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A variant of Wilson’s functional equation

By BRAHIM FADLI (Kenitra), DRISS ZEGLAMI (Meknes)
and SAMIR KABBAJ (Kenitra)

Abstract. In the present paper we determine the complex-valued solutions (f, g)
of the functional equation

f(xy) + flo(y)z) = 2f(x)g(y),

in the setting of groups and monoids that need not be abelian, where o is an involutive
automorphism.

1. Introduction

In [7] WILSON dealt with functional equations related to and generalizing the
cosine functional equation g(z + y) + g(x — y) = 2g(x)g(y) on the real line. He
generalized the cosine equation to

fle+y) + fx—y)=2f(x)gly), =z,y€eR, (1.1)

that contains the two unknown functions f and g. In [8] he introduced his second
generalization

fx+y)+ flz—y) =29(x)h(y), z,y€R, (1.2)

that contains the three unknown functions f, g and h. These functional equations
have been extended to abelian groups: You just replace the domain of definition R
by an abelian group (G, +). They have been solved in that setting. The equation
(1.1) has even been extended to general groups (see, e.g., [5, Chapter 11]).
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The purpose of the present paper is to solve the following equation

f(Ty) + f(a(y)a:) = Qf(l‘)g(y), z,y €M, (13>

where M is a possibly non-abelian group or monoid (that is, a semigroup with
identity) and o : M — M is an involutive automorphism, for unknown functions
fyg: M — C. A special case of (1.3) is the variant f(zy) + f(o(y)z) = 2f(z) of
Jensen’s functional equation.

As a consequence we obtain the solutions f, g, h : M — C of the more general
functional equation

flzy) + flo(y)z) = 29(x)h(y), =,y e M. (1.4)

Note that the variant (1.3) of Wilson’s functional equation is a generalization
of the equation

g(wy) +g(o(y)r) = 29(x)g(y), =x,y € M, (1.5)

which was introduced and solved on semigroups by H. STETK£R in [6]. Taking M
an abelian group, our equation becomes

flx+y)+ flx+o(y) =2f(x)9(y), =,y€M, (1.6)

which was solved by H. STETK#R in [4].

By elementary methods we find all solutions of (1.3) on monoids that are gen-
erated by their squares and on groups, in terms of multiplicative and additive func-
tions. This contrasts the solutions of the functional equation f(xy) + f(y~tx) =
2f(x)g(y), where the non-abelian phenomena like 2-dimensional irreducible rep-
resentations may occur (see [1]). Our formulas for the solutions of (1.3) on groups
are the same as those on abelian groups, so that our results constitute a natural
extension of earlier results of, e.g., [4], from the abelian to the non-abelian case.
Finally, we note that the sine addition law on semigroups given in [2] is a key
ingredient of the proof of our main results (Theorem 3.6 and Theorem 3.7).

2. Notation and terminology

To formulate our results we introduce the following notation and assump-
tions that will be used throughout the paper:
Let G be a group and M a monoid, that is a semigroup (a set with an asso-
ciative composition rule) with an identity element that we denote e. The map
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0 : M — M denotes an involutive automorphism. That it is involutive means that
o(o(x)) = x for all x € M. Tt is easy to derive that o(e) = e for any involutory
automorphism o : M — M (see [5, Lemma A.31]). If (G, +) is an abelian group,
then the inversion o(z) := —z is an example of an involutive automorphism.
Another example is the complex conjugation map on the multiplicative group of
nonzero complex numbers. For more examples of involutive automorphisms we
refer, e.g., to [2].

For any complex-valued function F on M we let F, and F, denote the even
and odd parts of F' with respect to o, i.e.,

F+F F-F
:ﬂ and Foziw.

Fe
2 2

We say that F is even if I' = F,, and odd if F = F,.
A function f: M — C is abelian, if

f(ff/nu)%(z) .. ‘xﬂ'(n)) = f(x122. .. 20)

for all x1,x2,...,x, € M, all permutations 7 of n elements and all n =2,3,....
On abelian monoids all functions are abelian. Any abelian function f is central,
meaning f(zy) = f(yx) for all z,y € M.

