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Generalized gyrovector spaces and a Mazur–Ulam theorem

By TOSHIKAZU ABE (Niigata) and OSAMU HATORI (Niigata)

Abstract. In this paper we introduce the notion of a generalized gyrovector space.

The set of all positive invertible elements in a unital C∗-algebra is an example. We

study surjective gyrometric preserving maps and show that such maps also preserve the

algerbraic structures. As an application we exhibit a structure theorem for maps which

preserve the metric of Thompson’s type.

1. Introduction

In Einstein’s theory of special relativity, the set of all admissible velocities is

R3
c = {u ∈ R3 : ‖u‖ < c}, where c is the speed of light in vacuum. The Einstein

velocity addition ⊕E in R3
c is given by

u⊕E v =
1

1 + 〈u,v〉/c

{
u +

1

γu
v +

1

c2
γu

1 + γu
〈u,v〉u

}
(1)

for u,v ∈ R3
c , where 〈·, ·〉 is the Euclidean inner product and γu is the Lorentz

factor given by

γu = (1− ‖u‖2/c2)−
1
2 . (2)

The Einstein velocity addition ⊕E is non-commutative and non-associative, hence

(R3
c ,⊕E) does not have a group structure. However, (R3

c ,⊕E) has a gyrocommu-

tative gyrogroup structure and is called the Einstein gyrogroup. The (gyrocom-

mutative) gyrogroup is the generalization of the (commutative) group, which is

not necessarily (commutative nor) associative.

Mathematics Subject Classification: 47B49,46L05,51M10.
Key words and phrases: gyrovector spaces, a Mazur–Ulam theorem.



394 Toshikazu Abe and Osamu Hatori

Certain gyrocommutative gyrogroups admit scalar multiplication, giving rise

to gyrovector spaces. Ungar initiated the study on gyrogroups and gyrovec-

tor spaces (cf. [25]). He describes that the hyperbolic geometry of Bolyai and

Lobachevsky is now effectively regulated by gyrovector spaces just as Euclidean

geometry is regulated by vector spaces. Any gyrovector space is equipped with

the gyrometric, which is a measurement of the distance while it needs not be the

metric exactly. Any (positive definite) real inner product space is a gyrovector

space and the gyrometric is the metric induced by its norm. On the other hand,

a real normed space need not be a gyrovector space. In this paper, we introduce

a notion of a generalized gyrovector space which is a common generalization of

the notion of a real normed space and that of a gyrovector space. We exhibit a

Mazur–Ulam Theorem for the generalized gyrovector spaces (cf. [1], [2]); a bi-

jection between the generalized gyrovector spaces which preserves the gyrometric

also preserves the algebraic structure automatically. The celebrated Mazur–Ulam

theorem states that a surjective isometry from a normed vector space onto a pos-

sibly different normed vector space is a real linear isomorphism followed by a

translation. A simple proof of the Mazur–Ulam Theorem was given by V̈aisälä

[26] by using the idea of Vogt [27].

2. A generalization of the gyrovector spaces

A gyrovector space is defined by Ungar. It is a gyrocommutative gyrogroup

G which is contained in a real inner product space V (the carrier of G) with exotic

addition and scalar multiplication, and which admits the inner product inherited

from the inner product on V. For the precise definition see [25, Definition 6.2] or

the comments after Definition 4.

We introduce a notion of generalized gyrovector spaces (GGV). The difference

between the original gyrovector spaces and the generalized one is that the carrier

of the generalized one need not be an inner product space but a normed space. A

real normed space and a gyrovector space are simple examples of the generalized

gyrovector spaces.

For the convenience of the readers we recall the definitions of the gyrocom-

mutative gyrogroups. We essentially adopt the definition of Ungar’s book [25].

Definition 1. A groupoid (S,+) is a nonempty set S and a binary opera-

tion +. An automorphism (on a groupoid) is a bijection between groupoid which

preserves the groupoid operation. A groupoid (G,⊕) is called a gyrogroup if there
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exists an element e such that the binary operation ⊕ satisfies the following (G1)

to (G5).

(G1) The equation

e⊕ a = a

for every a ∈ G.

(G2) For every a ∈ G there exists an element 	a such that

	a⊕ a = e.

(G3) For any a, b, c ∈ G there exists a unique element gyr[a, b]c ∈ G such

that

a⊕ (b⊕ c) = (a⊕ b)⊕ gyr[a, b]c.

(G4) For any a, b ∈ G gyr[a, b] is an automorphism, which is called the

gyroautomorphism of G generated by a, b ∈ G.

(G5) For any a, b ∈ G
gyr[a⊕ b, b] = gyr[a, b].

A gyrogroup is gyrocommutative if the following (G6) is satisfied.

(G6) For any a, b ∈ G
a⊕ b = gyr[a, b](b⊕ a).

Note that by [25, Theorem 2.10, (5),(6), (7), (8)] the element e which satisfies

(G1) is unique, and the element 	a is unique for each a. We also note that

a⊕ e = a and a⊕	a = e for every a ∈ G.

In the private communication in 2012 or 2013 Lajos Molnár told to the

second author that the space of positive invertible elements A −1+ in a unital C∗-

algebra A is a gyrogroup. In fact Beneduci and Molnár [4] observe that the

space of the positive invertible elements in a unital C∗-algebra is a standard K-

loop. Note that Sabinin, Sabinina and Sbitneva [21] have proved that the

K-loop is equivalent to the gyrocommutative gyrogroup (see also [4]).

One of the referees of the paper kindly recommended the following historical

comments. For the theory of K-loops readers may consult with Kiechle’s book

[12]. Not unexpectedly, according to Kiechle [12, pp. 169–170], the term “K-

loop” with K named after Karzel was coined by Ungar in 1985 [24] to describe

the algebraic structure that later became known as a gyrocommutative gyrogroup.

For different purposes, the term “K-loop” was already in use earlier by Sŏıkis,

in 1970 [23] and later, but independently, by Basarab, in 1992 [3]. Unlike the

term “K-loop” that Ungar coined, the “K” in each of the term “K-loop” coined
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by Sŏıkis and by Basarab does not refer to “Karzel”. The early history of K-loops

with “K” named after Karzel is unfolded in [22, p. 142].

