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Abstract. In the literature, there are two different notions of pseudosymmetric

manifolds, one by Chaki [7] and other by Deszcz [16], and there are many papers

related to these notions. The object of the present paper is to deduce necessary and

sufficient conditions for a Chaki pseudosymmetric [7] (resp. pseudo Ricci symmetric [8])

manifold to be Deszcz pseudosymmetric (resp. Ricci pseudosymmetric). We also study

the necessary and sufficient conditions for a weakly symmetric [58] (resp. weakly Ricci

symmetric [59]) manifold by Tamássy and Binh to be Deszcz pseudosymmetric (resp.

Ricci pseudosymmetric). We also obtain the reduced form of the defining condition of

weakly Ricci symmetric manifolds by Tamássy and Binh [59]. Finally we give some

examples to show the independent existence of such types of pseudosymmetry which

also ensure the existence of Roter type and generalized Roter type manifolds and the

manifolds with recurrent curvature 2-form ([2], [29]) associated to various curvature

tensors.
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1. Introduction

The geometry of a space mainly depends on the curvature of the space. One

of the most important geometric property of a space is symmetry. The study

of symmetry of a manifold began with the works of Cartan [6] and then his

notion has been weakened by various authors in different directions with several

defining conditions by giving some curvature restrictions. Cartan first classified

complete simply connected locally symmetric spaces [6] for the Riemannian case

and the same was done for non-Riemannian case by Cahen and Parker ([4], [5]).

Later various weaker symmetries are studied as generalizations or extensions of

Cartan’s notion such as recurrent manifolds by Walker [60], generalized recur-

rent manifolds by Dubey [23], quasi-generalized recurrent manifolds by Shaikh

and Roy [52], weakly generalized recurrent manifolds by Shaikh and Roy [53],

hyper-generalized recurrent manifolds by Shaikh and Patra [51], semisymmet-

ric manifolds by Cartan [6] (and classified in the Riemannian case by Szabó

[56]), pseudosymmetric manifolds by Deszcz [16], pseudosymmetric manifolds

by Chaki [7], weakly symmetric manifolds by Selberg [46], weakly symmetric

manifolds by Tamássy and Binh [58] etc. We note that the notion of pseudosym-

metry by Deszcz [16] is different to that by Chaki [7]. Also, the notion of weakly

symmetric manifold by Selberg [46] is different to that by Tamássy and Binh

[58] and throughout the paper we will confine ourselves with the notion of weakly

symmetric manifold by Tamássy and Binh [58]. On the analogy, various types

of symmetry, recurrency, weak symmetry and pseudosymmetry are also studied

by many authors for other generalized curvature tensors.

The notion of Ricci symmetry has been weakened by many authors in several

directions such as Ricci recurrent manifolds by Patterson [42], Ricci semisym-

metric manifolds also named as Ric-semisymmetric manifolds [30], Ricci pseu-

dosymmetric manifolds by Deszcz ([1], [15]), pseudo Ricci symmetric manifolds

by Chaki [8], weakly Ricci symmetric manifolds by Tamássy and Binh [59] etc.

We note that pseudo Ricci symmetry by Chaki and Ricci pseudosymmetry by

Deszcz are also different.

Ewert-Krzemieniewski ([24], [25]) simplified the defining condition of a

weakly symmetric manifold by Tamássy and Binh and showed that such a man-

ifold and Chaki pseudosymmetric manifold are the same. Motivated by the study

of Ewert-Krzemieniewski ([24], [25]), we present three types of weak symme-

try, viz., type I, II, III and prove that all the three types of weak symmetry are

equivalent for a generalized curvature tensor. Moreover, for a proper general-

ized curvature tensor all the three types of weak symmetry are equivalent with
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Chaki pseudosymmetry. Recently, Mantica and Molinari [33] studied weakly

Z-symmetric manifold by assuming Z as a symmetric (0, 2)-tensor with a specific

form and obtained the reduced form of the defining condition of such notion. In

[38] the authors defined and investigated pseudo Z-symmetric Riemannian mani-

folds where the tensor Z is of the above form. In the present paper considering Z

as a (0, 2)-tensor (symmetric or skew-symmetric) we obtain the reduced form of

weakly Z-symmetric manifold (see Theorem 3.1), which entails the simplified form

of defining condition of weakly Ricci symmetric manifold. The paper is organized

as follows. Section 2 deals with preliminaries where the defining conditions of

pseudosymmetry and weak symmetry are presented. Section 3 is concerned with

pseudosymmetry by Chaki and three types of weak symmetry for a (0, k)-tensor

field along with their interrelationship. Although in several papers it was men-

tioned that both the pseudosymmetry by Chaki and Deszcz are different but there

are only a few papers where studied among their interrelationship (see [16], [31],

[34], [38], [40]). In Section 4 we establish the necessary and sufficient conditions

for a weakly symmetric (resp. weakly Ricci symmetric) manifold by Tamássy and

Binh to be Deszcz pseudosymmetric (resp. Ricci pseudosymmetric), from which

we also deduce the necessary and sufficient conditions for a Chaki pseudosymmet-

ric (resp. pseudo Ricci symmetric) manifold to be Deszcz pseudosymmetric (resp.

Ricci pseudosymmetric). Finally, in the last section, the independent existence

of Chaki pseudosymmetric and Deszcz pseudosymmetric manifolds are given by

some proper examples with various new metrics, which compelled us to introduce

the notion of generalized Roter type manifolds.

2. Preliminaries

Let (M, g), n = dimM > 3, be a semi-Riemannian manifold, i.e. connected

smooth manifold equipped with a semi-Riemannian metric g. We denote by ∇,

R, S, κ, the Levi–Civita connection, the Riemann–Christoffel curvature tensor,

Ricci tensor and scalar curvature of (M, g), respectively. Now for (0, 2)-tensors A

and D, their Kulkarni–Nomizu product (see, e.g., [26], [50]) A ∧D is given by

(A ∧D)(X1, X2, Y1, Y2) = A(X1, Y2)D(X2, Y1) +A(X2, Y1)D(X1, Y2)

−A(X1, Y1)D(X2, Y2) −A(X2, Y2)D(X1, Y1), (2.1)

where X1, X2, Y1, Y2 ∈ χ(M), χ(M) being the Lie algebra of all smooth vector

fields on M. Throughout the paper we consider X,Y,Xi, Yi ∈ χ(M), i = 1, 2, . . . .
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A tensor B of type (1, 3) on M is said to be generalized curvature tensor

(see, e.g., [50]), if

(i) B(X1, X2)X3 +B(X2, X3)X1 +B(X3, X1)X2 = 0,

(ii) B(X1, X2)X3 +B(X2, X1)X3 = 0,

(iii) B(X1, X2, X3, X4) = B(X3, X4, X1, X2),

where B(X1, X2, X3, X4) = g(B(X1, X2)X3, X4). Here we use the same symbol

B for the generalized curvature tensor of type (1, 3) and (0, 4). Moreover if B

satisfies the second Bianchi identity i.e.,

(∇X1B)(X2, X3)X4 + (∇X2B)(X3, X1)X4 + (∇X3B)(X1, X2)X4 = 0,

then B is called a proper generalized curvature tensor. Throughout this paper

we denote by B the generalized curvature tensor unless otherwise stated.

