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Integers with large practical component

By ANDREAS WEINGARTNER (Cedar City)

Abstract. A positive integer n is called practical if all integers between 1 and n
can be written as a sum of distinct divisors of n. We give an asymptotic estimate for
the number of integers < x which have a practical divisor > y.

1. Introduction

A positive integer n is called practical if all integers between 1 and n can
be written as a sum of distinct divisors of n. In 1948, SRINIVASAN [8] began
the study of practical numbers, which have been the source of a fair amount of
research activity ever since. Let P(z) denote the number of practical numbers
< z. Increasingly precise estimates for P(z) have been obtained by ERDOs and
LOXTON [2], HAUSMAN and SHAPIRO [3], MARGENSTERN [4], TENENBAUM [10]
and SAIAS [6], who found that the order of magnitude of P(z) is 2/logx. In [12]
we showed that there is a positive constant ¢ such that

cx loglog x
Pa)=1 = <1+0<1g0g§ )) (1)

confirming a conjecture by MARGENSTERN [4]. In this note we want to generalize

(1) to integers which have a large practical divisor.

Let g(n) denote the practical component of n, i.e. the largest divisor of n
which is practical. We have g(n) = n if and only if n is practical, hence we can
think of g(n) as a measure for how close n is to being practical. Let M(x,y) be
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the number of integers < x whose practical component is at least y, i.e.

M(z,y) :==#{n <z :g(n) >y}

A closely related arithmetic function is f(n), the largest integer with the
property that all integers in the interval [1, f(n)] can be written as a sum of
distinct divisors of n. Clearly, n is practical if and only if f(n) > n. Thus f(n)
represents another measure for how close n is to being practical. POLLACK and
THOMPSON [5] call an integer n a practical pretender (or a near-practical number)
if f(n) is large. More precisely, they define

N(z,y) =#{n<z: f(n) >y}

and show that there are two positive constants ci, co such that

< N(z,y) < co 4<y<a).

log logy
In [5, Lemma 2.1] they find that f(n) satisfies f(n) = o(g(n)), where o(m)
denotes the sum of the positive divisors of m.

To describe the asymptotic behavior of M(z,y) and N(z,y) we need the
following notation. Let ¢ be the positive constant in (1), x(n) be the characteristic
function of the set of practical numbers,

~ logw
~logy’
and w(u) be Buchstab’s function, i.e. the unique continuous solution to the

equation
(uw(u)) =wlu—1) (u>2)

with initial condition w(u) =1/u for 1 < u < 2.

Theorem 1. For z > y > 2 we have

clzw(u log log 2
(i) M, y) = <572 + O(Sass),
crw(u z log log 2
(11) N( )_ 1ogy)+0(logy+ﬁ)’
(iii) M(z,y) = zp, + O(2Y),
(iv) N(z,y) = av, + O(2Y),
where (n) 1
—1_ N\ x\v) _ =
n<y p<o(n)+1
and

Z @ (n)+1 (1_;)-

o(n)<y p<o
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It may seem a little surprising to see Buchstab’s function appear in the as-
ymptotic formulas for M (x,y) and N(x,y). The reason for this is that M (z,y)
and N (z,y) satisfy functional equations (see Lemma 1 below) which closely re-
semble the functional equation

y<p<z

satisfied by
O(x,y) :=#{n<z: P (n) >y}

Here P~ (n) denotes the smallest prime factor of n and P~(1) = co. The main
difference is that the primes in (2) are replaced by the practical numbers in Lem-
ma 1, which explains the constant factor ¢ in Theorem 1. With Lemma 2 (ii) we
find that M (z,y) ~ c¢®(z,y) for y < (1 —e)z and y — oo.

Moreover, combining (1), Theorem 1, Lemma 2 and the prime number the-
orem, we have

Ple)  wx)
M(z,y) @(z,y) uw(u)

(y — o0, x/y — 00).

Hence the probability that a random integer n < x is practical, given that g(n) >y,
is asymptotically equivalent to the probability that a random integer n < x is
prime, given that P~ (n) >y, as y — 00, 2/y — oo.

The rapid convergence of w(u) to e~ (see Lemma 3 (ii)) and Theorem 1
imply that, for x > y > 2,

ez 1 log log 2y
(@), N(@,y) = 35— ( o <F(u+ D logy )> ’ ©

where I' denotes the usual gamma function. Combining (3) with (iii) and (iv)

ce loglog y
,vaVy: logy <1+O(10gy .