A function a : M — C is called additive, if it satisfies a(zy) = a(x) + a(y)
for all x,y € M.

A multiplicative function on M is a map x : M — C such that x(zy) =
x(x)x(y) for all z,y € M. A character on a group G is a homomorphism from
G into the multiplicative group of non-zero complex numbers. While a non-zero
multiplicative function on a group can never take the value 0, it is possible for a
multiplicative function on a monoid to take the value 0 on a proper, non-empty
subset of M. If x : M — C is multiplicative and x # 0, then

I, = {a € M| x(z) = 0)

is either empty or a proper subset of M. The fact that x is multiplicative estab-
lishes that I, is a two-sided ideal in M if not empty (for us an ideal is never the
empty set). It follows also that M \ I, is a subsemigroup of M. These ideals play
an essential role in our discussion of equation (1.3) on monoids.

If M is a topological space, then we let C(M) denote the algebra of continuous
functions from M into C.
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3. Main results

We first give a result for the sine addition law on monoids. All of this comes
directly from Lemma 3.4 in [2]. For the notation I, see the section Notation and
terminology.

Lemma 3.1. Let M be a monoid, and suppose f,g: M — C satisfy the sine
addition law

flzy) = f(x)g(y) + f(y)g(z), z,y€ M,

with f £ 0. Then there exist multiplicative functions x1, x2 : M — C such that

_X1itXxe

g 2

Additionally we have the following.
(i) If x1 # X2, then f = c¢(x1 — x2) for some constant ¢ € C\ {0}.
(i1) If x1 = X2, then letting x := x1 we have g = x # 0.
If M is a group, then there is an additive function a : M — C, a # 0, such
that f = ax.
If M is a monoid which is generated by its squares, then there exists an
additive function a : M \ I,, — C for which

_ Jalx)x(z) for x e M\ I
fw) = {0 for x € I.

Furthermore, if M is a topological group, or if M is a topological monoid
generated by its squares, and f,g € C(M), then x1, x2,x € C(M). In the group
case a € C(M) and in the second case a € C(M \ I;).

In the following Lemma we derive some properties of solutions of (1.3). We
prove these results on a monoid M.

Lemma 3.2. Let M be a monoid, let ¢ be an involutive automorphism
on M, and let the pair f,g : M — C be a solution of the functional equation (1.3)
such that f # 0.

(a) The even part (f + foo)/2 of f is f(e)g, so it is proportional to g.
(b) f is odd if and only if f(e) = 0.

(¢) (fo,9) is a solution of the sine addition law, i.e.,

fo(zy) = folx)g(y) + fo(y)g(z) for all x,y € M.
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(d) Both f and g are abelian functions.

(3) g is even.

PROOF. (a) and (b) Taking z = e in (1.3) we get f(y)+ f(c(y)) = 2f(e)g(y)
which is (a). Using the same identity we get (b).

(c¢) The method used here is closely related to and inspired by the one in [6,
Proof of Theorem 2.1]. Let a,b,¢ € M be arbitrary. With = ab and y = ¢ the
equation (1.3) becomes

flabe) + f(o(c)ab) = 2f(ab)g(c). (3.1)

To get rid of o in the second term on the left hand side of (3.1) we take x = o(c)a
and y = b which gives us

f(o(c)ab) + f(a(b)o(c)a) = 2f(o(c)a)g(b) = 29(b)[2f (a)g(c) — f(ac)]. ~ (3.2)
We reformulate the second term on the left hand side of (3.2) as follows
flo(b)a(c)a) = f(o(bc)a) = 2f(a)g(be) — f(abe),
which turns the identity (3.2) into
f(o(c)ab) + 2f(a)g(be) — f(abe) = 4f(a)g(b)g(c) — 2f(ac)g(b).