Now for a generalized curvature tensor B and given two vector fields X,Y ∈
χ(M) one can define an endomorphism B(X,Y ) by

B(X,Y )(X1) = B(X,Y )X1, for all X1 ∈ χ(M).

Again if X,Y ∈ χ(M) then for a (0, 2)-tensor A one can define an endomorphism

X ∧A Y , by

(X ∧A Y )X1 = A(Y,X1)X −A(X,X1)Y, for all X1 ∈ χ(M).

Some most useful generalized curvature tensors are Gaussian curvature ten-

sor G, Weyl conformal curvature tensor C, concircular curvature tensor K and

conharmonic curvature tensor conh(R), which are respectively given by 1
2g ∧ g,

R− 1
n−2g∧S+ κ

2(n−1)(n−2)g∧g, R− κ
2n(n−1)g∧g, R− 1

n−2g∧S. We note that the

Weyl projective curvature tensor P given by P(X,Y ) = R(X,Y ) − 1
n−2X ∧S Y

is not a generalized curvature tensor.

Let T r
k (M) be the space of all tensor fields of type (r, k) on M , r, k ∈ N∪{0}.

Now for T ∈ T 0
k (M), k ≥ 2, and a generalized curvature tensor B one can define

a (0, k + 2) tensor B · T given by ([14], [50])

B · T (X1, X2, . . . , Xk;X,Y ) = (B(X,Y )T )(X1, X2, . . . , Xk)

= −T (B(X,Y )X1, X2, . . . , Xk) − · · · − T (X1, X2, . . . ,B(X,Y )Xk),

and for a (0, 2)-tensor A one can define a (0, k+ 2)-tensor Q(A, T ) given by ([14],

[50], [57])



On pseudosymmetric manifolds 437

Q(A, T )(X1, X2, . . . , Xk;X,Y ) = ((X ∧A Y )T )(X1, X2, . . . , Xk)

= −T ((X ∧A Y )X1, X2, . . . , Xk) − · · · − T (X1, X2, . . . , (X ∧A Y )Xk).

For an 1-form µ and a vector field X on M , we can define an endomorphism µX as

µX (X1) = µ(X1)X, for all X1 ∈ χ(M).

Then we can define µX [50] as an operation on a (0, k)-tensor field T as follows:

(µX · T )(X1, X2, . . . , Xk)

= −T (µX (X1), X2, . . . , Xk) − · · · − T (X1, X2, . . . , µX (Xk)),

= −µ(X1)T (X,X2, . . . , Xk) − µ(X2)T (X1, X, . . . ,Xk)

− · · · − µ(Xk)T (X1, X2, . . . , X),

for all X,Xi ∈ χ(M).

For a complete classification with generalized curvature tensor and equiva-

lency of various types of pseudosymmetric conditions, we refer to [50] and refer-

ences therein.

Definition 2.1 ([6], [56]). A semi-Riemannian manifold (M, g), n > 3, admit-

ting a (0, k)-tensor field T is said to be T -semisymmetric if R · T = 0 on M .

In particular, if T = R (resp., S) then the manifold is called semisymmetric

(resp., Ricci semisymmetric).

Definition 2.2 ([1], [13], [16], [20]). A semi-Riemannian manifold (M, g),

n > 3, admitting a (0, k)-tensor field T is said to be Deszcz T -pseudosymmetric

(resp., Ricci generalized T -pseudosymmetric) if R ·T and Q(g, T ) (resp., R ·T and

Q(S, T )) are linearly dependent, i.e., R·T = LT Q(g, T ) (resp., R·T = LGQ(S, T ))

holds on the set UT = {x ∈ M : Q(g, T ) ̸= 0 at x} (resp., UG = {x ∈ M :

Q(S, T ) ̸= 0 at x}), where LT (resp., LG) is some function on UT (resp., UG).

In particular, if R ·R = LRQ(g,R) (resp., R ·S = LS Q(g, S)) then the man-

ifold is called Deszcz pseudosymmetric (resp., Ricci pseudosymmetric). Through-

out the paper we denote Deszcz pseudosymmetric manifold by (DPS)n and

Deszcz Ricci pseudosymmetric manifold by (DRPS)n.

For details about the Deszcz pseudosymmetry, Ricci generalized pseudosym-

metry, as well as other conditions of pseudosymmetry type we refer the reader the

papers: [1], [13]–[22], [44] and also references therein. We note that [20] is the first

paper, in which manifolds satisfying R · R = LRQ(g,R) were called pseudosym-

metric manifolds. It seems that the Schwarzschild spacetime, the Kottler space-

time, the Reissner–Nordström spacetime, as well as some Friedmann–Lemâıtre–

Robertson–Walker spacetimes are the “oldest” examples of non-semisymmetric

pseudosymmetric warped product manifolds (see, e.g., [21]).
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Definition 2.3. A semi-Riemannian manifold (M, g), n > 3, admitting a

(0, 4)-tensor field T is said to be weakly T -symmetric by Tamássy and Binh

[58] if

(∇XT )(X1, X2, X3, X4) = α(X)T (X1, X2, X3, X4) + β(X1)T (X,X2, X3, X4)

+ β̄(X2)T (X1, X,X3, X4) + γ(X3)T (X1, X2, X,X4)

+ γ̄(X4)T (X1, X2, X3, X) (2.2)

holds on the set UJ = {x ∈M : ∇T − ξ⊗T ̸= 0 for any 1-form ξ at x}, where α,

β, β̄, γ and γ̄ are associated 1-forms and we say that (α, β, β̄, γ, γ̄) is a solution

of this weakly T -symmetric manifold. Especially, if the solution is of the form

(2ϕ, ϕ, ϕ, ϕ, ϕ) i.e.,

(∇XT )(X1, X2, X3, X4) = 2ϕ(X)T (X1, X2, X3, X4) + ϕ(X1)T (X,X2, X3, X4)

+ ϕ(X2)T (X1, X,X3, X4) + ϕ(X3)T (X1, X2, X,X4)

+ ϕ(X4)T (X1, X2, X3, X) (2.3)

holds on the set UL = {x ∈M : ∇T ̸= 0 at x}, then the manifold is called Chaki

T -pseudosymmetric [7]. Again if the solution is of the form (π, 0, 0, 0, 0) i.e.,

(∇XT )(X1, X2, X3, X4) = π(X)T (X1, X2, X3, X4) (2.4)

holds on the set UL = {x ∈ M : ∇T ̸= 0 at x}, then the manifold is called

T -recurrent [60].