We give a direct proof that A −1+ is indeed a gyrocommutative gyrogroup.

Proposition 2. Suppose that A is a unital C∗-algebra with the norm ‖ · ‖
and A −1+ is the set of all positive invertible elements of A . Let t be a positive

real number. Put

a⊕t b = (a
t
2 bta

t
2 )

1
t

for all a, b ∈ A −1+ . Then (A −1+ ,⊕t) is a gyrocommutative gyrogroup. The identity

element e of A as the C∗-algebra is the identity element of the gyrogroup. The

inverse element 	a is a−1, the inverse of a in A . For a, b ∈ A −1+ put

X = (a
t
2 bta

t
2 )−

1
2 a

t
2 b

t
2 .

Then X is a unitary element in A and

gyr[a, b]c = XcX∗, a, b, c ∈ A −1+ .

is the gyroautomorphism generated by a and b.

Proof. Let e be the identity element of A as the C∗-algebra. Then e is in

A −1+ and satisfies e⊕t a = a for every a ∈ A −1+ ; (G1) holds.

Let a ∈ A −1+ . Then a−1 ∈ A −1+ , and a−1 ⊕t a = e is trivial; (G2) holds for

	a = a−1.

For a, b ∈ A −1+ , put X =
(
a

t
2 bta

t
2

)− 1
2 a

t
2 b

t
2 . By a simple calculation we infer

that X is a unitary element. Define gyr[a, b]c = XcX∗, c ∈ A −1+ . By a simple

calculation we see that

a⊕t (b⊕t c) = (a⊕t b)⊕t gyr[a, b]c, a, b, c ∈ A −1+ .

The uniqueness of gyr[a, b]c is obvious by the definition of ⊕t. Thus we have that

(G3) holds.

As gyr[a, b] is a unitary transform for every pair a, b ∈ A −1+ , we infer by a

simple calculation that

gyr[a, b](c⊕t d) = gyr[a, b]c⊕t gyr[a, b]d, c, d ∈ A −1+

for every pair a, b ∈ A −1+ ; (G4) holds.

To prove that (G5) holds we first mention that by a simple calculation we

have (
(a

t
2 bta

t
2 )

1
2 a−

t
2 (a

t
2 bta

t
2 )

1
2

)2
=
(
a

t
2 bta

t
2

) 1
2 bt(a

t
2 bta

t
2 )

1
2
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for every pair a, b ∈ A −1+ . Hence we have

(
(a

t
2 bta

t
2 )

1
2 a−

t
2 (a

t
2 bta

t
2 )

1
2

)−1
=
(
(a

t
2 bta

t
2 )

1
2 bt(a

t
2 bta

t
2 )

1
2

)− 1
2

for every pair a, b ∈ A −1+ . It follows that

(
(a⊕t b)

t
2 bt(a⊕t b)

t
2

)− 1
2 (a⊕t b)

t
2 b

t
2 =

(
(a

t
2 bta

t
2 )

1
2 bt(a

t
2 bta

t
2 )

1
2

)− 1
2 (a

t
2 bta

t
2 )

1
2 b

t
2

=
(
(a

t
2 bta

t
2 )

1
2 a−

t
2 (a

t
2 bta

t
2 )

1
2

)−1
(a

t
2 bta

t
2 )

1
2 b

t
2 = (a

t
2 bta

t
2 )−

1
2 a

t
2 b

t
2

for every pair a, b ∈ A −1+ . Thus we obtain that gyr[a⊕t b, b] = gyr[a, b] for every

pair a, b ∈ A −1+ ; (G5) holds.

As gyr[a, b] is a unitary transfomation, we have

gyr[a, b](b⊕t a) = (a
t
2 bta

t
2 )−

1
2 a

t
2 b

t
2 (b

t
2 atb

t
2 )

1
t b

t
2 a

t
2 (a

t
2 bta

t
2 )−

1
2

= ((a
t
2 bta

t
2 )−

1
2 a

t
2 b

t
2 (b

t
2 atb

t
2 )b

t
2 a

t
2 (a

t
2 bta

t
2 )−

1
2 )

1
t = (a

t
2 bta

t
2 )

1
t = a⊕t b

for every pair a, b ∈ A −1+ ; (G6) holds. �

Definition 3. Let (G,⊕) be a gyrogroup. The gyrogroup coaddition � is

defined by

a⊕ gyr[a,	b]b

for all a, b ∈ G.

Note that the gyrogroup coaddition � is commutative if and only if the

gyrogroup (G,⊕) is gyrocommutative (cf. [25, Theorem 3.4]).

Definition 4 (A generalized gyrovector space). Let (G,⊕) be a gyrocommu-

tative gyrogroup with the map ⊗ : R × G → G. Let φ be an injection from G

into a real normed space (V, ‖ · ‖). We say that (G,⊕,⊗, φ) (or (G,⊕,⊗) just

for a simple notation) is a generalized gyrovector space or a GGV in short if the

following conditions (GGV0) to (GGV8) are fulfilled:

(GGV0) ‖φ(gyr[u,v]a)‖ = ‖φ(a)‖ for any u,v,a ∈ G;

(GGV1) 1⊗ a = a for every a ∈ G;

(GGV2) (r1 + r2)⊗ a = (r1 ⊗ a)⊕ (r2 ⊗ a) for any a ∈ G, r1, r2 ∈ R;

(GGV3) (r1r2)⊗ a = r1 ⊗ (r2 ⊗ a) for any a ∈ G, r1, r2 ∈ R;

(GGV4) (φ(|r|⊗a))/‖φ(r⊗a)‖ = φ(a)/‖φ(a)‖ for any a ∈ G\{e}, r ∈ R\{0},
where e denotes the identity element of the gyrogroup (G,⊕);

(GGV5) gyr[u,v](r ⊗ a) = r ⊗ gyr[u,v]a for any u,v,a ∈ G, r ∈ R;
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(GGV6) gyr[r1 ⊗ v, r2 ⊗ v] = idG for any v ∈ G, r1, r2 ∈ R;

(GGVV) ‖φ(G)‖ = {±‖φ(a)‖ ∈ R : a ∈ G} is a real one-dimensional vector space

with vector addition ⊕′ and scalar multiplication ⊗′;
(GGV7) ‖φ(r ⊗ a)‖ = |r| ⊗′ ‖φ(a)‖ for any a ∈ G, r ∈ R;

(GGV8) ‖φ(a⊕ b)‖ ≤ ‖φ(a)‖ ⊕′ ‖φ(b)‖ for any a, b ∈ G.

