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On superelliptic equations

By J. VÉGSŐ (Debrecen)

To the memory of Professor András Rapcsák

Many numbertheoretical problems lead to superelliptic equations, i.e.
equations of the type

(1) f(x) = ym.

Siegel [16], [17] and Le Veque [11] obtained general ineffective finiteness
theorems for the integer solutions of (1) over algebraic number fields. For
an ineffective extension to the case when the ground ring is an arbitrary
integral domain of finite type over Z we refer to [10]. In the number field
case Baker [1] proved the first general effective result for superelliptic
equations. Baker’s theorem was improved and generalized by Sprindzuk
[18], Trelina [19] and Brindza [2]. In the function field case effective
bounds for the heights of the so-called S-integral solutions of (1) were
given by Schmidt [14], Mason [12] and Mason and Brindza [13]. Us-
ing Győry’s specialization method (see [7], [8], [9]) Brindza extended his
result to the case when the ground ring is a finitely generated domain (see
Lemma 1). Brindza’s bound depends on the parameters of the ground
ring, the polynomial f(X) and m. The purpose of this paper is to prove
that the bound is independent of m.

We introduce some concepts and notation. Let G be a finitely gener-
ated extension field of the rational number field Q. Then G can be written
in the form

G = Q(z1, . . . , zq, u),

where {z1, . . . , zq} is a transcendence basis of G over Q and u is integral
over the polynomial ring Z[z1, . . . , zq].

Let
F (X) = Xδ + F1X

δ−1 + . . . + Fδ

be the minimal polynomial of u over Q(z1, . . . zq). For brevity let us write

D = max
i

deg Fi, L = max
i

L(Fi),
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where L(P ) denotes the lenght of the polynomial P ∈ Z[z1, . . . , zq] (i.e.
the sum of the absolute values of the coefficients of P ). Since Z[z1, . . . , zq]
is integrally closed, all Fi lie in Z[z1, . . . , zq].

Any element α of G can be written in the form

α =
P0 + P1u + . . . + Pδ−1u

δ−1

Q

where P0, . . . , Pδ−1 and Q are (up to the factors ±1) uniquely determined
relatively prime polynomials from Z[z1, . . . , zq]. Let Deg P denote the
total degree in z1, . . . , zq of an element P of Z[z1, . . . , zq] and define the
degree of α as

Deg α = max{Deg P0, . . . , Deg Pδ−1, Deg Q}.
The size of α 6= 0 (with respect to the generating set {z1, . . . , zq, u} of G)
will be defined as

s(α) = max{s(P0), . . . , s(Pδ−1), s(Q)}
where

s(P ) = max{log H(P ), 1 + max
i

degzi
P}

and H(P ) denotes the height of P ∈ Z[z1, . . . , zq] (i.e. the maximum of
the absolute values of the coefficients of P ). It is clear that there are only
finitely many elements in G with bounded size. Let R = Z[u1, . . . , ut] be
a finitely generated subring of G. Further, let f ∈ G[X] be a polynomial
having all its roots in G. We assume throughout that

f(X) = a

n∏

i=1

(X − αi)ri

with a 6= 0, n > 0 and αi 6= αj for i 6= j. Let m > 1 be an integer and
consider the equation

(2) f(x) = ym in x, y ∈ R.

To avoid some technical difficulties, we shall consider the solutions of (2)
in the larger subring

R1 = Z
[
z1, . . . , zq,

1
b
, u

]

of G where b denotes the product of the denominators of a, α1, . . . , αn,
u1, . . . , ut. It is easy to see that b ∈ Z[z1, . . . , zq] and R j R1. In the
special case when q = 0 and {u1, . . . , ut} is an integral basis of G then R
is just the ring of integers of G.

We shall give an effectively computable bound for the size of the
solutions x, y in R1, which depends only on G, R1 and f .
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Theorem. Put ti = m/(m, ri) for i = 1, . . . , n and suppose that
{t1, . . . , tn} is not a permutation of the n-tuplets

(a) {t, 1, . . . , 1} and (b) {2, 2, 1, . . . , 1}.
Then all the solutions x, y ∈ R1 of the equation (2) satisfy

max{s(x), s(y)} < c1

where c1 is an effectively computable constant depending only on G,R1,
f(X).