In particular, if T = R then the manifold satisfying (2.2) (resp., (2.3), (2.4)) is

called weakly symmetric manifold by Tamássy and Binh (resp., Chaki pseudosym-

metric manifold, recurrent). Throughout the paper we denote weakly symmetric

manifold by (WS)n, Chaki pseudosymmetric manifold by (CPS)n and recurrent

manifold by Kn. For details about the study of weak symmetry with various cur-

vature tensors and structures, we refer the reader the papers [9], [10], [48] and

also references therein. For decomposable and warped product weakly symmetric

manifolds, we refer the reader to see [3] and [49].

Definition 2.4. A semi-Riemannian manifold (M, g), n > 3, admitting a

(0, 2)-tensor field Z is said to be weakly Z-symmetric by Tamássy and Binh

[59] if

(∇XZ)(X1, X2) = δ(X)Z(X1, X2) + η(X1)Z(X,X2) + λ(X2)Z(X1, X) (2.5)

holds on the set UQ = {x ∈ M : ∇Z − ξ ⊗ Z ̸= 0 for any 1-form ξ at x}, where

δ, η and λ are associated 1-forms and we say that (δ, η, λ) is a solution of this

weakly Z-symmetric manifold. Especially, if the solution is of the form (2ψ, ψ,
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ψ), i.e.,

(∇XZ)(X1, X2) = 2ψ(X)Z(X1, X2) + ψ(X1)Z(X,X2) + ψ(X2)Z(X1, X) (2.6)

holds on the set UF = {x ∈M : ∇Z ̸= 0 at x}, then the manifold is called Chaki

pseudo Z-symmetric [8]. Again if the solution is of the form (π, 0, 0), i.e.,

(∇XZ)(X1, X2) = π(X)Z(X1, X2) (2.7)

holds on the set UF = {x ∈ M : ∇Z ̸= 0 at x}, then the manifold is called

Z-recurrent [42].

A manifold satisfying (2.5) (resp., (2.6)) with Z = S+ag, a being an arbitrary

scalar function, was investigated in [33] (resp., [38]). In particular, if Z = S then

the manifold satisfying (2.5) (resp., (2.6), (2.7)) is called weakly Ricci symmetric

(resp., Chaki pseudo Ricci symmetric, Ricci recurrent) and throughout the paper

we denote such a manifold by (WRS)n (resp., (CPRS)n, RKn). For details about

the study of (WRS)n, its generalization and related works, we refer the reader the

papers [11], [32], [33], [47] and also references therein. Also for details about the

study of (CPRS)n, we refer the reader the papers [8] and also references therein.

Recently Mantica and Suh ([35], [36], [37] and [39]) presented a curvature

restriction which is necessary and sufficient for the recurrency of a specific cur-

vature 2-form associated to that curvature tensor. For a generalized curvature

tensor B, the associated 2-form is defined as ([2], [29])

Ωm
(B)l = Bm

jkldx
j ∧ dxk,

where ∧ indicates the exterior product. Again for a symmetric (0, 2)-tensor Z,

the associated 1-form [55] is defined as

Λ(Z)l = Zlmdx
m.

In [35], [36], [37] and [39] Mantica and Suh showed that Ωm
(B)l is recurrent (i.e.,

DΩm
(B)l = α ∧ Ωm

(B)l, D is the exterior derivative and α is the associated 1-form)

if and only if

∇hBijkl + ∇iBjhkl + ∇jBhikl = αhBijkl + αiBjhkl + αjBhikl

and Λ(Z)l is recurrent (i.e., DΛ(Z)l = α ∧ Λ(Z)l) if and only if

∇iZkl −∇kZil = αiZkl − αkZil.



440 A. A. Shaikh, R. Deszcz, M. Hotloś, J. Je lowicki and H. Kundu

In this connection we also note that the curvature restriction

∇iSjk + ∇jSki + ∇kSij = αiSjk + αj Ski + αkSij

was investigated by Shaikh and Jana [47].

Hence for a (0, 4)-tensor T and a (0, 2)-tensor Z, we can have the following

curvature restrictions:

∇hTijkl + ∇iTjhkl + ∇jThikl = 0 (2.8)

αh Tijkl + αi Tjhkl + αj Thikl = 0, (2.9)

∇hTijkl + ∇iTjhkl + ∇jThikl = αhTijkl + αi, Tjhkl + αj , Thikl. (2.10)

∇iZkl −∇kZil = αi Zkl − αk Zil, (2.11)

where α is the corresponding 1-form for the restrictions. In Section 5, we examine

the above curvature restrictions for the existence of the manifolds with recurrent

curvature 2-form.

3. Weak symmetry and Chaki pseudosymmetry

We consider a weaklyB-symmetric manifold whose defining condition is given

in (2.2) for T = B. We note that in 1995 Prvanović [43] showed that in a

(WS)n, β = β̄ and γ = γ̄ and then in 1999 the same was again proved by De and

Bandyopadhyay [10]. Hence for a weakly B-symmetric manifold the solution

(α, β, β̄, γ, γ̄) turns into (α, β, β, γ, γ). Thus the defining condition of a weakly

B-symmetric manifold takes the form

(∇XB)(X1, X2, X3, X4) = α(X)B(X1, X2, X3, X4) + β(X1)B(X,X2, X3, X4)

+ β(X2)B(X1, X,X3, X4) + γ(X3)B(X1, X2, X,X4)

+ γ(X4)B(X1, X2, X3, X). (3.1)

Again Ewert-Krzemieniewski ([24], [25]) proved that in a weakly B-symmetric

manifold with solution (α, β, β̄, γ, γ̄) there exists another solution (α, σ, σ, σ, σ).

We note that we can determine the 1-form σ as σ = β+γ
2 . Moreover, if B is

a proper generalized curvature tensor then there exists a solution (2ϵ, ϵ, ϵ, ϵ, ϵ),

where ϵ = α+2σ
4 . Hence for a proper generalized curvature tensor, weak symmetry

and Chaki pseudosymmetry are equivalent. We note that the solutions of a weakly

B-symmetric manifold are not unique. We also note that if there is a solution of
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the form (2ϵ, ϵ, ϵ, ϵ, ϵ), there may be another solution of the form (α, β, β, γ, γ),

β ̸= γ. The solution of the form (α, β, β, γ, γ) with different β and γ are studied

by many authors (see, [10], [48], [49]).

We mention that for a proper generalized curvature tensor B if the dimension

of the space

{ξ ∈χ∗(M) : ξ(X1)B(X2, X3)X4+ξ(X2)B(X3, X1)X4+ξ(X3), B(X1, X2)X4 = 0}

is zero, where χ∗(M) is Lie algebra of all smooth 1-forms on M , then the solution

of a weakly B-symmetric manifold is uniquely determined as (2ϵ, ϵ, ϵ, ϵ, ϵ), where

ϵ = α+2σ
4 .

