥ 2.

Lemma 2.8 ([3, Theorem] and [4, Proposition 4.7]). Let G be a group

whose Sylow 2-subgroups are either cyclic, dihedral or generalized quaternion.

Then OutC(G) = 1.

Lemma 2.9. Let G be a (TI)-group. Then G has either a normal Sylow

2-subgroup or a strongly 2-embedded subgroup.

Proof. Assume that G has no normal Sylow 2-subgroups. Let P be a Sylow

2-subgroup of G. We claim that M := NG(P ) is a strongly 2-embedded subgroup

of G. It is clear that 2 divides |M | and M < G. In addition, since by hypothesis

G is a (TI)-group, it follows that 2 does not divide |M ∩Mg| for any g ∈ G \M .

We are done. �

Lemma 2.10 ([16, Lemma 1]). Let G be a (TI)-group. Then any subgroup

of even order of G is a (TI)-group. If N is a normal subgroup of odd order of G,

then G/N is a (TI)-group.
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3. Proof of Theorem A

In this section, we shall present a proof of Theorem A. To do this, we first

prove the following result.

Theorem 3.1. Let G be an extension of an odd order group by a simple

group. Then OutC(G) = 1. In particular, the normalizer property holds for G.

Proof. Let M be a normal subgroup of odd order of G such that G/M is a

simple group. According to whether G/M is abelian or not, we divide the proof

of Theorem 3.1 into two cases.

Case 1. G/M is abelian.

If the quotient G/M is of order 2, then G must have a Sylow 2-subgroup of

order 2, and thus the assertion follows from Lemma 2.1. If the quotient G/M is

of odd prime order, then G is of odd order, and thus the assertion follows from

Lemma 2.2.

Case 2. G/M is non-abelian.

Let σ ∈ AutC(G). Next we shall show that σ ∈ Inn(G). Since σ2 is inner, it

follows that σ is inner provided that an odd power of σ is inner. Noticing this, by

replacing σ with an odd power of it (if necessary), we may assume without loss

that σ is of 2-power order.

Since σ ∈ AutC(G), it follows that σ|G/M ∈ AutC(G/M). By hypothesis

G/M is non-abelian simple, so by Lemma 2.3 σ|G/M ∈ Inn(G/M), and thus

σ|G/M = conj(x)|G/M for some x ∈ G. Modifying σ with a suitable inner auto-

morphism, we may assume that

σ|G/M = id |G/M . (3.1)

Next we shall show that σ|M ∈ AutCol(M). Let P be an arbitrary Sylow subgroup

of M . Since σ ∈ AutC(G), it follows that there exists some y ∈ G such that

σ|P = conj(y)|P . (3.2)

Write H = MCG(P ). Then by Lemma 2.4 H is normal in G and Hσ = H.

Moreover,

σ|G/H = conj(y)|G/H . (3.3)

Note that H/M EG/M and G/M is simple, so either H/M = G/M or H/M=1.

It follows that G = H or H = M .
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If G = H, then G = MCG(P ), and thus we may write y as y = cm with

c ∈ CG(P ) and m ∈ M . It follows from (3.2) that

σ|P = conj(y)|P = conj(m)|P . (3.4)

If H = M , then (3.3) may be rewritten as

σ|G/M = conj(y)|G/M . (3.5)

Combining (3.1) with (3.5), we obtain

conj(y)|G/M = σ|G/M = id |G/M , (3.6)

which implies that yM ∈ Z(G/M). Since by hypothesis G/M is non-abelian

simple, it follows that Z(G/M) = 1̄, and thus yM = M , i.e., y ∈ M .

Consequently, no matter which case appears, by what we have just proved,

the element y in the equality (3.2) can always be assumed to lie in M . As P is

an arbitrary Sylow subgroup of M , we obtain σ|M ∈ AutCol(M). Note that M is

of odd order, but σ|M is of even order. So by Proposition 1 in [5], we obtain that

σ|M = id |M . (3.7)

Then Lemma 2.6, (3.1) and (3.7) yield that

σ|G/O2(Z(M)) = id |G/O2(Z(M)). (3.8)

But note that M is of odd order, so (3.8) implies that σ = id.

This completes the proof of Theorem 3.1. �

Proof of Theorem A. In view of Lemma 2.7, we divide the proof of The-

orem A into two cases.

Case 1. G has either a cyclic or a quaternion Sylow 2-subgroup.

The assertion follows from Lemma 2.8.

Case 2. G possesses a normal series 1EG1EG2EG such that G1 and G/G2

are of odd order, and G2/G1 is isomorphic to PSL2(2
n), Sz(22n−1) or PSU3(2

n)

with n ≥ 2.

