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Rizza-negativity of holomorphic vector bundles

By HARIPAMYU (Kagoshima) and TADASHI AIKOU (Kagoshima)

Abstract. In the present paper, we shall introduce the notion of Rizza-negativity

of complex Finsler structures, and we show that Rizza-negativity implies the negativity

of holomorphic vector bundles, i.e., the ampleness of its dual E∗. Further we shall

show that any Rizza-negative Finsler structure induces a Griffiths-negative Hermitian

structure.

1. Introduction

A holomorphic line bundle L over a compact complex manifold M is said to

be very ample if there exists a basis for holomorphic sections of L such that it

defines a holomorphic imbedding f : M ↪→ PN into a complex projective space

PN . If L is very ample, then L is isomorphic to f∗H for the hyperplane bundle

H over PN . A holomorphic line bundle L is said to be ample if there exists a

positive integer k such that L⊗k is very ample. Since the metric on H induced

from the Fubini-Study metric on PN has positive curvature, the induced k-th root

metric on L is a Hermitian metric of positive curvature. Therefore any ample

line bundle is positive. The converse is also true by the well-known Kodaira’s

embedding theorem.

A holomorphic line bundle L is said to be negative if its dual L∗ is positive

or ample. A holomorphic line bundle L is negative if and only if L admits a
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Hermitian metric h of negative curvature. It is natural to generalize the notion

of ampleness or negativity to higher rank vector bundles.

Let π : E → M be a holomorphic vector bundle of rank r (≥ 2) over a

compact complex manifold M of dimC M = m. Denoted by E0 the set of non-

zero elements of E, the multiplicative group C∗ = C − {0} acts on E0 by scalar

multiplication. Then the projective bundle ϕ : P(E) → M associated with E

is defined by P(E) = E0/C∗. The fiber ϕ−1(z) = Pz is the complex projective

space of dimension r − 1. The tautological line bundle L(E) is a holomorphic

line bundle over P(E) defined by L(E) = {(V, v) ∈ P(E) × E | v ∈ V }, and the

dual line bundle H(E) := L(E)∗ is called the hyperplane bundle. A holomorphic

vector bundle E is said to be ample if the bundle H(E∗) = L(E∗)−1 over P(E∗)

is ample, where E∗ is the dual of E ([Ha]).

A holomorphic vector bundle E over a compact complex manifold M is said

to be Griffiths-positive if E admits a Hermitian metric of positive curvature. It is

well-known that any Griffiths-positive vector bundle is ample (see e.g., [Sh-So]).

If E is ample, then the determinant bundle detE = ∧rE is an ample line bundle

over M . Hence, if there exists an ample vector bundle over M , the base manifold

M is projective, i.e., M is holomorphically embedded into PN for some sufficiently

large N (see e.g., [Zh]).

Definition 1.1 ([Ko1]). A holomorphic vector bundle E is said to be negative

if its dual E∗ is ample, i.e., E is negative if L(E) is negative.

A complex Finsler structure in E is a function F : E → R satisfying the

following conditions:

(F1) F is smooth on E0, and F is continuous on E;

(F2) F (z, ζ) ≥ 0 and = 0 if and only if ζ = 0;

(F3) F satisfies the homogeneity condition F (z, λ · ζ) = |λ|2F (z, ζ) for any

λ ∈ C.

The geometry of complex Finsler structures was started by [Ri] and [Ru1], and

the connection theory in a complex manifold with a complex Finsler structure

was developed by [Ru2].

In [Ko1], any complex Finsler structure F in E is identified with a Hermit-

ian structure in L(E) by identifying v ∈ E0 with ([v], v) ∈ P(E) × E0. Since

the curvature of (L(E), F ) is given by ∂̄∂ logF , a characterization of negative

holomorphic vector bundles is given by

Theorem 1.1. A holomorphic vector bundle E over a compact complex
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manifold is negative if and only if E admits a complex Finsler structure F such

that
√
−1∂̄∂ logF < 0.

From the expression (2.13) of
√
−1∂̄∂ logF in the below, it follows that the

negativity of E is easier to describe than the ampleness of E from the viewpoint

of differential geometry. Hence, in this present paper, we will be concerned with

negativity instead of ampleness of vector bundles, and we shall show some results

obtained from Kobayashi’s characterization.