We now discuss the results for a (0, 2)-tensor Z to be weakly symmetric. For

this purpose, we need the following obvious properties of a (0, 2)-tensor Z.

Lemma 3.1. Let (M, g), n > 3, be a semi-Riemannian manifold admitting

a (0, 2)-tensor field Z and an 1-form θ.

(1) If θ(X1)Z(X2, X3) + θ(X2)Z(X1, X3) = 0, then either Z = 0 or θ = 0.

(2) If Z is a symmetric tensor such that θ(X1)Z(X2, X3) + θ(X2)Z(X3, X1) +

θ(X3)Z(X1, X2) = 0, then either Z = 0 or θ = 0.

(3) If Z is a symmetric tensor such that θ(X1)Z(X2, X3)−θ(X2)Z(X1, X3) = 0,

then either rank(Z) 6 1 or θ = 0.

Now we consider a weakly Z-symmetric semi-Riemannian manifold (M, g),

n > 3, with solution (δ, η, λ). Then

(∇XZ)(X1, X2) = δ(X)Z(X1, X2) + η(X1)Z(X,X2) + λ(X2)Z(X1, X). (3.2)

Now changing the position of X, X1 and X2, and combining the resultant equa-

tions as require, from Lemma 3.1 we have the following:

Theorem 3.1. Let (M, g), n > 3, be a weakly Z-symmetric manifold with

solution (δ, η, λ). Then we have

(1) if Z is symmetric, then

(i) there exists a solution (δ, ν, ν) such that ν = η+λ
2 ,

(ii) η = λ if rank(Z) > 1 ([32], [33]).

(2) if Z is non-zero and skew-symmetric, then η = λ.

(3) if Z is symmetric and Codazzi type with rank(Z) > 1 then δ = η = λ.

(4) if Z is symmetric and cyclic parallel then δ+η+λ = 0 and hence there exists

a solution (2ζ,−ζ,−ζ) such that ζ = η+λ
2 .
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Remark 3.1. Thus we conclude that the solution (δ, η, λ) of a (WRS)n turns

into (δ, ν, ν) such that ν = η+λ
2 . The solution of the form (δ, η, λ) of a (WRS)n

with different η and λ are studied by many authors (see, [11], [32], [49] and also

references therein).

Theorem 3.2 ([37], [39]). If a (WS)n admits a solution other than of the

form (2ϕ, ϕ, ϕ, ϕ, ϕ) then the curvature 2-form Ωm
(R)l is recurrent. Moreover the

result is true for any generalized curvature tensor.

Proof. It can be easily shown that a manifold satisfying (3.1) also satisfies

(2.10) for T = B with the corresponding 1-form α− 2β ̸= 0 or α− 2γ ̸= 0 (from

hypothesis) and thus the curvature 2-form Ωm
(B)l is recurrent. �

Theorem 3.3 ([39]). In a (WRS)n the Ricci 1-form Ω(S)l is recurrent. More-

over the result is true for any symmetric (0, 2) tensor Z.

Proof. A manifold satisfying (2.5), satisfies (2.11) if Z is symmetric. Thus

the 1-form Λ(Z)l is recurrent (see [39], Remark 2.6.). �

Definition 3.1. A semi-Riemannian manifold (M, g), n > 3, admitting a

(0, k)-tensor field T , k ≥ 2, is said to be weakly T -symmetric of type-I if

(∇X1T )(X2, X3, . . . , Xk+1) =
∑
p

p
α(Xp(1))T (Xp(2), Xp(3), . . . , Xp(k+1)), (3.3)

where
p
α are associated 1-forms and the sum includes all permutation p over the

set {1, 2, . . . , k + 1}.

We note that this defining condition of weakly T -symmetric manifold is due

to Ewert-Krzemieniewski [24].

Definition 3.2. A semi-Riemannian manifold (M, g), n > 3, admitting a

(0, k)-tensor field T , k ≥ 2, is said to be weakly T -symmetric of type-II if

(∇XT )(X1, X2, . . . , Xk) = α(X)T (X1, X2, . . . , Xk)

+
k∑

i=1

πi(Xi)T (X1, X2, . . . , X
i-th place

, . . . , Xk), (3.4)

where α and πi, i = 1, 2, . . . , k are associated 1-forms.

We note that this defining condition of weakly T -symmetric manifold is due

to Tamássy and Binh [58].
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Definition 3.3. A semi-Riemannian manifold (M, g), n > 3, admitting a

(0, k)-tensor field T , k ≥ 2, is said to be weakly T -symmetric of type-III if

∇XT = α⊗ T − πX · T, (3.5)

where α and π are called associated 1-forms.

Now if we set α = 2π in (3.5), then a weakly T -symmetric manifold of

type-III takes the form of Chaki T -pseudosymmetric manifold. Thus the defining

condition of a Chaki T -pseudosymmetric manifold for a (0, k)-tensor is given by

∇XT = 2π ⊗ T − π
X
· T. (3.6)

Again if we set π = 0 in (3.5), then a weakly T -symmetric manifold of type-

III takes the form of T -recurrent manifold. Thus the defining condition of a

T -recurrent manifold for a (0, k)-tensor is given by

∇XT = 2α⊗ T. (3.7)

We note that weak symmetry of type-III is a special case of type-II and

type-II is a special case of type-I. Moreover, if we consider k = 4 in the above

definition of weakly T -symmetric of type-II and Chaki pseudosymmetric manifold

we get the equations (2.2) and (2.3) respectively.

Theorem 3.4. Let T be a (0, k)-tensor, k > 2, on a semi-Riemannian man-

ifold (M, g), n> 3, skew symmetric in i-th and j-th indices (i, j ∈ {1, 2, . . . , k},
i ̸= j). If (M, g) is a weakly T -symmetric manifold of type-II, then πi = πj .

Proof. Proof is similar to the first part of the proof of Theorem 1 of [43]

and hence we omit it. �

Theorem 3.5. Let T be a (0, k)-tensor, k > 2, on a semi-Riemannian man-

ifold (M, g), n > 3, symmetric with respect to p-number (2p 6 k) of indices with

other p-number of indices taken together. If (M, g) is a weakly T -symmetric man-

ifold of type-II, then each corresponding 1-forms can be replaced by the same in

pair.

Proof. Interchanging the p-number of indices with corresponding p-number

of indices taken together in (3.4) and adding the resulting equation with (3.4),

and then using the symmetry of T , we obtain the result. �
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4. Condition of weak symmetry and Chaki pseudosymmetry

to be Deszcz pseudosymmetry

In this section we deduce the condition for a Chaki pseudosymmetry and

weak symmetry of type-III to be Deszcz pseudosymmetry for a (0, k)-tensor T ,

k ≥ 2.