Note that ‖φ(e)‖ = 0 and 	a = (−1) ⊗ a are simple observations. In this

paper we simply write α ⊗ a ⊕ β ⊗ b instead of (α ⊗ a) ⊕ (β ⊗ b), and 	α ⊗ a

instead of 	(α⊗ a) for any α, β ∈ R, a, b ∈ G.

A gyrovector space (G,⊕,⊗) is a gyrocommutative gyrogroup (G,⊕) with

G ⊂ W for a (positive definite) real inner product space W such that the exotic

scalar multiplication ⊗ : R × G → G is defined and that the conditions through

(GGV1) to (GGV8) with φ being the identity map, and the condition

(V0) 〈gyr[u,v]a, gyr[u,v]b〉 = 〈a, b〉 for all u,v,a, b ∈ G
instead of the condition (GGV0) are satisfied, where 〈·, ·〉 is the inner product

on W. In short a gyrovector space is a subset of an inner product space while a

GGV is the inverse image of a normed vector space. Any gyrovector space is a

GGV since the condition (V0) implies the condition (GGV0). Note that for any

gyrovector space, φ is the identity map by the definition (cf. [25, Definition6.2]).

In addition, any real normed space is a GGV. Let V be a real normed space with

the addition + and the scalar multiplication ·, then (V,+, ·) is a GGV (the map

φ is the identity map of V).

Definition 5. Let (G,⊕,⊗) be a GGV. The gyromidpoint p(a, b) of a, b ∈
(G,⊕,⊗) is defined as p(a, b) = 1

2 ⊗ (a�b), where � is the gyrogroup coaddition

of the gyrogroup (G,⊕).

Note that p(a, b) = p(b,a) as � is commutative. In addition we have

p(a, b) = a⊕ 1

2
⊗ (	a⊕ b) (3)

(cf. [25, Definition 6.32 and Theorem 6.34]). In particular, p(a, b) = 1
2 (a + b) if

the GGV (G,⊕,⊗) is indeed a real normed space (V,+, ·).

Definition 6. Let (G,⊕,⊗) be a GGV. Let %(a, b) = ‖φ(a 	 b)‖ for all

a, b ∈ G. We call % the gyrometric on G on a GGV.

The gyrometric % satisfies the equation

%(a, b) = %(	a,	b) = %(b,a) (4)



Generalized gyrovector spaces and a Mazur–Ulam theorem 399

as

%(a, b) = ‖φ(a	 b)‖ = ‖φ(	(a	 b))‖ = ‖φ(	a⊕ b)‖ = %(	a,	b)

= ‖φ(gyr[	a, b](b	 a))‖ = ‖φ(b	 a)‖ = %(b,a).

In particular, if (G,⊕,⊗) is a real normed space, then gyrometric is a metric

induced by its norm.

We show a gyrocommutative gyrogroup of the positive invertible elements in

a C∗-algebra is indeed a GGV.

Example 7. Suppose that A is a unital C∗-algebra with the norm ‖ · ‖ and

A −1+ is the set of all positive invertible elements of A . Let t be a positive real

number. Put

a⊕t b =
(
a

t
2 bta

t
2

) 1
t

for all a, b ∈ A −1+ . Then (A −1+ ,⊕t) is a gyrocommutative gyrogroup as is proved

in Proposition 2.

Put r ⊗ a = ar for every a ∈ A −1+ , r ∈ R. Define φ = log : A −1+ → AS .

The vector space (‖ log(A −1+ )‖,⊕′,⊗′) = (R,+,×) is the usual 1 dimensional

real vector space of the real line; ⊕′ is the addition of real numbers and ⊗′ is the

scalar multiplication of real numbers. Then (A −1+ ,⊕t,⊗, log) is a GGV. In fact,

(GGV0) holds since gyr[a, b] is a unitary transform for every pair a, b ∈ A −1+ .

Simple calculations confirm that the conditions from (GGV0) to (GGV6) and

(GGV7) hold. The condition (GGVV) is trivial by the definition of ⊕′ and ⊗′.
A proof that (GGV8) holds is as follows. Letting c = e for [5, 1. of Remarks on

p. 197] we have

‖ log(a
t
2 bta

t
2 )

1
t ‖ ≤ 1

t
(‖ log at‖+ ‖ log bt‖) = ‖ log a‖+ ‖ log b‖, a, b ∈ A −1+ .

For the convenience of the readers we give an alternative elementary proof. Let

a, b ∈ A −1+ . Put s = min{λ : λ ∈ σ(a)}, S = max{λ : λ ∈ σ(a)}, s′ = min{λ : λ ∈
σ(b)}, S′ = max{λ : λ ∈ σ(b)}. By the spectral mapping theorem we have that

σ(at) ⊂ [st, St], hence st ≤ at ≤ St. In the same way we see that s′t ≤ bt ≤ S′t.

Since 0 ≤ bt − s′te we have 0 ≤ a
t
2 (bt − s′te)a t

2 . Thus s′tat ≤ a
t
2 bta

t
2 . Thus

(s′s)te ≤ a
t
2 bta

t
2 . In a way similar we have a

t
2 bta

t
2 ≤ (SS′)te. Hence we have

ss′e ≤ (a
t
2 bta

t
2 )

1
t ≤ SS′e. As log(a

t
2 bta

t
2 )

1
t is self-adjoint, we have∥∥ log(a

t
2 bta

t
2 )

1
t

∥∥ = max{|λ| : λ ∈ σ(log(a
t
2 bta

t
2 )

1
t )}.