Subtracting this from (3.1) we get after some simplifications that
Fabe) — f(a)g(be) = [F(ab) — F(a)g(b)lg(c) + [f(ac) — fla)g(c)lg(b).  (3.3)
With the notation hy(y) = f(zy) — f()g(y) we can reformulate (3.3) to
ha(be) = ha(B)g(c) + ha(c)g(b).

This shows that the pair (hg,g) satisfies the sine addition law for any a € M. In
particular for a = e. Since he = f — f(e)g = f — fe = f, then (f,, g) is a solution
of the sine addition law.

(d) If f, # 0, we know from [5, Theorem 4.1] that both f, and g are abelian
functions. Since f = f. + fo = f(e)g + f,, then f is also an abelian function.

If f, = 0, then we see that f = f. = f(e)g and f(e) # 0. Indeed, f(e) =0
would entail f = 0, contradicting our assumption. So g is a solution of the
functional equation

g(zy) + g(o(y)x) = 29(z)g(y) for all z,y € M.
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According to [6, Theorem 2.1], there exists a multiplicative function x : M — C
such that ¢ = (x + x © 0)/2. Then ¢ is an abelian function and hence so is

f=1r(eg.
(e) Since f is abelian, then f is central. So the functional equation (1.3)
becomes

flxy) + flzo(y) = 2f(x)g(y), =,y € M, (3.4)

Replacing y by o(y) does not change the left hand side of (1.3). Thus we arrive
at f(x)g(y) = f(z)g(o(y)) for all z,y € M. Since f # 0, then g =goo ie. gis
evel. (]

In the following corollary, we solve the variant of Jensen’s functional equation,
namely

flay) + flo(y)x) =2f(x), x,y €M, (3.5)

on monoids.
Corollary 3.3. Let M be a monoid and let o be an involutive automorphism
on M. The solutions f : M — C of (3.5) are the functions of the form f = a+ «,

where a : M — C is an additive map such that a o 0 = —a, and where « is a
complex constant.

ProoOF. It is clear that f = 0 is a solution of (3.5), so we suppose that
f #0. On putting g =1 in Lemma 3.2 we get that f. = f(e) and f, is additive,
so f = fe + fo has the desired form. The other direction of the proof is trivial to
verify. (]

Proposition 3.4. Let M be a monoid, let o be an involutive automorphism
on M, and let the pair f,g : M — C be a solution of the functional equation (1.3)
such that f # 0.

(a) g is a solution of the variant (1.5) of d’Alembert’s functional equation.
(b) Both f. and f, satisfy (1.3) with the same g as for f.
Proor. (a) Choose z¢p € M such that f(zo) # 0. Using (1.3) and the fact
that f is abelian we get
2f(wo)lg(zy) + g(o(y)x)] = f(wozy) + f(o(x)o(y)xo) + f(zoo (y)) + f(yo(x)xo)
= f(zozy) + f(zoo(y)z) + f(yo(z)zo) + f(o(x)o(y)2o)
= f(zozy) + f(o(y)zoz) + flo(2)20y) + f(o(y)o(z)0)
= 2f(zow)g(y) + 2f (0 (x)z0)g(y)
= 2[f(zoz) + f(o(x)z0)lg(y) = 4f(z0)g(x)9(y),
for all z,y € M, which implies that g is a solution of (1.5).
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(b) Since fo = f(e)g and g satisfies (1.5), then f. satisfies (1.3) with the
same ¢ as for f and hence also f, = f — f.. (|

As a consequence of Proposition 3.4, in the special case of ¢ = id, we have
the following result.

Corollary 3.5. Let M be a monoid and let the pair f,g : M — C be a
solution of the functional equation

flzy) + fyr) = 2f(x)g(y), =,y€ M, (3.6)

such that f # 0. Then there exists a multiplicative function x on M such that
f =ayx and g = x for some o € C.