Let (M, g), n > 3, be a weakly T -symmetric of type-III semi-Riemannian

manifold with defining condition (3.5). Then by a straightforward calculation we

have

(R · T )(X1, X2, . . . , Xk;X,Y )

= 2dα(X,Y ) ⊗ T (X1, X2, . . . , Xk) +Q(J, T )(X1, X2, . . . , Xk;X,Y ), (4.1)

where J = π⊗ π−∇π and dα denotes the exterior derivative of α. This leads to

the following:

Theorem 4.1. A weakly T -symmetric semi-Riemannian manifold (M, g),

n > 3, of type-III is

(i) T -semisymmetric if and only if 2dα⊗ T +Q(J, T ) is zero,

(ii) Deszcz T -pseudosymmetric (resp., Ricci generalized T -pseudosymmetric) if

and only if 2dα ⊗ T + Q(J, T ) is linearly dependent with Q(g, T ) (resp.,

Q(S, T )).

If T = R then we get the results for a (WS)n and for T = S we get the

results for a (WRS)n. Now as a direct consequence of the above theorem we can

state the following:

Corollary 4.1. A weakly T -symmetric semi-Riemannian manifold (M, g),

n > 3, of type-III is

(i) T -semisymmetric if the associated 1-form α is closed and (π ⊗ π −∇π) = 0,

(ii) Deszcz T -pseudosymmetric (resp., Ricci generalized T -pseudosymmetric) if

the associated 1-form α is closed and (π ⊗ π −∇π) is proportional to g

(resp., S),

(iii) T -semisymmetric if the associated 1-form α is closed and Q(J, T ) is zero,

(iv) Deszcz T -pseudosymmetric (resp., Ricci generalized T -pseudosymmetric) if

the associated 1-form α is closed and Q(J, T ) is linearly dependent with

Q(g, T ) (resp., Q(S, T )).

Corollary 4.2. A weakly B-symmetric semi-Riemannian manifold (M, g),

n > 3, of type-III is
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(i) is closed and π is such that B = L1 J ∧ J , where J = π ⊗ π −∇π,
(ii) Deszcz B-pseudosymmetric if the associated 1-form α is closed and π is such

that B = L1D1 ∧D1, where D1 = L2g−J (in this case R ·B = L2Q(g,B)),

(iii) Ricci generalized B-pseudosymmetric if the associated 1-form α is closed

and π is such that B = L3D2 ∧ D2, where D2 = L4S − J (in this case

R · B = L4Q(S,B)), where L1, L2, L3 and L4 are smooth functions chosen

suitably.

Since Chaki T -pseudosymmetry is a special case of weak T -symmetry, from

Theorem 4.1 we can state the results for a manifold with Chaki pseudosymmetry

to be Deszcz pseudosymmetric as follows:

Corollary 4.3. A Chaki T -pseudosymmetric semi-Riemannian manifold

(M, g), n > 3, with associated 1-form ϕ, is

(i) (i) T -semisymmetric if and only if 4dϕ⊗ T +Q(ϕ⊗ ϕ−∇ϕ, T ) is zero,

(ii) Deszcz T -pseudosymmetric (resp., Ricci generalized T -pseudosymmetric) if

and only if 4dϕ ⊗ T + Q(ϕ ⊗ ϕ −∇ϕ, T ) is linearly dependent with Q(g, T )

(resp., Q(S, T )).

Corollary 4.4. [16] A Chaki T -pseudosymmetric semi-Riemannian manifold

(M, g), n > 3, with associated 1-form ϕ, is

(i) T -semisymmetric if ϕ is closed and (ϕ⊗ ϕ−∇ϕ) = 0,

(ii) Deszcz T -pseudosymmetric (resp., Ricci generalized T -pseudosymmetric) if

ϕ is closed and the tensor (ϕ⊗ ϕ−∇ϕ) is proportional to g (resp., S).

We note that if at every point x ∈ M the tensor (ϕ ⊗ ϕ − ∇ϕ) is zero or

proportional to the metric tensor g or the Ricci tensor S, then closedness of ϕ

is obvious. Thus the condition of closedness of ϕ in the above Corollary is not

required. We note that the conditions of Corollary 4.4 are not necessary (see,

Example 5.4 of the last section). We also mention that [16] (Section 5.2) con-

tains some comments related to pseudosymmetric (resp. Ricci-pseudosymmetric)

manifolds and Chaki pseudosymmetric (resp. pseudo-Ricci symmetric) manifolds.

Corollary 4.5. A Chaki T -pseudosymmetric semi-Riemannian manifold

(M, g), n > 3, with associated 1-form ϕ, is

(i) T -semisymmetric if ϕ is closed and Q(ϕ⊗ ϕ−∇ϕ, T ) is zero,

(ii) Deszcz T -pseudosymmetric (resp., Ricci generalized T -pseudosymmetric) if

ϕ is closed and Q(ϕ ⊗ ϕ −∇ϕ, T ) is linearly dependent with Q(g, T ) (resp.,

Q(S, T )).
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Corollary 4.6. A Chaki B-pseudosymmetric semi-Riemannian manifold

(M, g), n > 3, with associated 1-form ϕ, is

(i) B-semisymmetric if ϕ is such that B = L1H ∧H, where H = ϕ⊗ ϕ−∇ϕ,
(ii) Deszcz B-pseudosymmetric if ϕ is such that B = L1D1 ∧ D1, where D1 =

L2g −H (in this case R ·B = L2Q(g,B)),

(iii) Ricci generalized B-pseudosymmetric if ϕ is such that B = L3D2∧D2, where

D2 = L4S − H (in this case R · B = L4Q(S,B)), where L1, L2, L3 and L4

are smooth functions chosen suitably.

We mention that a recurrent manifold [60] is a special form of weakly symmet-

ric manifold with β = γ = 0. Now if T is a (0, k)-tensor, then in any T -recurrent

Riemannian manifold for the function f = Ti1i2...ikT
i1i2...ik we have f,l = 2fαl

and as a consequence αl = 1
2 (log |f |),l on the open subset of all points of M at

which f ̸= 0. This implies that the associated 1-form α is locally gradient and

hence closed. Then from Theorem 4.1 we get the following:

Corollary 4.7. Every T -recurrent Riemannian manifold (M, g), n > 3, is

T -semisymmetric.

We note that if T is any generalized curvature tensor then the corresponding

results of the above corollary are reported in many papers.

Definition 4.1 ([41], [45], [54], [61], [62]). A vector field V on a semi-Riemann-

ian manifold (M, g), n > 3, is said to be torseforming if it satisfies the equation

of the form ∇XV = aX + τ(X)V , ∀X ∈ χ(M), where a is a scalar and τ is an

1-form. If ω is the corresponding 1-form of V , i.e., ω(X) = g(X,V ) then

(∇Xω)(Y ) = ag(X,Y ) + τ(X)ω(Y ), ∀X,Y ∈ χ(M).