By the spectral mapping theorem we have



400 Toshikazu Abe and Osamu Hatori

max{|λ| : λ ∈ σ(log(a
t
2 bta

t
2 )

1
t )} = max{|λ| : λ ∈ log σ((a

t
2 bta

t
2 )

1
t )}

≤ max{| logSS′|, | log ss′|} ≤ max{| logS|+ | logS′|, | log s|+ | log s′|}
≤ max{| logS|, | log s|}+ max{| logS′|, | log s′|} = ‖ log a‖+ ‖ log b‖

The gyrometric % is given by the equation

%(a, b) = ‖ log(a−
t
2 bta−

t
2 )

1
t ‖

for a, b ∈ A −1+ . Note that in the case where t = 1 the metric %(a, b) is the

Thompson metric itself. The gyromidpoint of a and b is given by the equation

p(a, b) = (a
t
2 (a

t
2 b−ta

t
2 )−

1
2 a

t
2 )

1
t ,

which coincides with the geometric mean of a and b for the case of t = 1.

Example 8. Let AS be a real subspace of all self-adjoints elements of a unital

C∗-algebra A and t a positive real number. Let

a⊕t b = log

(
exp

ta

2
exp tb exp

ta

2

) 1
t

for all a, b ∈ AS . Then (AS ,⊕t) is a gyrocommutative gyrogroup. The 0 is the

identity element and 	a = −a for every a ∈ AS . Define the scalar multiplication

⊗ by r⊗a = ra for every pair r ∈ R and a ∈ AS . Let φ : AS → AS be the identity

map. The vector space (‖AS‖,⊕′,⊗′) = (R,+,×) is the usual 1 dimensional real

vector space of the real line. Then (AS ,⊕t,⊗, Id) is a GGV, where Id is the

identity map. The difference of the structures between the AS as a real normed

subspace of the C∗-algebra A and the GGV (AS ,⊕t,⊗, Id) is only the structure

of addition. The GGV (AS ,⊕t,⊗, Id) has the exotic additive structure. Note

that (A −1+ ,⊕t,⊗, log) and (AS ,⊕t,⊗, Id) are isomorphic as the GGV’s. In fact

the map log : A −1+ → AS is a bijection and preserves the structure as the GGV.

Example 9. Suppose that A is a unital C∗-algebra on a Hilbert space of a

finite dimension and A−1+ is a set of all positive invertible elements in A. Let t

be a positive real number and |‖ · |‖ a unitarily invariant norm. As same as in

Example 7 (A−1+ ,⊕t) is a gyrocommutative gyrogroup for the operation ⊕t defined

by a ⊕t b = (a
t
2 bta

t
2 )

1
t for a, b ∈ A−1+ . Put r ⊗ a = ar for every a ∈ A−1+ , r ∈ R.

Define φ = log : A−1+ → AS . The vector space (|‖ log(A−1+ )|‖,⊕′,⊗′) = (R,+,×)

is the usual 1 dimensional real vector space of the real line; ⊕′ is the addition of

real numbers and ⊗′ is the scalar multiplication of real numbers. As in the proof
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in Example 7 we can prove that the conditions from (GGV0) through (GGV7)

hold. As for the condition (GGV8), we have by [7, Theorem 5] that

|‖ log(a
t
2 bta

t
2 )

1
t |‖ ≤ |‖ log a|‖+ |‖ log b|‖

for every pair a, b ∈ A−1+ . Thus (A−1+ ,⊕t,⊗, log) is a GGV for any unitarily

invariant norm.

Note that the set of all positive invertible complex matrics is an important

example of A−1+ in Example 9. Note also that not only the case of complex

matrices but also the set of all positive invertible matrices plays an important

role in several applications. See [6] and [15].

Example 10. Let Pn(R) be the set of all positive definite real-valued matrices

of degree n. In the same way as Example 9 (Pn(R),⊕t,⊗) is a GGV.

Proposition 11. Let G be a non-empty subset of a real normed space V.

Suppose that (G,⊕1,⊗1, φ1) is a GGV such that G ⊂ V for a real normed space

V with φ1 : G → V being the identity map. Let ‖G‖+ = {‖a‖ ∈ R : a ∈ G}.
Suppose that h : ‖G‖+ → R is a strictly monotone increasing function with

h(0) = 0, where we do not assume the continuity on h. Define ϕ : G→ V by

ϕ(a) =
h(‖a‖)
‖a‖

a, a ∈ G.

Then ϕ is an injection. Define ⊕2 and ⊗2 by

ϕ(a)⊕2 ϕ(b) = ϕ(a⊕1 b), α⊗2 ϕ(a) = ϕ(α⊗1 a)

for any a, b∈G, r∈R. Then (ϕ(G),⊕2,⊗2, φ2) is a GGV such that φ2 : ϕ(G)→V
is the identity map.

By the definition, (G,⊕1,⊗1) and (ϕ(G),⊕2,⊗2) have a same algebraic

structure. In contrast, (G,⊕1,⊗1) and (ϕ(G),⊕2,⊗2) have different gyromet-

rics: %2 = h ◦ %1.

Proof. Let φ2 : ϕ(G) → V be the identity map. By the definition of the

(ϕ(G),⊕2,⊗2), it is trivial that (ϕ(G),⊕2) is gyrocommutative gyrogroup with

G ⊂ V and (ϕ(G),⊕2,⊗2) satisfies the conditions through (GGV1) to (GGV3).