2. Complex Finsler geometry

Denoted by TM and TE the holomorphic tangent bundles over M and E

respectively, we obtain a short exact sequence of holomorphic vector bundles

over E:

O −−−−→ V
ι−−−−→ TE

π̃−−−−→ T̃M −−−−→ O, (2.1)

where T̃M = π∗TM is the pull-back of TM , and the vertical sub-bundle is defined

by V := ker(π̃) and π̃ = (π, π∗) for the push-forward π∗ : T(z,ζ)E → TzM at

(z, ζ) ∈ E. The fiber V(z,ζ) of V over (z, ζ) ∈ E is the tangent space TζEz at

ζ ∈ Ez := π−1(z).

Let z = (z1, . . . , zm) be a local complex coordinate system in an open subset

U of M , and s = {s1, . . . , sr} a local holomorphic frame field of E over U . The

induced coordinate system in the fiber Ez will be denoted by ζ = (ζ1, . . . , ζr) so

that (z, ζ) = (z1, . . . , zm, ζ1, . . . , ζr) is a local coordinate system in π−1(U) ⊂ E.

Given a complex Fnsler structure F , we set

gij̄ := ∂i∂j̄F, (2.2)

where ∂i = ∂/∂ζi and ∂j̄ = ∂/∂ζ̄j . Usually, if (gij̄) is positive-definite along the

fibers, then F is said to be strongly pseudoconvex. If F is strongly pseudoconvex,

then (gij̄) defines a Hermitian structure g in V by

g(Z,W ) =
∑

gij̄Z
iW j (2.3)

for all Z =
∑

Zi(∂/∂ζi),W =
∑

Zj(∂/∂ζj) ∈ Γ (V ). We shall call F a Rizza

structure if F is strongly pseudoconvex to shorten the terminology.

Let µ be the action of the multiplier group C∗ on E defined by µ : C∗ ×
Ez ∋ (λ, (z, ζ)) 7−→ (z, λ · ζ) := µλ(z, ζ) ∈ Ez for all λ ∈ C∗. The condition
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(F3) shows gij̄ ◦ µ = gij̄
1, and the action µ induces a section E of V such that

(µλ)∗(E(z, ζ)) = E(z, λ · ζ):

E =
∑

ζi
∂

∂ζi
. (2.4)

From the assumption (F3), it follows that

g(E , E) = F (z, ζ). (2.5)

2.1. Partial connection in (V, g). Any complement H(z,ζ) of V(z,ζ) = TζEz

defines a horizontal vector sub-bundle H ⊂ TE . If H is smooth on E and is

invariant by the action µ, then H is called an Ehresmann connection in E. If a

horizontal sub-bundle H is smooth on E0, and H is continuous on E, then H is

called a nonlinear connection in E.

Any nonlinear connectionH is defined byH = ker(P ) for a smooth morphism

P : TE → V satisfying P ◦ ι = id. Since P may be considered as a (1, 0)-form

with values in V , P can be written as P =
∑

(∂/∂ζi) ⊗ (dζi +
∑

N i
αdz

α) for

some local functions N i
α such that they are homogeneous of degree one in the

fiber coordinate ζ1, . . . , ζr, i.e., N i
α ◦ µλ = λN i

α. Then the horizontal lifts Xα

with respect to H of local frame fields {∂/∂zα} are given by

Xα =
∂

∂zα
−
∑

N i
α

∂

∂ζi
,

and H is locally spanned by {X1, . . . , Xm} satisfying

(µλ)∗(Xα(z, ζ)) = Xα(z, λ · ζ). (2.6)

For any tangent vector X in M and its horizontal lift XH with respect to H,

we set

DXHZ := P ◦ LXHZ, (2.7)

where LXH is the Lie derivative by XH . Then DXHZ is linear in XH and satisfies

the Leibniz rule DXH (fZ) = XH(f)Z + fDXHZ, i.e., D is a partial connection

of (1, 0)-type in V in the horizontal direction H. We wish to fix a nonlinear

connection H so that D satisfies

DXHg = 0 (2.8)

for all X ∈ Γ (TM ), i.e., we will be concerned with H such that the parallel

displacement preserves the Hermitian structure g. The assumption (2.8) can be

1The matrix (gij̄) defines a Hermitian structure g in the induced bundle ϕ∗E over P(E). In [Ko1]

and [Ko2], the Hermitian connection of (ϕ∗E, g) was discussed to characterize the negativity of

E by using its curvature.
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written as
∂

∂ζi

(
∂2F

∂zα∂ζ̄j
−
∑

gij̄N
i
α

)
= 0.