The torseforming vector field V on a semi-Riemannian manifold (M, g), n> 3,

is called [41]

(1) recurrent, if a = 0,

(2) concircular, if τ is a gradient 1-form, i.e., τ = dh, h being a scalar,

(3) convergent, if it is concircular, and a is a constant multiple of eh,

(4) proper concircular [61], if τ is closed.

We now state some fundamental well known [54] results on torseforming

vector fields.

(i) A non-recurrent torseforming vector field V is non-isotropic i.e. g(V, V ) ̸= 0.
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(ii) The constant multiple of a torseforming vector field is a torseforming vector

field. However, if V is a torseforming vector field, then fV is not necessarily

a torseforming vector field for any smooth function f .

(iii) Any unit torseforming vector field V̂ is of the form ∇X V̂ = a(X + ω̂(X)V̂ ),

∀X ∈ χ(M), where ω̂ is the 1-form corresponding to the unit vector field V̂ ,

here ‘a’ is the associated scalar of the unit torseforming vector field.

(iv) If V is a non-recurrent torseforming vector field such that da and ω are

linearly dependent then ω is closed if and only if τ is closed. Also if ω and τ

both are closed then da and ω are linearly dependent.

(v) If g(V, V ) is a non-zero constant, then ω is closed.

(vi) If ω is closed, then ω and τ are linearly dependent and hence ∇XV = aX +

bω(X)V , consequently (∇Xω)(Y ) = ag(X,Y ) + bω(X)ω(Y ), where a and b

are the associated scalars of the closed torseforming vector field V .

Then the geometric significance of Corollary 4.1 and 4.4 are given by the

following:

Corollary 4.8. If in a weakly T -symmetric semi-Riemannian manifold

(M, g), n > 3, of type-III with associated 1-forms α and π are closed and the

vector field corresponding to π is torseforming with b = 1, then (M, g) is a Deszcz

T -pseudosymmetric.

Corollary 4.9. If in a Chaki T -pseudosymmetric semi-Riemannian manifold

(M, g), n > 3, the associated 1-form ϕ is closed and the corresponding vector field

is torseforming with b = 1, then (M, g) is a Deszcz T -pseudosymmetric.

Now we suppose that a generalized curvature tensor B satisfies the condition

(R(X1, X2) ·B)(X3, X4, X5, X6) + (R(X3, X4) ·B)(X5, X6, X1, X2)

+ (R(X5, X6) ·B)(X1, X2, X3, X4) = 0. (4.2)

We note that if we take B = R, then (4.2) turns into Walker identity [60]. By

virtue of Walker identity in [24] (Theorem 1) it is shown that in a (CPS)n (and

hence in a (WS)n) the associated 1-form (reduced 1-form) is closed. Hence if a

Chaki B-pseudosymmetric manifold satisfies (4.2), then its associated 1-form is

closed. Similarly it is easy to check that if the manifold is weakly B-symmetric of

type-III such that (4.2) holds then the closedness of one associated 1-form implies

the closedness of the other. Thus for a weakly B-symmetric manifold (M, g) with

solution (α, π, π, π, π) and B satisfying (4.2), (M, g) is Deszcz pseudosymmetric if

any one of α or π is closed and the corresponding vector field of π is torseforming
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with the associated scalar b = 1. Also for a Chaki B-pseudosymmetric mani-

fold (M, g) with solution (2π, π, π, π, π) and B satisfying (4.2), (M, g) is Deszcz

pseudosymmetric if the corresponding vector field of π is torseforming with the as-

sociated scalar b = 1. Again in a Chaki T -pseudosymmetric manifold (M, g) if the

corresponding vector field of the associated 1-form is a unit proper torseforming

with a = 1 as the associated scalar, then (M, g) is a Deszcz T -pseudosymmetric.

And in a weakly T -symmetric manifold (M, g) if the associated 1-form α is closed

and the corresponding vector field of π is unit torseforming with a = 1 as the as-

sociated scalar, then (M, g) is a Deszcz T -pseudosymmetric. Hence we conclude

that the closedness of the associated 1-forms in Corollary 4.8 and 4.9 can be

replaced by the condition (4.2).

A semi-Riemannian manifold (M, g), n > 4, is said to be a manifold with

pseudosymmetric Weyl tensor ([16], [21]) if the tensors C · C and Q(g, C) are

linearly dependent at every point of M . This is equivalent to C ·C = LC Q(g, C)

on UC , where LC is some function on this set.

5. Some examples of Deszcz and Chaki pseudosymmetric manifolds

Example 5.1. Let M be a non-empty open connected subset of R5 endowed

with the metric g defined by

gijdx
idxj = ex

1

(dx1)2 + ex
1(
ex

5

(dx2)2 + (dx3)2 + (dx4)2 + (dx5)2
)
,

i, j = 1, 2, . . . , 5.

Then by a straightforward calculation we can easily evaluate the components of

Riemann–Christoffel curvature tensor, Ricci tensor and the covariant derivative

of the curvature tensor of (M, g). Again using these values we can evaluate the

non-zero components of R · R, Q(g,R) and Q(S,R) easily. Let us now consider

the 1-form ϕ as follows:

ϕi(x) =

−1

2
for i = 1

0 otherwise.

Then for this 1-form ϕ, the manifold (M, g) satisfies (2.3) and thus becomes a

Chaki pseudosymmetric manifold. But this is neither Deszcz pseudosymmetric

nor Ricci generalized pseudosymmetric. Moreover, the following relations also are

satisfied on (M, g): κ = 7
2e

−x1

and

R =
65

36
ex

1

S ∧ S − 34

9
e2x

1

S ∧ S2 +
20

9
e3x

1

S2 ∧ S2,
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S2 ∧ S2 =
7

2
e−x1

S ∧ S2 − 49

16
e−2x1

S ∧ S − 3

2
e−2x1

g ∧ S2

+
21

8
e−3x1

g ∧ S − 9

8
e−4x1

G,

C · C = − 1

24
e−x1

Q(g, C),

R ·R−Q(S,R) =
25

9
e2x

1

Q(S, S ∧ S2) +
28

9
e3x

1

Q(S2, S ∧ S2).

We recall that the Ricci operator S and the (0, 2)-tensor S2 of a semi-Riemannian

manifold (M, g) are defined by g(SX,Y ) = S(X,Y ) and S2(X,Y ) = S(SX,Y ),

respectively, where X,Y ∈ χ(M). We mention that in [22] (Example 4.1) an ex-

ample of a spacetime with the Riemann–Christoffel curvature tensor R expressed

by a linear combination of the tensors S ∧ S, S ∧ S2 and S2 ∧ S2 is given.