The following table shows p, = lim,_ oo M(z,y)/z and v, = limy_,oc N(z,y)/x

gives the estimate

for small values of y:

y e Hy yE Vy
[0,1] 1 [0,1] 1
(1,2] 1/2 (1,3] 1/2
(2,4] 1/3 (3,7] 1/3
(4,6] | 29/105 (7,12] | 29/105
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From part (iii) of Theorem 1 we obtain the natural density of integers whose
practical component is equal to m.

Corollary 1. Let m > 1 and

x(m 1
o= e = M2 T (127,
p<o(m)+1 P

For x > 1 we have #{n < z : g(n) = m} = zay, + O(2™).

Pollack and Thompson [5, Corollary 1.2] found that the set of integers n with
f(n) = m has a natural density p,,. Part (iv) of Theorem 1 implies

Corollary 2. Let m > 1 and

pi= v v = S X <1_1)— Y o

o(n)=m p<o(n)+1 p o(n)=m

For x > 1 we have #{n <z : f(n) = m} = zp,, + O(2™).

The following table shows non-zero values of «,, and p,, for small m. Note
that a,, > 0 if and only if m is practical, while p,, > 0 if and only if m = o(n)
for some practical number n.

m Qm m Pm
1] 1/2 1] 1/2
2| 1/6 3] 1/6
41 2/35 7] 2/35
6 | 32/1001 12 | 32/1001

The equality of a,, and p,(,,) does not always hold. For example, since
o(54) = 0(56) = 120 and both 54 and 56 are practical, we have pjag = @54 + @s6.
Moreover, Pollack and Thompson [5, Theorem 1.3] show that the number of
integers m < x for which p,, > 0 is < amg%)/* for every fixed A > 0. Thus the
support of p,, is a much thinner set than the support of a,,, the set of practical
numbers.

The reader may have noticed that practical integers n < y are not counted in
M (x,y). This suggests that we may want to consider replacing the parameter y
by an increasing function of n, so that smaller values of n are not ignored. To
this end, we define

Ma(@) = #{n <a:g(n) 2 n}, Nae):=#{n<z: f(n) > n’}.
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Nevertheless, the following result shows that, for z* — oo, 21~ = oo,

cxw(1/N)

M) ~ M(z,a%) ~ Na(z) ~ N2 ~ G550

Corollary 3. For x > y > 2 we have
(1) Ml/u(m) _ czw(u) + O(wloglong)?

log y (logy)?
.t _ caxw(u) z log log 2
(11) Nl/u(x) — logy + O(lo?;;y + (l(%gyg)2y)'
2. Proofs

STEWART [9] and SIERPINSKI [7] independently discovered the following char-
acterization of practical numbers. An integer n > 2 with prime factorization
n=p"-pe*, p1 <p2 <...<Dpyg, is practical if and only if

pj§1+rf< 1T p?i) (1<j<k).
1<i<j—1

It follows that the practical component of n is the largest practical divisor of n
of the form H1<i<j p;t. If j < k, ie. n is not practical, then we have pj;1 >

1+0(H1§i§jp?i)'
Lemma 1. For x > 1, y > 1 we have

(i) [2] = ; x(n)®(z/n,o(n) + 1)

(i) M@,y)= X xm)®(/n,0(n)+1)

(i) N(z,y) = z X(m)®(x/n, o(n) +1)

o(n)>y
(iv) M(x) = 3 x(m)@(min(e/n.n ). () +1)
(9) Na(x) = = x(m)@(min(e/n. o(n)!//m). o(n) +1)

PRrOOF. Each of these equations is based on the same principle, which is to
count the integers m contributing to the left-hand side according to their practical
component n. Part (i) is Lemma 2.3 of [12]. We only take a closer look at (ii).
Every integer m counted in M(z,y) factors uniquely as m = nr, where n is the
practical component of m, n > y and P~ (r) > o(n) + 1. Given a practical com-
ponent n, the number of admissible values of r is given by <I>(:U/n, o(n) + 1). a
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Lemma 2. We have
Oz, y) =], (1-5) + o2"®) (z>1,y>2)

i)
(i) D(x,y) = 200 L O(ply) (@>y>2)
(iii) ®(x,y) = wlg;;) + o(logy + 7(1ogy>2) (z>1,y >2)
(iv) ®(z,y) ~ 1< 2 (2> 1,y>2)