Hence, if we define H by

N i
α =

∑
gj̄i

∂2F

∂zα∂ζ̄j
(2.9)

for the the components gj̄i of the inverse of (gij̄), the partial connection D satis-

fies (2.8).

Proposition 2.1. Let F be a Rizza structure in E. There exists a non-

linear connection H of E so that the partial connection D associated with H

satisfies (2.8).

2.2. Curvature K of D and Rizza-negativity. Since D is compatible with g

in the horizontal direction H, D is given by

Dα
∂

∂ζi
:= DXα

∂

∂ζi
=
∑

Γ l
iα

∂

∂ζl
, Γ l

iα =
∑

glm̄Xα(gim̄). (2.10)

The following proposition will be easily proved from (2.5) and (2.8).

Proposition 2.2. The partial connection D in (V, g) satisfies

DαE = 0, (2.11)

and the Rizza structure F is constant along H, i.e.,

XαF = 0. (2.12)

The curvature form Ωi
j of D is defined by

D2 ∂

∂ζj
=
∑ ∂

∂ζi
⊗Ωi

j ,

and the curvature tensor Ki
jαβ̄

is defined by Ωi
j =

∑
Ki

jαβ̄
dzα ∧ dz̄β . Then (2.8)

implies

Kij̄αβ̄ :=
∑

glj̄K
l
iαβ̄ = −Xβ̄Xαgij̄ +

∑
gkl̄Γ

k
iαΓ

l
jβ .

Definition 2.1. We say that (E,F ) is Rizza-negative if

K(Z ⊗XH) :=
∑

Kij̄αβ̄Z
iXαZjXβ < 0

at any point (z, ζ) ∈ E for all non-zero Z ∈ V(z,ζ) and XH ∈ H(z,ζ).
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We will investigate the negativity of E using an expression of ∂̄∂ logF in

terms of curvature tensor of the partial connection D in (V, g). Such an expression

is given in [Ai]:

Proposition 2.3. Let F be a Rizza structure in E. Then

√
−1∂̄∂ logF =

√
−1

F

∑
Ψαβ̄dz

α ∧ dz̄β −
√
−1
∑

(logF )ij̄P
i ∧ P j , (2.13)

where we put Ψαβ̄ =
∑

Kij̄αβ̄ζ
iζj , (logF )ij̄ = ∂i∂j̄(logF ) and P i = dζi +∑

N i
αdz

α.

We denote by ρ : E0 → P(E) the natural projection, and by (z, [ζ]) ∈ P(E)

corresponding to (z, ζ), ζ ̸= 0. Since ρ satisfies

ρ∗

(∑
ζi

∂

∂ζi

)
= ρ∗E = 0,

ker(ρ∗) is spanned by the tautological section E . Further,∑
(logF )ij̄Z

iW j =
1

F

[
(g(Z,W )− 1

F
g(Z, E)g(E ,W )

]
:= g⊥(Z,W ) (2.14)

for all Z,W ∈ Γ (V ). From (2.13) and Theorem 1.1, we get

Theorem 2.1. Let E be a holomorphic vector bundle admitting a Rizza

structure F . If (E,F ) is Rizza-negative, then E is negative.

Proof. Since F is a Rizza structure, the identity (2.5) and Schwarz inequal-

ity assure the negativity of the second term of (2.13) in each T[ζ]Pz. Further, if

(E,F ) is Rizza-negative, then
∑

Ψαβ̄X
αXβ = K(E ⊗XH) implies the negativity

of the first term of (2.13). Hence, if (E,F ) is Rizza-negative, then E is nega-

tive. �

The Rizza negativity of (E,F ) concludes the negativity of K(E ⊗XH), but

the converse is not true in general. Thus it is an open problem whether a Rizza-

negative structure exists in a negative vector bundle.