Definition 5.1. A semi-Riemannian manifold (M, g), n > 4, is said to be

Roter type [17] if its curvature tensor R is expressed as the linear combination of

g ∧ g, g ∧ S and S ∧ S i.e.,

R = N1g ∧ g +N2g ∧ S +N3S ∧ S, (5.1)

where N1, N2 and N3 are some smooth functions on M .

Evidently, on every conformally flat semi-Riemannian manifold (M, g), n> 4,

we have R = 1
n−2g ∧ S − κ

2(n−1)(n−2)g ∧ g. Thus (5.1) is satisfied.

Definition 5.2. A semi-Riemannian manifold (M, g), n > 4, is said to be gen-

eralized Roter type if its curvature tensor R is expressed as the linear combination

of S ∧ S, S ∧ S2, g ∧ S, g ∧ S2, g ∧ g and S2 ∧ S2 i.e.,

R = L1S ∧ S + L2S ∧ S2 + L3g ∧ S + L4g ∧ S2 + L5g ∧ g + L6S
2 ∧ S2, (5.2)

where Li, 1, 2, . . . , 6 are some smooth functions on M .

We note that any Roter type manifold is a generalized Roter type but not

conversely. We mention that non-Roter type manifolds with the curvature tensor

having a decomposition of the form (5.2) were already investigated in [44] and

very recently in [19], [22]. Namely, [44] contains results on hypersurfaces in space

forms having curvature tensors of the form (5.2). As it was shown in Section 2 of

[19], the 4-dimensional manifold presented in Section 4 of [12] has the curvature

tensor of the form (5.2). Some spacetimes also satisfy (5.2) ([22], Example 4.1).



450 A. A. Shaikh, R. Deszcz, M. Hotloś, J. Je lowicki and H. Kundu

It is easy to check that for the aforesaid manifold (5.1) does not hold but

(5.2) holds with

L1 = − 1

16
e−2x1(

80e3x
1

− 49L6

)
, L2 =

1

2
e−x1(

8e3x
1

− 7L6

)
,

24

7
e3x

1

L3 = −6e2x
1

L4 = −16e4x
1

L5 =
(
20e3x

1

− 9L6

)
,

and arbitrary smooth function L6. Hence the manifold (M, g) under considera-

tion is generalized Roter type but not Roter type. We note that (M, g) do not

satisfy (2.8), (2.9) and (2.10) for T = C,P,K and conh(R), and also do not satisfy

(2.9) for T = R but (2.11) holds for Z = S with α =
(
− 1

2 , 0, 0, 0, 0
)
. Hence the

manifold is of recurrent Ricci 1-form but not of recurrent curvature 2-form for R,

C, P , K and conh(R).

Example 5.2. Let M be a non-empty open connected subset of R4, where

x1 > 0, endowed with the metric g defined by

gijdx
idxj = x1

(
(dx1)2 + (dx2)2 + (dx3)2 + (dx4)2

)
, i, j = 1, 2, 3, 4.

Evidently, (M, g) is a conformally flat manifold with κ = − 3
2(x1)3 . Thus (5.1) is

satisfied. The manifold (M, g) is not a Chaki pseudosymmetric manifold. How-

ever, this is a Deszcz pseudosymmetric and Ricci generalized pseudosymmetric

manifold with

R ·R = − 1

2(x1)3
Q(g,R) = Q(S,R).

Moreover, in the above manifold S ∧ S = 0, S ∧ S2 = 0 and S2 ∧ S2 = 0. We

note that for T = R, (M, g) fulfills (2.8) but does not fulfill (2.9). Again for

T = P,K and conh(R), (M, g) do not realize (2.8) and (2.9) but realizes (2.10)

for α =
(
− 1

x1 , 0, 0, 0
)
,
(
− 1

x1 , 0, 0, 0
)

and
(
− 3

x1 , 0, 0, 0
)

respectively. We also

note that M does not satisfy (2.11) for Z = S. Hence the manifold is of recurrent

curvature 2-form for P , K and conh(R) but the curvature 2-form corresponding

to R and the Ricci 1-form are not recurrent.

Example 5.3. We define on R4 the metric g by

gijdx
idxj = a2

(
−(dx1)2 +

1

2
e2x

1

(dx2)2 − (dx3)2 + (dx4)2 + 2ex
1

dx2dx4
)

i, j = 1, 2, 3, 4,
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where a is a non-zero constant. The manifold (R4, g) is called the Gödel space-

time [27]. It is well-known that the Gödel spacetime is a non-conformally flat

manifold with the Ricci tensor S of rank one. Thus the Gödel spacetime is a

quasi-Einstein manifold. The Gödel spacetime is a manifold with pseudosymmet-

ric Weyl tensor ([22]): C · C = κ
6Q(g, C). Moreover, it can be seen that this

manifold is neither a Chaki pseudosymmetric manifold nor Deszcz pseudosym-

metric but Ricci generalized pseudosymmetric [22]. For more details about the

other curvature properties of Gödel metric see [22]. We note that Gödel spacetime

do not satisfy (2.8), (2.9) and (2.10) for T = C,P,K, conh(R) except (2.8) for

T = K, and also (2.9), (2.11) does not hold for T = R, Z = S, respectively. So

Gödel spacetime is neither of recurrent curvature 2-form for R, C, P , K, conh(R)

nor of recurrent Ricci 1-form.

Example 5.4. Let M be a non-empty open connected subset of R4 endowed

with the metric g defined by

gijdx
idxj = (ex

1

+ 1)(dx1)2 + ex
1(

(dx2)2 + (dx3)2 + (dx4)2
)
, i, j = 1, 2, 3, 4.

Evidently, (M, g) is a conformally flat manifold with scalar curvature κ= 3(2+ex
1
)

2(1+ex1 )2
.

Let us now consider the 1-form ϕ as follows:

ϕi(x) =

− ex
1

2
(
ex1 + 1

) for i = 1

0 otherwise.

Then for this 1-form ϕ, the manifold (M, g) is a Chaki pseudosymmetric manifold.

Now H = ϕ⊗ ϕ−∇ϕ is given by

H11 =
ex

1

2(1 + ex1)2
, H22 = H33 = H44 =

e2x
1

4(1 + ex1)2
.

Then it is clear that H is not proportional to g or S. Thus the sufficient condition

for Corollary 4.4 does not hold, so now we can not get any conclusion for this

manifold to be (DPS)4 or Ricci generalized pseudosymmetric. Again

R =
2(ex

1

+ 1)3

(ex1 − 1)2
D1 ∧D1 =

2(ex
1

+ 1)3

(3 + ex1)2
D2 ∧D2,

where D1 = 1
4(1+ex1 )2

g −H and D2 = S −H. Thus by Corollary 4.6 we have

R ·R =
1

4(1 + ex1)2
Q(g,R) = Q(S,R)
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i.e., the manifold (M, g) is (DPS)4 and also Ricci generalized pseudosymmetric.