PRrROOF. On putting o = id in Proposition 3.4 (a) we see that g satisfies the
symmetrized multiplicative Cauchy equation, that is

g(xy) + g(yz)

5 =g(x)g(y), =x,ye€ M.

Then g is a multiplicative function (see [5, Theorem 3.21]) . Interchanging = and y
in (3.6) does not change the left hand side. Thus we arrive at f(z)g(y) = f(y)g(z)
for all z,y € M. Since f # 0, then f is proportional to g. This finishes the
proof. O

The following theorem solves the variant (1.3) of Wilson’s functional equation
on an arbitrary group. For abelian groups it generalizes many results (see, e.g.,
[3, Lemma 4.2] and [4, Theorem III.4]).

Theorem 3.6. Let G be a group, let o be an involutive automorphism on G,
and let the pair f,g : G — C be a solution of the functional equation (1.3) such
that f # 0. Then there exists a character x of G such that g = (x + xo00)/2.
Furthermore, we have the following possibilities:

(i) If x # x oo, then

f:ax—l-;(oa +/@x—;(oa,
for some «, € C.
(ii) If x = x oo, then there exists an additive function a : G — C with aoo = —a
such that
f=ax+ax,
for some o € C.
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Conversely, the formulas above for g and f define solutions of (1.3).
Moreover, if G is a topological group, and f, g € C(G), then x, xoo,a € C(G).

The monoid version (Theorem 3.7) differs from Theorem 3.6 only when x =
x o o (case (ii)), where the formulations are more complicated. The conclusions
of the two versions agree if x vanishes nowhere, which is the case on groups.

Theorem 3.7. Let M be a monoid which is generated by its squares, let o be
an involutive automorphism on M, and let the pair f,g: M — C be a solution of
the functional equation (1.3) such that f # 0. Then there exists a multiplicative
function x : M — C, x # 0, such that g = (x + x © 0)/2. Furthermore, we have
the following possibilities:

(i) If x # x oo, then

for some «a, 8 € C.

(ii) If x = x oo, then there exists an additive function a : M \ I, — C with
aoo = —a such that

_ Jax(@) +a(z)x(z) for xe M\ I,
fle) = {O for z eI,

for some o € C.

Conversely, the formulas above for g and f define solutions of (1.3).
Moreover, if M is a topological monoid generated by its squares, and f,g €
C(M), then x,x oo € C(M), while a € C(M \ I,).

ProOOF OF THEOREMS 3.6 AND 3.7. From Proposition 3.4 (a) we see that g
is a solution of (1.5). According to [6, Theorem 2.1], there exists a multiplicative
function y : M — C such that g = (x + x00)/2. If x =0, we get g = 0 which
implies that f = 0 contradicting our assumption. Hence x # 0. Additionally, by
[5, Corollary 3.19] we see that x is unique except that it can be interchanged by
Xoo.

Let f. and f, denote the even and the odd parts of f. We see from Lemma 3.2
that f. = f(e)g, and that (f,,g) is a solution of the sine addition law.

Assume first f even. Hence f, = 0, so that

X+tXxoo

f=f.=fle)g = fo* 5=,
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so we are in case (i) or (ii).

Assume next f not even. Hence f, # 0. Since ¢ = (x + x 0 0)/2 and x is
unique, except that it can be interchanged by x o o, we may apply Lemma 3.1
with x1 = x and x2 = x o ¢ to find the form of f,.

(i) Assume that x # x o o, then we get that

X—X°e0o
Jo= ﬁTa
for some S € C\ {0}, so that
X —XOoOo +xoo —Xoo0o
X—X XTX T 5X X

f:fe+f0:f(e)g+6 9 =« 9 9 s

where a = f(e).

(ii) Assume that x = xoo. If M is a group we get from Lemma 3.1 that
fo = ax for some additive function a. From f, being odd with respect to o we
see that a o0 = —a. Thus

f:fe+fo:f(e)g+fo:ax+a><7

where a = f(e).
If M is a monoid which is generated by its squares, we get from Lemma 3.1
that there exists an additive function a : M \ I,, — C for which

fo(z) = {a(z)x(z) for v € M\ I,

0 for z € I.