3. Smooth family of Kähler metrics

Let ϕ : P(E) → M be the projective bundle associated with E. Then we

obtain a short exact sequence of holomorphic vector bundles over P(E):

O −−−−→ V
ι−−−−→ TP(E)

ϕ̃−−−−→ T̃M −−−−→ O, (3.1)
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where T̃M = ϕ∗TM is the pull-back of TM , and V := ker(ϕ̃) with ϕ̃ := (ϕ, ϕ∗) for

the push-forward ϕ∗ : T(z,[ζ])P(E) → TzM . Each fiber V(z,[ζ]) of V is the tangent

space T[ζ]Pz = ρ∗(TζE
0
z ) of Pz = ϕ−1(z) at [ζ] ∈ Pz, and V(z,[ζ]) is spanned by

{s̃1 := ρ∗
(
∂/∂ζ1

)
, . . . , s̃r := ρ∗(∂/∂ζ

r)} satisfying the relation∑
ζis̃i = ρ∗E = 0. (3.2)

Since the metric g⊥ defined in (2.14) is invariant by the action µ, i.e., µ∗
λg

⊥ =

g⊥ for any λ ∈ C∗, there exists a Hermitian structure g in V such that

(ρ∗g)(Z,W ) = g⊥(Z,W ) =
1

F

[
(g(Z,W )− 1

F
g(Z, E)g(E ,W )

]
, (3.3)

and g defines a Kähler metric gz := g �Pz in each fiber Pz. Hence any Rizza

structure F in E makes ϕ : P(E) → M a smooth family of Kähler manifolds

{Pz, gz}.
Conversely, we suppose that ϕ : P(E) → M is a smooth family of Kähler

manifolds {Pz, gz}. Let ωz be the Kähler form in each Pz defined by gz. Then E

admits a Rizza structure F such that ρ∗ωz =
√
−1
∑

(logF )ij̄dζ
i ∧ dζ̄j (see the

last section).

Proposition 3.1. A holomorphic vector bundle E admits a Rizza structure

if and only if the projective bundle ϕ : P(E) → M is a smooth family of Kähler

manifolds.

Let H be the nonlinear connection in E determined from the given Rizza

structure F . Since H is invariant by the action µ, we can define a horizontal

sub-bundle H ⊂ TP(E) by H = ρ∗H. Then (2.6) shows that ρ∗(Xα(z, λ · ζ)) =
ρ∗(Xα(z, ζ)) for any λ ∈ C∗ and (z, ζ) ∈ E0, and this implies that

Xα(z, [ζ]) := (ρ∗Xα)(z, [ζ]) (3.4)

makes sense for the basis {X1, . . . ,Xm} ofH. Hence H is spanned by {X1, . . . ,Xm}.
Denoted by P : TP(E) → V the morphism with ker(P) = H , we define a partial

connection D of (1, 0)-type in V by the Lie derivative in the horizontal direction

H as in (2.7):

DXH := P ◦ LXH . (3.5)

Further, since the projection P and P are commutative with ρ∗, i.e., P ◦ ρ∗ =

ρ∗ ◦ P implies

DXH = ρ∗DXH . (3.6)
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From (2.11) and (2.12), it follows that the partial connection D in (V, g)

satisfies Dg⊥ = 0. Using this fact and (3.6), we get

(DXH g)(s̃i, s̃j) = Xα

(
g

(
ρ∗

∂

∂ζi
, ρ∗

∂

∂ζj

))
− g

(
ρ∗DXH

∂

∂ζi
, ρ∗

∂

∂ζj

)
− g

(
ρ∗

∂

∂ζi
, ρ∗DXH

∂

∂ζj

)
= Xα

(
g⊥
(

∂

∂ζi
,

∂

∂ζj

))
− g⊥

(
DXH

∂

∂ζi
,

∂

∂ζj

)
− g⊥

(
∂

∂ζi
, DXH

∂

∂ζj

)
= (Dαg

⊥)

(
∂

∂ζi
,

∂

∂ζj

)
= 0.