This entails that the conditions in Corollary 4.4 are not necessary for a (CPS)4
to be either a (DPS)4 or a Ricci generalized pseudosymmetric manifold. It is

easy to check that all the results of Theorem 4.1 hold for this example. Moreover,

for the above manifold (M, g) the curvature tensor can be expressed as

R = N1 g ∧ g +N2g ∧ S +N3S ∧ S,

where N1 = − 2+ex
1

4(1+ex1 )2
+ (3+2ex

1
)2

16(1+ex1 )4
N3, N2 = 1

2 + (3+2ex
1
)

4(1+ex1 )2
N3. Thus the manifold

(M, g) is Roter type and hence generalized Roter type. Again we note that for

T =R, (M, g) satisfies (2.8) and does not satisfy (2.9). For T =P,K and conh(R),

(M, g) do not satisfy (2.8), (2.9) but satisfies (2.10) for α =
(
− 3+ex

1

1+ex1 , 0, 0, 0
)
,(

− 3+ex
1

1+ex1 , 0, 0, 0
)

and
(
− ex

1
(3+ex

1
)

2+3ex1+e2x1 , 0, 0, 0
)

respectively. It also realizes (2.11)

for Z = S with α =
(
− ex

1
(ex

1
+3)

5ex1+2e2x1+3
, 0, 0, 0

)
. Hence the manifold is of recurrent

curvature 2-form for P , K and conh(R) but not for R. Also it is of recurrent

Ricci 1-form.

Example 5.5. Let M be an open connected subset of R5 endowed with the

metric g of the form (Theorem 2.1; [28])

dx2 + dy2 + du2 + dv2 + ρ2(xdu− ydv + dz)2,

where ρ is a non-zero constant. (M, g) is a non-conformally flat manifold. Its Ricci

tensor S is not proportional to g, cyclic parallel and (S − κ
2 g) ∧ (S − κ

2 g) = 0,

κ = ρ2, hold on M . Thus (M, g) is a quasi-Einstein manifold (cf. [26], Lemma 3.1)

with S = αg + βη ⊗ η, where α = κ
2 , β = 3κ

2 and η = (0, 0,−ρ,−xρ, yρ). This

manifold is not Chaki pseudosymmetric but we have some pseudosymmetric type

conditions on M : R ·R = −κ
4Q(g,R), C ·R = − 1

3Q(S,C)− κ
3Q(g, C), C · S = 0,

C · C = C · R, R · C − C · R = 1
3Q(S,R) + κ

12Q(g,R), P · R and Q(g,R) are

linearly independent but P · S = −κ
4 Q(g, S), K · R = − 3κ

10 Q(g,R), conh(R) · R
and Q(g,R) are linearly independent but conh(R) · S = − κ

12 Q(g, S) and in more

general(
α2 −

4α1

κ

)
R ·R+

(
3α2 + 4α4 −

4α3

κ

)
R · C − (β + 3α2 + 3α4)C ·R+ βC · C

= α1Q(g,R) + α2Q(S,R) + α3Q(g, C) + α4Q(S,C),

where α1, α2, α3, α4 and β are arbitrary scalars. Moreover this manifold is neither

Roter type nor generalized Roter type manifold but S∧S, S∧S2, g∧S, g∧S2, g∧g
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and S2∧S2 satisfy the following dependency conditions: S∧S− κ
2 g∧S+ κ2

4 g∧g = 0

and

L1S ∧ S + L3g ∧ S −
(

3

2
L3κ+

1

2
L1κ

2 +
1

4
L4κ

2 +
1

4
L2κ

3

)
g ∧ g

+ L2S ∧ S2 + L4g ∧ S2 +

(
8

κ2
L3 +

4

κ2
L1 −

4

κ2
L4

)
S2 ∧ S2 = 0,

where L1, L2, L3 and L4 are arbitrary scalars. Again (M, g) do not satisfy (2.8),

(2.9) and (2.10) for T = C,P,K, conh(R) except (2.8) for T = K, and also (2.9),

(2.11) does not hold for T = R, Z = S respectively. So the manifold is neither of

recurrent curvature 2-form for R, C, P , K, conh(R) nor of recurrent Ricci 1-form.

Conclusion. The study established a bridge between the notions of Deszcz

pseudosymmetry with Chaki pseudosymmetry as well as Tamássy and Binh’s

weak symmetry. The reduced defining condition of a weakly Ricci symmetric

manifold is obtained. The independent existence of both the notions of pseu-

dosymmetry be shown by non-trivial examples along with the existence of gener-

alized Roter type manifolds. Also the existence of the manifolds with recurrent

projective, concircular, conharmonic curvature 2-form and recurrent Ricci 1-form

are ensured by concrete examples with various new metrics.
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I-a Math. (N.S.) 33 (1987), 53–58.

[8] M. C. Chaki, On pseudo Ricci symmetric manifolds, Bulg. J. Phys. 15 (1988), 526–531.

[9] U. C. De, On weakly symmetric structures on a Riemannian manifold, Facta Univ., Series:
Mech., Auto. Control and Robotics 3, 805–819.

[10] U. C. De and S. Bandyopadhyay, On weakly symmetric Riemannian spaces, Publ. Math.
Debrecen 54 (1999), 377–381.

[11] U. C. De and S. K. Ghosh, On weakly Ricci symmetric spaces, Publ. Math. Debrecen. 60
(2002), 201–208.

[12] P. Debnath and A. Konar, On super quasi-Einstein manifold, Publ. Inst. Math. (Beograd)

(N.S.) 89 (2011), 95–104.

[13] F. Defever and R. Deszcz, On semi-Riemannian manifolds satisfying the condition

R · R = Q(S,R), Geometry and Topology of Submanifolds, Vol. III, World Sci. Publ.,
River Edge, NJ, 1991.

[14] F. Defever, R. Deszcz, L. Verstraelen and S. . Yaprak, Pseudosymmetry type curva-

ture properties of hypersurfaces, Geometry and Topology of Submanifolds, Vol. V, World
Sci. Publ., River Edge, NJ, 1993.

[15] R. Deszcz, On Ricci-pseudosymmetric warped products, Demonstratio Math. 22 (1989),

1053–1065.

[16] R. Deszcz, On pseudosymmetric spaces, Bull. Belg. Math. Soc., Ser. A 44 (1992), 1–34.

[17] R. Deszcz, On some Akivis-Goldberg type metrics, Publ. Inst. Math. (Beograd) (N.S.) 74
(2003), 71–83.
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[56] Z. I. Szabó, Structure theorems on Riemannian spaces satisfying R(X,Y ) · R = 0, I, The

local version, J. Diff. Geom. 17 (1982), 531–582.

[57] S. Tachibana, A Theorem on Riemannian manifolds of positive curvature operator, Proc.

Japan Acad. 50 (1974), 301–302.
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