Auxiliary results

To prove our Theorem we need some lemmas.

Lemma 1. Under the assumptions of the Theorem all the solutions
x, y ∈ R1 of (2) satisfy

max{s(x), s(y)} < c2

where c2 is an effectively computable constant depending only on G,R1,
f(X) and m.

Proof. This is the Theorem in [3].

Let L be an algebraic number field and let

g0

r∏

i=1

(X − γi)ri = g(X) ∈ L[X]

be a given polynomial where r ≥ 1, g0 6= 0 and the γi’-s are distinct
elements of the splitting field of g. Further, let p1, . . . , ps(s ≥ 0) be distinct
prime ideals in L and denote by S the set of all the infinite valuations and
all the (additive) valuations of L corresponding to p1, . . . , ps. We recall
that an element α of L is said to be an S-integer if v(α) ≥ 0 for every
valuation v /∈ S. The set of S-integers is denoted by OS .

Lemma 2. Suppose that g(X) has at least two distinct zeros and
y 6= 0 is not a root of unity. Then the equation

f(x) = ym in x, y ∈ OS ,m ∈ Z, with m ≥ 2

implies that m < c3, where c3 is an effectively computable constant de-
pending only on S, g and L.

Proof. See [5] Theorem 4 and [15] Theorem 10.3.

Now let k be an algebraically closed field of characteristic 0, and let
K be a finite algebraic extension of the rational function field k(t) with
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genus g(K) and let P (X) ∈ K[X]. For x 6= 0 in K, the height HK(x) of
x is defined by

HK(x) = −
∑

v

min{0, v(x)}

where v runs through the valuations of K/k with value group Z.

Lemma 3. If P (X) has at least two distinct zeros (in the splitting
field of P ) then all the solutions of the equation

P (x) = ym in x, y ∈ K with y /∈ k

satisfy m < c4, where c4 is an effectively computable constant depending
only on g(K) and the polynomial P (X).

Proof. This is the main result in [6].

Lemma 4. Let f(X) ∈ G[X] be a polynomial with at least two dis-
tinct zeros. Suppose m ≥ 0, x, y ∈ R1 and y is not a root of unity. Then
the equation

f(x) = ym

implies that m is bounded by an effectively computable constant depending
only on f , R1 and G.

Proof. Let x, y ∈ R1, and m ∈ Z with m ≥ 2 an arbitrary but
fixed solution of (2). We have two cases to distinguish. In the case q = 0
Lemma 4 is a simple consequence of Lemma 2. In the sequel, we assume
that q > 0. Set Ti = {z1, . . . , zq} \ {zi} and ki = Q(Ti), further denote
by ki the algebraic closure of the field ki in a fixed algebraic closure of G.
Then we obtain

q⋂

i=1

ki = Q (cf. Brindza [4]).

If y ∈ ⋂q
i=1 ki then one can see that x and y are S-integers in a fixed

and determinable algebraic number field and we can apply Lemma 2. If
y /∈ ⋂q

i=1 ki then there exists an index j (1 ≤ j ≤ q) for which y /∈ kj ,
however y ∈ kj(zj). Let K be the splitting field of the polynomial f over
the field ki(zi). K is an algebraic function field over ki and Lemma 3
completes the proof of Lemma 4.

Proof of the Theorem. Adopting the above notation, if y is a root
of unity then the size of y is bounded and ym is an element of a cyclic
group with a finite and determinable order. The solution x is a zero of the
polynomial f(X)− ym thus its size is bounded (for the known properties
of the size we refer to [8]). Finally, if y is not a root of unity, our Theorem
is a consequence of Lemmas 1 and 4.
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KOSSUTH LAJOS UNIVERSITY,
DEBRECEN, P.O. BOX 12.,
4010–HUNGARY

(Received November 25, 1992)