By the definition of the ϕ, we have ‖ϕ(a)‖ = h(‖a‖) for any a ∈ G. Thus

|r| ⊗2 ϕ(a)

‖r ⊗2 ϕ(a)‖
=

ϕ(|r| ⊗1 a)

‖ϕ(r ⊗1 a)‖
=

h(‖|r|⊗1a‖)
(‖|r|⊗1a)‖ (|r| ⊗1 a)

h(‖r ⊗1 a‖)

=
h(‖|r| ⊗1 a‖)
h(‖r ⊗1 a‖)

|r| ⊗1 a

‖|r| ⊗1 a‖
=

a

‖a‖
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and
ϕ(a)

‖ϕ(a)‖
=

1

h(‖a‖)
h(‖a‖)
‖a‖

a =
a

‖a‖
for any a ∈ G, r ∈ R. The condition (GGV4) is satisfied. Note that

gyr[ϕ(u), ϕ(v)](ϕ(a)) = ϕ(gyr[u,v](a))

for any u,v,a ∈ G ([25, Theorem2.26]). It follows that

‖ gyr[ϕ(u), ϕ(v)](ϕ(a))‖ = h(‖(gyr[u,v](a))‖) = h(‖a‖),

gyr[ϕ(u), ϕ(v)](r ⊗2 ϕ(a)) = gyr[ϕ(u), ϕ(v)](ϕ(r ⊗1 a))

= ϕ(gyr[u,v](r ⊗1 a)) = r ⊗2 ϕ(gyr[u,v](a)),

gyr[r1 ⊗2 ϕ(a), r2 ⊗2 ϕ(a)](ϕ(b)) = gyr[ϕ(r1 ⊗1 a), ϕ(r2 ⊗1 a)](ϕ(b))

= ϕ(gyr[r1 ⊗1 a, r2 ⊗1 a](b)) = ϕ(b).

Thus, (ϕ(G),⊕2,⊗2) satisfies the conditions (GGV0), (GGV5) and (GGV6). Let

h′ : ‖G‖ → ‖ϕ(G)‖ be a surjection

h′(a) =

{
h(a) if a ≥ 0

−h(−a) if a < 0

and define

h′(a)⊕′2 h′(b) = h′(a⊕′1 b), α⊗′2 h′(a) = h′(α⊗′1 a),

then (‖ϕ(G)‖,⊕′2,⊗′2) is a one-dimensional real linear space. Moreover,

‖ϕ(a)⊕2 ϕ(b)‖ = ‖ϕ(a⊕1 b)‖ = h(‖a⊕1 b‖) ≤ h(‖a‖ ⊕′1 ‖b‖)
= h(‖a‖)⊕′2 h(‖b‖) = ‖ϕ(a)‖ ⊕′2 ‖ϕ(b)‖

since h is monotone increasing and

‖r ⊗2 ϕ(a)‖ = ‖ϕ(r ⊗1 a)‖ = h(‖r ⊗1 a‖) = h(|r| ⊗′1 ‖a‖)
= |r| ⊗′2 h(‖a‖) = |r| ⊗′2 ‖ϕ(a)‖ �

Definition 12. Suppose that (G1,⊕1,⊗1) and (G2,⊕2,⊗2) are GGV’s. Let %1
and %2 be gyrometrics of G1 and G2, respectively. We say that a map T : G1→G2

is gyrometric preserving if the equality

%2(Ta, Tb) = %1(a, b)

holds for every pair a, b ∈ G1.

Proposition 11 shows that the algebraic structure of GGV does not encode

the gyrometric structure.



Generalized gyrovector spaces and a Mazur–Ulam theorem 403

3. A Mazur–Ulam theorem for GGV

The main result of the paper is the following. The theorem asserts that a

surjective gyrometric preserving map preserves gyromidpoints. This is a general-

ization of the Mazur–Ulam theorem for the real normed spaces.

Theorem 13. Let (G1,⊕1,⊗1) and (G2,⊕2,⊗2) be GGV’s. Let %1 and

%2 be gyrometrics of G1 and G2, respectively. Suppose that T : G1 → G2 is a

gyrometric preserving surjection. Then T preserves the gyromidpoints;

p(Ta, Tb) = Tp(a, b)

for any pair a, b ∈ G1.

The following corollary asserts that a surjective gyrometric preserving map

preserves the algebraic structure followed by the left gyrotranslations. It follows

that two GGV’s which have the same gyrometric structure have the same GGV

structure essentially.

Corollary 14. Let (G1,⊕1,⊗1) and (G2,⊕2,⊗2) be GGV’s. Let %1 and %2
be gyrometrics of G1 and G2, respectively. Suppose that a surjection T : G1→G2

satisfies

%2(Ta, Tb) = %1(a, b)

for any pair a, b ∈ G1. Then T is of the form T = T (e) ⊕2 T0, where T0 is an

isometrical isomorphism in the sense that the equalities

T0(a⊕1 b) = T0(a)⊕2 T0(b); (5)

T0(α⊗1 a) = α⊗2 T0(a); (6)

%2(T0a, T0b) = %1(a, b). (7)

for every a, b ∈ G1 and α ∈ R hold.

4. Preparations for the proof

The following proposition is proved when (G,⊕,⊗) is a gyrovector space

([25, Theorem 6.12 and Theorem 6.33]). A proof of Proposition 15 is same as the

proofs of [25, Theorem 6.12] and [25, Theorem 6.33].

Proposition 15. Let % be the gyrometric of a GGV (G,⊕,⊗). Then

%(a, b) = %(x⊕ a,x⊕ b) (8)
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for every triple a, b,x ∈ G and

%(a,p(a, b)) = %(b,p(a, b)) =
1

2
⊗′ %(a, b) (9)

for every pair a, b ∈ G.

Proof. By [25, Theorem 3.13], the equation

(x⊕ a)	 (x⊕ b) = gyr[x,a](a	 b)

holds. Therefore

%(x⊕ a,x⊕ b) = ‖φ((x⊕ a)	 (x⊕ b))| = ‖φ(gyr[x,a](a	 b))‖
= ‖φ(a	 b)‖ = %(a, b),

thus verifying (8).

By the equation (3) and the left cancellation law, we have

	a⊕ p(a, b) =
1

2
⊗ (	a⊕ b).

Therefore, we have

%(a,p(a, b)) = %(	a,	p(a, b)) = ‖φ(	a⊕ p(a, b))‖

= ‖φ(
1

2
⊗ (	a⊕ b))‖ =

1

2
⊗′ ‖φ(	a⊕ b)‖ =

1

2
⊗′ %(	a,	b) =

1

2
⊗′ %(a, b).