From f, being odd with respect to o we see that aoo = —a. Since f = fo+ f, =
f(e)g + fo and x(z) = 0 for = € I, we have

_ Jax(@) +a(z)x(z) for z € M\ I,
fe) = {O for x €I,

where a = f(e).

Conversely, simple computations prove that the formulas above for g and f
define solutions of (1.3).

The continuity statements follow from Lemma 3.1. g

Ezample 8.8. For an application of our results on a non-abelian monoid, let
M = M(2,C) be the set of complex 2 x 2 matrices under matrix multiplica-
tion. Note that M is generated by its squares (see [2]). Let o be the complex
conjugation operator

a b a b
O’(c d><c d) for a,b,c,d € C.
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We indicate here the corresponding continuous solutions of (1.3). We write R()\)
(resp. Im(\)) for the real part of the complex number A (resp. the imaginary part
of \).

The continuous non-zero multiplicative functions on M are (see [2, Exam-
ple 5.6]): x =1, or else

(x) = | det(X)|*~"(det(X))® when det(X) #
0 when det(X) =

where A € C with R(A) > 0 and n € Z.
Let us first consider the case of x # 1. Since |det(X)| = | det(a(X))|, we

have y o o # x if and only if n # 0.
In the case y oo = x we have n =0 so

(X) = {Idet(X)|/\ when det(X) # 0
0 when det(X) = 0.

In this case we have I,, = {X € M(2,C|det(X) = 0}.
In view of [2, Example 5.6], the continuous additive functions on M \ I,

0
0

satisfy the condition a o 0 = —a only if a = 0. The same is true for y = 1, where
a: M — C.

In conclusion, the continuous solutions f,g : M(2,C) — C, where f # 0,
of (1.3) are:

(
(

a) g =1 and f = a, where a is a non-zero complex number;
b)
|det(X)|* when det(X) #0
9x) = {0 when det(X) =0
f(X) = ag(X),
where o, A are complex numbers such that « # 0 and R()\) > 0; and
()
o(X) = {|det(X)|A—"R((det(X))n) when det(X) # 0
0 when det(X) =0
| det(X)|*"[aR((det(X))") when det(X) # 0
f(X) = +AIm((det(X))")]
0 when det(X) =0
where «, 8, A are complex numbers such that R(A) > 0 and n € Z \ {0}.
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In the following lemma, we give a characterization of solutions of (1.4).

Lemma 3.9. Let M be a monoid, let ¢ be an involutive automorphism
on M, and let the triple f,g,h : M — C be a solution of the functional equation
(1.4). Then we have the following possibilities:

(a) f=0,g9=0, h is arbitrary.
(b) f=0,h=0, g is arbitrary.
(¢) f = h(e)g, where h(e) # 0, and g is a solution of (1.3) with companion

function h/h(e), i.e.,

g(xy) +g(o(y)x) = QQ(I)ZEZ), z,y € M.

ProOF. The first two cases are obvious, so we suppose that f # 0. Taking
y = ein (1.4) we get f = h(e)g. If h(e) = 0 we get f = 0 contradicting our
assumption. Hence h(e) # 0. Replacing f by h(e)g in (1.4), we obtain the
identity in (c). O
In view of Theorem 3.6 and Lemma 3.8 we find the complete solution of (1.4)

on an arbitrary group.

Theorem 3.10. Let G be a group, let ¢ be an involutive automorphism
on G, and let the triple f,g,h : G — C be a solution of the functional equation
(1.4). Then we have the following possibilities:

(a) f=0,g9=0, h is arbitrary.
(b) f=0,h=0, g is arbitrary.
(c) There exists a character x of G such that h = 3(x + x o0o) for some constant
~v € C\ {0}. Furthermore:
(i) If x # x oo, then

+yoo — XYoo
LXK proxer
xhxeo g xoxeo

f=ay

for some o, 3 € C.