PROOF. Part (i) is elementary (see e.g. DE BRULIN [1]). For (ii) see TENEN-
BAUM [11, Theorem II1.6.3]. Parts (iii) and (iv) follow easily from (ii). O

Lemma 3. We have
(i) w (W] <1/T(u+1) (u=1)
(i) Jw(u) —e 7| < 1/T(u+1) (u>1)

PRrROOF. See Tenenbaum [11, Theorems I11.5.5, I11.6.4]. O

In the proof of Theorem 1 we will use the well-known fact (see for example
[11, Theorem 1.5.5]) limsup,, ,, o(n)/(nloglogn) = €7.

PRrROOF OF THEOREM 1. (i) We use Lemma 1(ii). If /z < y < z, then
M(z,y) = P(z) — P(y — 0) because ®(z,y) = 1 for y > 2 > 1. Thus the result
follows from (1) in this case. If y < \/x we have

M(z,y) = P(z) = P(Vz)+ Y x(n)®(z/n,o(n) +1).
y<n<yVz

We approximate ® by Lemma 2(iii). The contribution from the error term

Ot/ g y)?) i /
2 X o < (g

and from the error term O(y/logy) it is

)

o(n)+1 x log log x x log log 2z

X\n 5
e /5 log(o(n) + 1) log Y/ (log x)

which is acceptable. The contribution from the main term is

& Z nlogchL) )‘”(bg?;g(:)/il))'
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In the last sum, we replace the two occurrences of log(o(n) + 1) by logn +
O(logloglog(8n)). Lemma 3 and (1) show that the resulting error is
< z(loglog2y)/(logy)?. We thus have

M) =P@)+e Y X0, (k’gx —1> +0(”“’1°g1°g2y>.

2
W nlogn logn (logy)

Partial summation together with the estimates in Lemma 3 and (1) yields

Ve . log x x log log 2y
M(z,y) = P -1 T (ogy)? )
(,y) () + x/y t(logt)? “ (IOgt ) e+ o ( (logy)? )

The term with the integral simplifies to

« /2uw(5 —1)ds « (uw(u) —1).

log x - log x

The result now follows from (1).
(ii) Lemma 1 shows that

0< N(z,y) — M(z,y) = > x(n)®(z/n,o(n) +1)
o(m2y

< Z X(n)@(m/n,a(n) + 1),

Y
Aloglog 2y <n<y

for some suitable constant A. Splitting the range by powers of 2 and using the
estimate (1) and Lemma 2 (iv), the last sum is

Z x Y x loglog 2y

n(logn)? < logy | (logy)?
<n<y

< P(y) +

Y
Aloglog 2y

Hence (ii) follows from (i).
(iii) From Lemmas 1 and 2 we have

@] = M(z,y) = 3 x(m)®(a/n.o(n) +1) = 3 X@)(i I (1 _ 1)

n<y n<y p<o(n)+1 p
o)) st 0 e
n<y

=ax(1— ) + O(2(1+0(1))<nyloglogy/log;y)7

since o(n) < (1+ o(1))e"nloglogn and 7 (y) < (1+ o(1))y/logy.
We omit the proof of (iv), since it is almost the same as that of (iii). O
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PROOF OF COROLLARY 3. (i) From Lemma 1 and Lemma 2 (iv) we have,
with A = 1/u,

My(x) = M(z,2*) = > ( VAL o(n) + 1)

=)+ o xt) = P01 +0( )

by partial summation. The result now follows from Theorem 1 and (1). The
proof of (ii) follows the same idea. In the end we need an estimate for

Z X(n)M.

iy nlog2n

We split this sum into two parts. The contribution from large n is

y x zloglogy

< PR A
- yz X(n)nloan < yz n(log 2n)? < (logy)? ’
Allog )7 <M<Y Allog)? <Y

where A is a positive constant such that o(n) < @#)2 whenever n < m

and y > 2. The contribution from small n is

(ylogy) )" _ x
<
- Z x(n) nlog 2n logy )? Z log 2n)? < (logy)?

n—~4%
= A(log y)3
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