Moreover,

%(b,p(a, b)) = %(b,p(b,a)) =
1

2
⊗′ %(b,a) =

1

2
⊗′ %(a, b). �

A simple proof of the Mazur–Ulam Theorem by Väisälä makes use of the

reflection. For a point z ∈ E, the reflection of the normed vector space E in z

is the map ψz : E → E defined by ψz(x) = 2z − x. In order to prove our main

theorem, we consider the map similar to the reflection.

Proposition 16. Let (G,⊕,⊗) be a GGV. For z ∈ G, a bijective self map

ψz : G→ G defined by ψz(x) = 2⊗ z 	 x satisfies the following properties.

(p1) ψ−1z = ψz ,

(p2) %(ψz(a), ψz(b)) = %(a, b),

(p3) ψz(a) = a if and only if z = a,

(p4) ψz(a) = b and ψz(b) = a if z = p(a, b),

(p5) %(ψz(a),a) = 2⊗′ %(a, z)
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for any a, b ∈ G.

Proof. (p1) By the gyroautomorphic inverse property ([25, Definition 3.1,

Theorem 3.2]) and the left cancellation low, we have

φz(φz(x)) = 2⊗ z 	 (2⊗ z 	 x) = 2⊗ z ⊕ {	(2⊗ z)⊕ x} = x

(p2) By the equation (8), we have

%(ψz(a), ψz(b)) = %(2⊗ z 	 a, 2⊗ z 	 b) = %(	a,	b) = %(a, b)

(p3) First, we have

z ⊕ (z 	 a) = (z ⊕ z)⊕ gyr[z, z](	a) = ψz(a)

and hence

	z ⊕ ψz(a) = 	z ⊕ (z ⊕ (z 	 a)) = z 	 a.

Therefore, we have

a = ψz(a) ⇐⇒ 	z ⊕ a = 	z ⊕ ψz(a)

⇐⇒ 	z ⊕ a = 	(	z ⊕ a)

⇐⇒ 	z ⊕ a = 0

⇐⇒ z = a.

(p4) Suppose that z = p(a, b). By the (second) right cancellation low, we

have

ψz(b) = 2⊗
{

1

2
⊗ (a� b)

}
	 b = (a� b)	 b = a.

Since � is commutative, we also have

ψz(a) = (a� b)	 a = (b� a)	 a = b.

(p5) By the (first) right cancellation low, we have

1

2
⊗ (ψz(a) � a) =

1

2
⊗ {(2⊗ z 	 a) � a} = z.

It implies that z is the gyromidpoint of a and ψz(a). Thus (9) follows that

‖a	 z‖ =
1

2
⊗′ ‖a	 ψz(a)‖

as desired. �
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A gyrogroup (G,⊕) and its associated cogyrogroup (G,�) have the same

automorphisms ([25, Theorem 2.28]),

Aut(G,⊕) = Aut(G,�).

We have the following proposition. A proof is easy and is omitted.

Proposition 17. Let (G1,⊕1) and (G2,⊕2) be gyrogroups. Suppose that

T : G1→G2 is a bijection. Then the following (I1) and (I2) are equivalent to each

other.

(I1) T (a⊕1 b) = T (a)⊕2 T (b) for any a, b ∈ G1,

(I2) T (a�1 b) = T (a) �2 T (b) for any a, b ∈ G1.

Let (G,⊕,⊗) be a GGV. Suppose that a ∈ G and 0 ≤ α ≤ β. Then

α⊗′ ‖φ(a)‖ = ‖φ(α⊗ a)‖ =

∥∥∥∥φ(

(
β + α

2
− β − α

2

)
⊗ a)

∥∥∥∥
=

∥∥∥∥φ(

(
β + α

2

)
⊗ a⊕

(
−β − α

2

)
⊗ a)

∥∥∥∥
≤
(
β + α

2

)
⊗′ ‖φ(a)‖ ⊕′

(
β − α

2

)
⊗′ ‖φ(a)‖

=

(
β + α

2
+
β − α

2

)
⊗′ ‖φ(a)‖ = β ⊗′ ‖φ(a)‖

Since (‖φ(G)‖,⊕′,⊗′) is a real linear space, α⊗′ ‖φ(a)‖ = β⊗′ ‖φ(a)‖ if and only

if α = β or a = e. Hence,

0 < α < β ⇐⇒ 0 < α⊗′ ‖φ(a)‖ < β ⊗′ ‖φ(a)‖ (10)

for any a ∈ G \ {e}.

Proposition 18. Let (G,⊕,⊗) be a GGV. Then there exists a bijection

f : ‖φ(G)‖ → R that satisfies the following conditions;

(F1) f(a ⊕′ b) = f(a) + f(b) and f(r ⊗′ a) = rf(a) for any a, b ∈ ‖φ(G)‖,
r ∈ R

(F2) 0 < a < b if and only if 0 < f(a) < f(b) for a, b ∈ ‖φ(G)‖.

Proof. By the condition (GGVV), there exists a bijection f : ‖φ(G)‖ → R
that satisfies the condition (F1). Needless to say, −f also satisfies the condition

(F1). Hence, we may assume that f(‖φ(x0)‖) > 0 for some x0 ∈ G.
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For 0 < a, b ∈ ‖φ(G)‖, put x = ‖φ(x0)‖ and r1 = f(a)/f(x), r2 = f(b)/f(x).

Then r1 ⊗′ x = a, r2 ⊗′ x = b and r1, r2 > 0. Therefore,

0 < a < b ⇐⇒ 0 < r1 < r2

as (10). Obviously, 0 < f(a) < f(b) ⇐⇒ 0 < r1 < r2. The map f satisfies the

condition (F2). �

5. A proof of Theorem 13

A proof of Theorem 13 is given by modifying the proof of the Mazur–Ulam

theorem due to Väisälä [26].