Proposition 3.2. The partial connection D is compatible with the Hermit-

ian structure g:

DXH g = 0. (3.7)

For any smooth relative (r, r)-form η on P(E),

∂

∂zα

∫
Pz

η =

∫
Pz

LXαη and
∂

∂z̄α

∫
Pz

η =

∫
Pz

LXαη, (3.8)

where Xα := Xα denotes the complex conjugate of Xα.

From (3.7), it follows that the Hermitian structure g is preserved by the

parallel translation with respect to H , i.e.,

(LXαg) �Pz= 0. (3.9)

Let ωz be the Kähler form in each Pz defined by gz, and let dv = ωr−1
z /(r − 1)!

be the volume form in {Pz, gz}. Then (3.9) implies (LXαωz) �Pz= 0, and so the

relative volume form dv is also parallel with respect to H , i.e., (LXαdv) �Pz= 0.

Thus
∂

∂zα

∫
Pz

dv =

∫
Pz

LXαdv = 0. (3.10)

Proposition 3.3. The volume of each fiber {Pz, gz} is constant.

Remark 3.1. In [Ya], this proposition is proved by a direct method in case of

E = TM . A similar proposition for a smooth family of Einstein-Kähler manifolds

has been proved in [Sc].
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3.1. Averaged Hermitian structure and connections. In this section, we

shall introduce the averaged Hermitian structure h of g and averaged connection

∇ of D analogously to the real Finsler geometry (see [Ma-Ra-Tr-Ze] and [To-Et]).

For any u =
∑

uisi ∈ Γ (E), we set ũ =
∑

uis̃i ∈ Γ (V ). We define a

Hermitian structure h in E by the L2-inner product

h(u, v) :=

∫
Pz

g(ũ, ṽ)dv =

∫
Pz

∑
(logF )ij̄ u

ivjdv. (3.11)

Further we define ∇ : Γ (TM )× Γ (E) ∋ (X,u) 7−→ ∇Xu ∈ Γ (E) by

h(∇Xu, v) :=

∫
Pz

g(DXH ũ, ṽ)dv. (3.12)

It is obvious that ∇Xu is linear in X and the Leibniz rule for ∇ will be checked

easily.

Proposition 3.4. The connection ∇ is the Hermitian connection in (E, h).

Proof. Since D is of (1, 0)-type, the connection ∇ is also of (1, 0)-type.

Further, from (2.3) and Proposition 3.3, we have

(∇Xh)(u, v) = X(h(u, v))− h(∇Xu, v)− h(u,∇Xv)

=

∫
Pz

{
XH (g(ũ, ṽ))− g(DXH ũ, ṽ)− g(ũ,DXH ṽ)

}
dv

=

∫
Pz

(DXH g)(ũ, ṽ)dv = 0. �

Let hij̄ = h(si, sj) be the components of h with respect to s = {s1, . . . , sr}.
We write the curvature form Ωi

j of ∇ as Ωi
j =

∑
Ri

jαβ̄
dzα ∧ dz̄β and

Rij̄αβ̄ :=
∑

hlj̄R
l
iαβ̄ = −∂β̄∂αhij̄ +

∑
hlm∂αhim∂β̄hlj̄ , (3.13)

where ∂α := ∂/∂zα and ∂β̄ := ∂/∂z̄β . On the other hand, (3.7) and (3.10) imply

∂αhij̄ =

∫
Pz

Xα(g(s̃i, s̃j))dv =

∫
Pz

g(Dαs̃i, s̃j)dv

and

∂β̄∂αhij̄ =

∫
Pz

Xβ(g(Dαs̃i, s̃j))dv =

∫
Pz

{
g(DβDαs̃i, s̃j) + g(Dαs̃i,Dβ s̃j)

}
dv,
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where Dα := DXα and Dβ := DXβ
. Hence, from (3.13), we get

Rij̄αβ̄ −
∑

hlm∂αhim∂β̄hlj̄ =

∫
Pz

{
Rij̄αβ̄ − g(Dαs̃i,Dβ s̃j)

}
dv, (3.14)

where we put g(DβDαs̃i, s̃j) := −Rij̄αβ̄ .