(ii) If x = x o o, then there exists an additive function a : G — C with
a oo = —a such that

g = ax +ay, [ =(ax +ax),

for some o € C.
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Moreover, if G is a topological group, and f,g,h € C(G), then x,x o 0,a €
c(@).
Conversely, the formulas above for f, g and h define solutions of (1.4).

The monoid version (Theorem 3.10) of Theorem 3.9 is a consequence of
Lemma 3.8 and Theorem 3.7.

Theorem 3.11. Let M be a monoid which is generated by its squares, let o
be an involutive automorphism on M, and let the triple f,g,h : M — C be a
solution of the functional equation (1.4). Then we have the following possibilities:
(a) f=0,9=0, h is arbitrary.
(b) f=0,h=0, g is arbitrary.
(¢) There exists a multiplicative function x : M — C, x # 0, such that h =

2(x + x 0 0) for some constant v € C\ {0}. Furthermore:

(i) If x # x oo, then

X+xoo X—Xo0o
a 5 + 5 2 ,
X+xoo X—Xoo

5 + By

f=ay

for some «, 8 € C.

(i) If x = x oo, then there exists an additive function a : M \ I,, = C with
a oo = —a such that

o) = ax(z)+a(x)x(z) for € M\ I,
0 for x € I,

and

fla) = v(ax(z) + a(x)x(z)) for z € M\ I,
0 for x € I,

for some « € C.

Moreover, if M is a topological monoid generated by its squares, and f, g, h €
C(M), then x,x oo € C(M), while a € C(M \ I,).
Conversely, the formulas above for f, g and h define solutions of (1.4).

ACKNOWLEDGEMENT. Our sincere regards and gratitude go to Professor
HENRIK STETKZER for fruitful discussions and for valuable comments.



A variant of Wilson’s functional equation 427

References

[1] B. R. EBanks and H. SterkER, On Wilson’s functional equations, Aequationes Math. 89
(2015), 339-354.

[2] B. R. EBanks and H. STETKER, d’Alembert’s other functional equation on monoids with
an involution, Aequationes Math. 89 (2015), 187-206.

[3] PL. KaNNaPPAN, Cauchy equations and some of their applications, Topics in Mathematical
Analysis, Ser. Pure Math., I1, (by Th. M. Rassias, ed.), World Scientific Publ. Co., Teaneck,
NJ, 1989, 518-538.

[4] H. STeETKZER, Functional equations on abelian groups with involution, Aequationes Math.
54 (1997), 144-172.

[5] H. STETKER, Functional Equations on Groups, World Scientific Publishing Co, Singapore,
2013.

[6] H. STeETKER, A variant of d’Alembert’s functional equation, Aequationes Math. 89 (2015),
652-662.

[7] W. H. WiLsoN, On certain related functional equations, Bull. Amer. Math. Soc. 26 (1920),
300-312.

[8] W. H. WiLsoN, Two general functional equations, Bull. Amer. Math. Soc. 31 (1925),
330-334.

BRAHIM FADLI SAMIR KABBAJ

DEPARTMENT OF MATHEMATICS DEPARTMENT OF MATHEMATICS

FACULTY OF SCIENCES FACULTY OF SCIENCES

IBN TOFAIL UNIVERSITY IBN TOFAIL UNIVERSITY

BP: 14000. KENITRA BP: 14000. KENITRA

MOROCCO MOROCCO

E-mail: himfadli@gmail.com E-mail: samkabbaj@yahoo.fr

DRISS ZEGLAMI

DEPARTMENT OF MATHEMATICS
E.N.S.A.M

MOULAY ISMAIL UNIVERSITY

B.P : 15290 AL MANSOUR, MEKNES
MOROCCO

E-mail: zeglamidriss@yahoo.fr

(Received December 17, 2014; revised June 1, 2015)