Proof of Theorem 13. Let a, b ∈ G1 and z be the gyromidpoint of a

and b. Let W be the family of all bijective gyrometric preserving maps S : G1 →
G1 keeping the points a and b fixed, and set

λ = sup{f(%(Sz, z)) : S ∈W} ∈ [0,∞], (11)

where f is the bijection in Proposition 18. For S ∈ W we have %(Sz,a) =

%(Sz, Sa) = %(z,a), hence

%(Sz, z) ≤ %(Sz,a)⊕′1 %(a, z) = 2⊗′1 %(a, z), (12)

so f(%(Sz, z)) ≤ 2f(%(a, z)), which yields λ <∞.

Let ψ(x) = 2⊗1 z	1 x on G1. If S ∈W , then so also is S∗ = ψS−1ψS, and

therefore %(S∗z, z) ≤ λ. Since S−1 is a gyrometric preserving map, this fact and

(p5) imply that

λ ≥ f(%(S∗z, z)) = f(%(ψS−1ψSz, z)) = F (%(S−1ψSz, z))

= f(%(ψSz, Sz)) = f(2⊗′1 %(Sz, z)) = 2f(%(Sz, z)) (13)

for all S ∈ W , showing that λ ≥ 2λ. Thus λ = 0, which means that Sz = z for

all S ∈W .

Let T : G1 → G2 be a bijective gyrometric preserving map. Let z′ be

the gyromidpoint of T (a) and T (b). To prove the theorem we must show that

T (z) = z′. Let ψ′(y) = 2 ⊗2 z
′ 	2 y on G2. Then the map ψT−1ψ′T is in W ,

whence ψT−1ψ′T (z) = z. This implies that ψ′(T (z)) = T (z). Since z′ is the

only fixed point of ψ′, we obtain T (z) = z′. �
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Proof of Corollary 14. Let T0 = 	2T (e1)⊕2 T . Indeed, T0 : G1 → G2

is surjective and T0(e1)= e2. By the left cancellation law, we have T =T (e1)⊕2T0.

By the equation (8), T0 is a gyrometric preserving map because T is so. Applying

Theorem 13 to T0, we have

T0

(
1

2
⊗1 (a�1 b)

)
=

1

2
⊗2 (T0(a) �2 T0(b)) (14)

for any a, b ∈ G1. Since T0(e1) = e2, we have

T0

(
1

2
⊗1 x

)
= T0

(
1

2
⊗1 (x�1 e1)

)
=

1

2
⊗2 (T0(x) �2 T0(e1)) =

1

2
⊗2 T0(x) (15)

for any x ∈ G1. It follows that

T0(a�1 b) = T0(a) �2 T0(b) (16)

for any a, b ∈ G1. Since T0 is bijective, we have the equation (5) by Proposition 17.

Note that ‖φ1(G1)‖ = ‖φ2(G2)‖ since T0 is a bijection and

‖φ2(T0(a))‖ = %2(T0(a), e2) = %1(a, e1) = ‖φ1(a)‖

for any a ∈ G1. Furthermore, 1
2 ⊗
′
1 a = 1

2 ⊗
′
2 a for any 0 ≤ a ∈ ‖φ1(G1)‖ =

‖φ2(G2)‖ as

1

2
⊗′1 ‖φ1(a)‖ = ‖φ1(

1

2
⊗1 a)‖ = ‖φ2(T0(

1

2
⊗1 a))‖ = ‖φ2(

1

2
⊗2 T0(a))‖

=
1

2
⊗′2 ‖φ2(T0(a))‖ =

1

2
⊗′2 ‖φ1(a)‖.

Next we show that T0(α⊗1 a) = α⊗2 T0(a) for any a ∈ G1 and α ∈ R. For

any a ∈ G1 and for any integer m, T0(m ⊗1 a) = m ⊗2 T0(a) is satisfied by the

equation (5). By the equation (15), we have

T0

(m
2n
⊗1 a

)
=
m

2n
⊗2 T0(a) (17)

for any integer n, m. Let α ∈ R and rk → α, where {rk} be a sequence in

{m/2n | m,n : integer}. By Proposition 18, there is a bijection fi : ‖φi(Gi)‖ → R
satisfying the conditions (F1) and (F2) (i = 1, 2). For any b ∈ G1 \ {e1}, a

number k0 can be found such that k > k0 implies that

2|α− rk|f1(‖φ1(a)‖) < f1(‖φ1(b)‖)
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and

2|α− rk|f2(‖φ2(T0(a))‖) < f2(‖φ2(T0(b))‖).

Altogether, k > k0 implies that

|α− rk| ⊗′1 ‖φ1(a)‖ < 1

2
⊗′1 ‖φ1(b)‖ =

1

2
⊗′2 ‖φ2(T0(b))‖

and

|α− rk| ⊗′2 ‖φ2(T0(a))‖ < 1

2
⊗′2 ‖φ2(T0(b))‖.

By the equations (8) and (17), we have

%2(T0(α⊗1 a), α⊗2 T0(a))

≤ %2(T0(rk ⊗1 a), T0(α⊗1 a))⊕′2 %2(rk ⊗2 T0(a), α⊗2 T0(a))

= %1((rk ⊗1 a), α⊗1 a)⊕′2 ‖φ2(rk ⊗2 T0(a)	2 α⊗2 T0(a))‖
= ‖φ1(rk ⊗1 a	1 α⊗1 a)‖ ⊕′2 ‖φ2((rk − α)⊗2 T0(a))‖
= ‖φ1((rk − α)⊗1 a)‖ ⊕′2 |rk − α| ⊗′2 ‖φ2(T0(a))‖
= |rk − α| ⊗′1 ‖φ1(a)‖ ⊕′2 |rk − α| ⊗′2 ‖φ2(T0(a))‖

<
1

2
⊗′2 ‖φ2(T0(b))‖ ⊕′2

1

2
⊗′2 ‖φ2(T0(b))‖ = ‖φ2(T0(b))‖.

It implies that T0(α⊗1 a)	2 α⊗2 T0(a) 6= T0(b) for any b ∈ G1 \ {e1}. Since T0
is bijective and T0(e1) = e2, we have T0(α⊗1 a) = α⊗2 T0(a).