We use the notations R(u⊗X) and R(ũ⊗XH ) for the Hermitian forms

R(u⊗X) :=
∑

Rij̄αβ̄u
iXαujXβ and R(ũ⊗XH ) :=

∑
Rij̄αβ̄u

iXαujXβ

respectively.

Definition 3.1. A Hermitian bundle (E, h) is said to be Griffiths-negative if

R(u ⊗X) < 0 for all non-zero u ∈ Ez and X ∈ TzM at any point z ∈ M2. We

say that the partial connection D has negative curvature if R(ũ ⊗ XH ) < 0 is

satisfied.

Remark 3.2. If a Rizza structure F comes from a Hermitian metric h, i.e.,

F =
∑

hij̄(z)ζ
iζj , then Ψαβ̄ is given by Ψαβ̄ =

∑
Rij̄αβ̄(z)ζ

iζj for the curvature

tensor Rij̄αβ̄ of (E, h). Hence Theorem 2.1 concludes that, if (E, h) is Griffiths-

negative, then E is negative.

Theorem 3.1. Let D be the partial connection in (V , g) determined by the

horizontal sub-bundle H , and let ∇ be the averaged connection of D . Then the

curvatures R of ∇ and R of D satisfy

R(u⊗X) ≤
∫
Pz

R(ũ⊗XH )dv (3.15)

for all u ∈ Ez and X ∈ TzM at any point z ∈ M . Thus, if the partial connection

D in (V , g) has negative curvature, then (E, h) is Griffiths-negative.

Proof. Let z0 ∈ M be an arbitrary point, and let s = {s1, . . . , sr} be a

local frame field in (E, h) such that s is normal at z0 ∈ M , i.e., hij̄(z0) = δij and

∂αhij̄(z0) = 0. Then (3.14) implies

Rij̄αβ̄(z0) =

[∫
Pz

{
Rij̄αβ̄ − g(Dαs̃i,Dβ s̃j)

}
dv

]
z=z0

,

and thus∑
Rij̄αβ̄(z0)u

iXαujXβ

2The Griffiths-negativity of (E, h) is equivalent to the existence of Griffiths-positive Hermitian

structure in E∗ (see e.g., [Sh-So])
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=

[∫
Pz

{∑
Rij̄αβ̄u

iXαujXβ −
∥∥∥∑(Dαs̃i)u

iXα
∥∥∥2}dv]

z=z0

≤
[∫

Pz

{∑
Rij̄αβ̄u

iXαujXβ
}
dv

]
z=z0

for all (ui) ∈ Cr and (Xα) ∈ Cm, where we put∥∥∥∑(Dαs̃i)u
iXα

∥∥∥2 = g
(∑

(Dαs̃i)u
iXα,

∑
(Dβ s̃j)u

jXβ
)
.

This inequality completes the proof. �

3.2. Main theorem. Let E⊥ be the orthogonal complement of E with respect

to g, i.e., E⊥ = {Z ∈ Γ (V ) | g(Z, E) = 0}. We denote by Z 7−→ Z⊥ the orthogonal

projection. Then (3.3) implies

(ρ∗g)(Z,W ) = g⊥(Z,W ) =
1

F
g(Z⊥,W⊥).

Hence (V , g) is interpreted as (E⊥, g⊥) through the projection ρ. From the defi-

nition of D and (3.6), it follows that

Dβ̄Dαs̃i = ρ∗Dβ̄Dα

(
∂

∂ζi

)⊥
since ρ∗

(
∂/∂ζi

)⊥
= s̃i, and

Dβ̄Dα

(
∂

∂ζi

)⊥
= Dβ̄Dα

∂

∂ζi
− 1

F
g

(
Dβ̄Dα

∂

∂ζi
, E
)
E = −

∑
Kl

iαβ̄

(
∂

∂ζl

)⊥
.

Therefore

g
(
Dβ̄Dαs̃i, s̃j

)
= g

(
ρ∗Dβ̄Dα

(
∂

∂ζi

)⊥
, ρ∗

(
∂

∂ζj

)⊥)

= − 1

F
g

(∑
Kl

iαβ̄

(
∂

∂ζl

)⊥
,

(
∂

∂ζj

)⊥)
.