By Lemma 2.6, it suffices to show that OutC(G2) = 1. But note that G2

is an extension of an odd order group G1 by a simple group, so by Theorem 3.1

OutC(G2) = 1.

This completes the proof of Theorem A. �
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Proof of Corollary B. Let G be a TI-group. Then by Lemma 2.9 G

has either a normal Sylow 2-subgroup or a strongly 2-embedded subgroup. In

the former case, the result follows from Lemma 2.6. In the latter case, the result

follows from Theorem A. This completes the proof of Corollary B. �

As a direct consequence of Corollary B, we have the following more general

result.

Corollary 3.2. Let G be a (TI)-group. Then the following statements hold.

(i) Let H be an arbitrary subgroup of G. Then OutC(H) = 1.

(ii) Let K be an arbitrary homomorphic image of G. Then OutC(K) = 1.

Proof. (i) Let H be an arbitrary subgroup of G. We have to show that

OutC(H) = 1. If H is of odd order, then the assertion follows immediately from

Lemma 2.2. If H is of even order, then the assertion follows from Lemma 2.10

and Corollary B.

(ii) LetN be a normal subgroup ofG. We have to show that OutC(G/N) = 1.

If N is of odd order, then by Lemma 2.10 G/N is a (TI)-group, and hence the

assertion follows from Corollary B. Hereafter, we assume that N is of even order.

According to Lemmas 2.7 and 2.9, we may divide the proof into three cases.

Case 1. G has a normal Sylow 2-subgroup.

It is easy to see that G/N also has a normal Sylow 2-subgroup and hence by

Lemma 2.6 OutC(G/N) = 1.

Case 2. G has a cyclic or generalized quaternion Sylow 2-subgroup.

Note that a factor group of a cyclic 2-group or a generalized quaternion 2-

group is either cyclic, or a generalized 2-group, or C2 ×C2 (the dihedral group of

order 4). Thus by Lemma 2.8 OutC(G/N) = 1.

Case 3. G contains a normal series: 1EG1 EG2 EG, where G/G2 and G1

are of odd order and G2/G1 is isomorphic to one of the groups L2(q), U3(q) or

G(q). Here the notation of simple groups follows that of [15].

We claim that G/N is of odd order. Considering all possible relationships

between N and G2, we divide the proof of the preceding claim into three subcases.

Subcase 3.1. N ≥ G2

It is clear that G/N is of odd order since by hypothesis G/G2 is.

Subcase 3.2. N ≤ G2.

Since G2/G1 is a simple group, it follows that either NG1/G1 = 1 or

NG1/G1 = G2/G1. In the former case, we have NG1 = G1, and thus N ≤
G1, which is impossible since N is of even order and G1 is of odd order. So
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we must have NG1/G1 = G2/G1, i.e., G2 = NG1. It follows that G2/N =

NG1/N ∼= G1/N ∩G1. By hypothesis G1 is of odd order, so is G2/N . Note that

G/N/G2/N ∼= G/G2 and G/G2 is of odd order, so G/N is of odd order.

Subcase 3.3. N 
 G2 and N � G2.

Write M = N ∩ G2. Then 1 ̸= M E G. Note that N/M = N/N ∩ G2
∼=

NG2/G2 ≤ G/G2 and G/G2 is of odd order, so M must be of even order. Note

further that M ≤ G2. Then by Subcase 3.2 G/M is of odd order. Note that

G/N ∼= G/M/N/M , so G/N is of odd order.

Thus in any subcase G/N is of odd order, as claimed. If follows from

Lemma 2.2 that OutC(G/N) = 1.

This completes the proof of Corollary 3.2. �
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punkt festläßt, J. Algebra 17 (1971), 527–554..

[2] M. Hertweck, Class-preserving automorphisms of finite groups, J. Algebra 241 (2001),

1–26.

[3] M. Hertweck, Class-preserving Coleman automorphisms of finite groups, Monatsh. Math.
136 (2002), 1–7.

[4] M. Hertweck, Local analysis of the normalizer problem, J. Pure Appl. Algebra 163 (2001),
259–276.

[5] M. Hertweck and W. Kimmerle, Coleman automorphisms of finite groups, Math. Z. 242
(2002), 203–215.

[6] S. Jackowski and Z. S. Marciniak, Group automorphisms inducing the identity map on

cohomology, J. Pure Appl. Algebra 44 (1987), 241–250.

[7] S. O. Juriaans, J. M. de Miranda and J. R. Robério, Automorphisms of finite groups,
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