Finally by Proposition 15 we observe

%2(T0(a), T0(b)) = %2(T (e)⊕2 T0(a), T (e)⊕2 T0(b)) = %1(a, b), a, b ∈ G1. �

Molnár proved a Mazur–Ulam theorem [16, Theorem 3] for the metric

spaces equipped with the binary operations with which they form the point-

reflection geometries (cf. [14]). It asserts that under some additional assumptions

an isometry between such spaces locally preseves the inverted Jordan products

(cf. [8, Theorem 2.4, Corollaries 3.9 and 3.10], [19, Proposition 11]). If a gen-

eralized gyrovector space is torsion-free ([25, Definition 3.32]) and two-divisible

([25, Definition 3.33]), we can apply a Mazur–Ulam theorem of Molnár to give an

alternative proof of Theorem 13 although the proof is far from beeing trivial.

6. Applications

Theorem 19 was proved by Honma and Nogawa [10, Theorem 8] and the

case of t = 1 is exhibited as Theorem 9 in [9]. The proofs in [10, Theorem 8] and



410 Toshikazu Abe and Osamu Hatori

[9, Theorem 9] employ a non-commutative Mazur–Ulam theorem (cf. [8]). In this

section we give a simple proof of Theorem 19 as an application of Corollary 14.

Recall that a Jordan *-isomorphism from a C∗-algebra onto another one is a

complex linear bijection which preserves * and the square of the elements.

Theorem 19. Let A and B be unital C∗-algebras and t a positive real num-

ber. Put dA (a, b)(resp. dB(a, b)) = ‖ log(a−
t
2 bta−

t
2 )

1
t ‖, a, b ∈ A −1+ (resp. B−1+ ).

Suppose that T : A −1+ → B−1+ is a surjective isometry; ‖ log(a−
t
2 bta−

t
2 )

1
t ‖ =

‖ log(T (a)−
t
2T (b)tT (a)−

t
2 )

1
t ‖, a, b ∈ A −1+ . Then there exists a Jordan

*-isomorphism and a central projection p ∈ B such that T has the form

T (a) = (T (e)
t
2 (pJ(a) + (e− p)J(a−1))tT (e)

t
2 )

1
t , a ∈ A −1+ .

Proof. By Corollary 14 we have that T (a) = T (e) ⊕t T0(a), a ∈ A −1+ for

an isometrical isomorphism T0:

T0
(
(a

t
2 bta

t
2 )

1
t

)
=
(
T0(a)

t
2T0(b)tT0(a)

t
2

) 1
t , a, b ∈ A −1+ ; (18)

and

‖ log(a−
t
2 bta−

t
2 )

1
t ‖ = ‖ log(T0(a)−

t
2T0(b)tT0(a)−

t
2 )

1
t ‖, a, b ∈ A −1+ . (19)

By (6) in Corollary 14 we have

T0(a
1
n ) = T0(a)

1
n (20)

for every positive integer n. The rest of the proof is similar to that of [9, The-

orem 9], but for the convenience of the readers we give a sketch of it. Let us

consider the bijective transform S0 from AS onto BS defined by

S0(x) = log T0(expx), x ∈ AS .

By (20) we obtain S0( x
n ) = S0(x)

n for every a ∈ A −1+ and for every positive

integer n. Letting n→∞ in the equation

ndA

(
exp

x

n
, exp

y

n

)
=ndB

(
T0

(
exp

x

n

)
, T0

(
exp

y

n

))
=ndB

(
exp

S0(x)

n
, exp

S0(y)

n

)
,

‖y − x‖ = ‖S0(y)− S0(x)‖, x, y ∈ AS ;

S0 is a bijective isometry and S0(0) = 0. By the Mazur–Ulam theorem and

the result [11, Theorem 2] of Kadison there is a central projection p ∈ B and
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a Jordan *-isomorphism J : A → B such that S0(e) = 2p − e and S0(x) =

S0(e)J(x)for every x ∈ AS . We compute

T0(expx) = pJ(expx) + (e− p)J(exp(−x)), x ∈ AS .

It follows that

T (a) = (T (e)
t
2 (pJ(a) + (e− p)J(a−1))tT (e)

t
2 )

1
t

for every a ∈ A −1+ . �

Corollary 20. Let A and B be unital C∗-algebras and t a positive real

number. Suppose that T : A −1+ → B−1+ is an isomorphism between the gyro-

commutative gyrogroups (A −1+ ,⊕t) and (B−1+ ,⊕t). Suppose that T preserves the

spectrum; σ(a) = σ(T (a)) for every a ∈ A −1+ , where σ(·) denotes the spectrum.

Then T is extended to a Jordan ∗-isomorphism from A onto B.

Proof. Since an isomorphism preserves the inverse, we have T (b−1) =

T (b)−1 for every b ∈ A −1+ since b−1 (resp. T (b)−1) is the inverse of b (resp.

T (b)) in the gyrogroup A −1+ (resp. B−1+ ). By the assumption the isomorphism

T preserves the spectrum we have

σ(a
t
2 b−ta

t
2 ) = σ(T (a

t
2 b−ta

t
2 )) = σ(T (a)

t
2T (b)−tT (a)

t
2 ), a, b ∈ A −1+ .

By the spectrum mapping theorem we infer that

σ(log(a
t
2 b−ta

t
2 )) = σ(log(T (a)

t
2T (b)−tT (a)

t
2 ))

for every pair a, b ∈ A −1+ . Hence

‖ log(a
t
2 b−ta

t
2 )‖ = ‖ log(T (a)

t
2T (b)−tT (a)

t
2 )‖

for every pair a, b ∈ A −1+ . As σ(T (e)) = σ(e) = {1} and T (e) is a positive

element, we have T (e) = e. By Theorem 19 there exists a Jordan *-isomorphism

J from A onto B and a central projection p ∈ B with

T (a) = pJ(a) + (e− p)J(a−1), a ∈ A −1+ .

Letting a = e/2 we have T (e/2) = pJ(e/2) + (e − p)J(2e) = pe/2 + 2(e − p)e.
As σ(T (e/2)) = σ(e/2) = {1/2} we infer that p = e. Therefore T (a) = J(a) for

every a ∈ A −1+ . �
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