For any u =
∑

uisi(z) ∈ Ez, we set

Zu :=
∑

ui

(
∂

∂ζi

)⊥

∈ E⊥
(z,ζ).
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Proposition 3.5. Let D be the partial connection in (V, g), and let D be

the partial connection in (V , g) as above. Then the curvatures K of D and R of

D satisfy the relation

R(ũ⊗XH ) =
1

F
K(Zu ⊗XH) (3.16)

at every point (z, ζ) ∈ E0 for any u ∈ Ez and X ∈ TzM .

The curvature R of the averaged connection ∇ satisfies the inequality (3.15).

Thus, if (E,F ) is Rizza-negative, then (3.15) and (3.16) conclude

R(u⊗X) ≤
∫
Pz

1

F
K(Zu ⊗XH)dv < 0.

Hence we have

Theorem 3.2. Let E be a holomorphic vector bundle admitting a complex

Finsler structure F . If (E,F ) is Rizza-negative, then E admits a Hermitian metric

h such that (E, h) is Griffiths-negative.

4. Appendix: Proof of Proposition 3.1

Let {ωz} be a smooth family of Kähler forms in P(E). Let {U(j)} of P(E) be

an open covering defined by U(j) = {(z, [ζ]) ∈ ϕ−1(U) | ζj ̸= 0}. Then {Uz,(j) :=

Pz ∩ U(j)} defines an open covering of Pz. Denoted by ωz =
√
−1∂∂̄G(j) for a

smooth function G(j) in Uz,(j),

G(j) −G(i) = k(ij) + k(ij) (4.1)

for some k(ij) ∈ Z1(Uz,(i) ∩ Uz,(j),OPz ) since G(j) − G(i) is pluri-harmonic on

Uz,(i) ∩ Uz,(j) ̸= ∅3. Then H1(Pz,OPz ) = 0 assures that we can take k(j) ∈
C0(Uz,(j),OPz ) satisfying

k(ij) = (k(j) − log ζj)− (k(i) − log ζi),

where {k(i)} are smooth in z ∈ U . Then (4.1) implies

G(j) − (k(j) + k(j)) + log |ζj |2 = G(i) − (k(i) + k(i)) + log |ζi|2.

Putting F(j)(z, [ζ]) = exp[G(j) − (k(j) + k(j))], we have |ζj |2F(j)(z, [ζ]) =

|ζi|2F(i)(z, [ζ]) on Uz,(i) ∩ Uz,(j). We define F : E0 → R by

F (z, ζ) = |ζj |2F(j)(z, [ζ]). (4.2)

3OPz denotes the sheaf of germs of holomorphic functions in Pz
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Since F satisfies (F3) for any (z, ζ) ∈ E0 and λ ∈ C∗, we can extend F continu-

ously on the whole of E by setting F (z, 0) = 0. Thus any smooth family of Kähler

forms {ωz} in P(E) determines a complex Finsler structure F in E by (4.2).

Denoted by Fz := F �E0
z
the restriction of F to the fiber E0

z := Ez\{0}, we
have √

−1∂∂̄ logFz =
√
−1∂∂̄

(
logF(j) �E0

z

)
=

√
−1∂∂̄G(j) (4.3)

from the construction of F . Further

∂∂̄Fz = Fz · ∂∂̄ logFz +
1

Fz
∂Fz ∧ ∂̄Fz (4.4)

show that F is strongly pseudo-convex along Ez, i.e., F is a Rizza structure in E.

This completes the proof of Proposition 3.1.

The Kähler potentials {G(j)} of ωz are not uniquely determined. Let F̃ be a

Finsler structure obtained from another Kähler potentials {G̃(j)}. It follows from√
−1∂∂̄G(j) =

√
−1∂∂̄G̃(j) that log F̃z − logFz is pluri-harmonic on Pz, and thus

it is a constant σz in Pz. Consequently we have F̃z = eσzFz. The corresponding

Finsler structures F and F̃ satisfy the relation F̃ = eσ(z)F for a smooth function

σ(z) on M . Hence the Rizza structure obtained from {ωz} is unique up to the

conformal factor eσ(z) in M .

Corollary 4.1. Any smooth family {ωz} of Kähler forms in Pz determines

the conformal class of a Rizza structure F in E.
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