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Stone–Čech compactification with applications
to evolution equations on Banach spaces

By N. U. AHMED (Ottawa)

Abstract. In this note we study the question of Stone–Čech compactification of
Banach spaces. This is used to construct regular countably additive measure valued

functions as solutions for evolution equations on Banach spaces where the standard
notions of solutions fail. We show that if one admits finitely additive measure valued
solutions one can define the notion of measure solutions in terms of the original state

space.

1. Introduction

In the study of measure solutions of differential equations on Banach
spaces having nonlinearities with polynomial or even exponential growth
it is convenient to seek for a compact Hausdorff space containing a dense
subspace which is homeomorphic with the given Banach space. This al-
lows us to construct countably additive measure valued solutions for the
system. In general the solutions are only finitely additive measure val-
ued functions and by introducing compactification one obtains countably
additive measure solutions. This is one of the motivation for seeking com-
pactification. Further this prevents the measure solutions from leaving the
compactified state space.

2. A general result

In this section we present a result on the Stone–Čech compactification
of Banach spaces which, in addition to having independent interest, has
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Key words and phrases: Stone–Čech compactification, finitely additive measures, evo-
lution equations, measure solutions.



290 N. U. Ahmed

application in the study of measure solutions for evolution equations on

Banach spaces.

Theorem A. Every Banach space X admits Stone–Čech compactifi-

cation βX which is a compact Hausdorff space containing a dense subspace

which is homeomorphic with X. Let X, Y be any two Banach spaces so

that the embedding X ↪→ Y is continuous. Then their Stone–Čech com-

pactifications satisfy the inclusions

(2.1) βY ⊆ βX.

Proof. Let X denote any one of the pair of Banach spaces {X,Y }
and BC(X ) the space of bounded continuous real valued functions on X
with the topology induced by the norm

(2.2) ∥ϕ∥ ≡ sup{|ϕ(x)|, x ∈ X}.

Clearly BC(X ) with this topology is a Banach space. For each ϕ ∈ BC(X ),

define its range by Iϕ ≡ ϕ(X ). This is a closed bounded interval of R and

hence compact. Since X is a Banach space it is a metric space and since

every metric space is a Tychonoff space (a completely regular T1 space,

denoted by T3 1
2
), the space X is a Tychonoff space. Thus the elements of

BC(X ) separate points from closed sets in X . Hence the evaluation map

(2.3) X −→
∏

{Iϕ, ϕ ∈ BC(X )}

denoted by e is an embedding of X into
∏
{Iϕ, ϕ ∈ BC(X )}. Every Ty-

chonoff space X has a Stone–Čech compactification βX which is a compact

Hausdorff space [see 1, Theorem 8.3.1, p. 147]. In fact βX is unique (up to

topological equivalence) given by the closure of e(X ) in the product topol-

ogy. Clearly X is homeomorphic with e(X ) which is a dense subspace of

βX . This verifies the first assertion.

Now let us consider the pair of Banach spaces {X,Y }. By assumption

the injection X ↪→ Y is continuous and hence the norm topology of X is

stronger than the norm topology of Y . Thus if ϕ ∈ BC(Y ) then its

restriction ϕ|X , again denoted by ϕ, is also in BC(X). Hence topologically

BC(Y ) ⊆ BC(X). Then e(Y ) ⊆ e(X) and their closures in the respective

product topologies satisfy the inclusion βY ⊆ βX. This completes the

proof. □
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Remark. The question is, under what (additional) conditions, the in-
clusion given by (2.1) is actually an equality (up to topological equiva-
lence). For this we recall the definition of C∗-embedding.

Definition 2.1. A subset K of a topological space T is said to be
C∗-embedded in T if and only if every bounded continuous real valued
function on K can be extended to T .

From general topology it is known [1] that if X is C∗-embedded in Y
then βX = βY , that is, these spaces are topologically equivalent. Clearly
for arbitrary Banach spaces X and Y with continuous injection X ↪→ Y ,
X is not necessarily C∗-embedded in Y . A simple example is X ≡ H1(Rn)
and Y = L2(R

n) with the embedding X ↪→ Y being continuous and dense.
Note that a continuous function on H1(Rn) need not have a continuous
extension on to L2(R

n) and thus H1 is not C∗-embedded in L2(R
n) and

βY ⊂ βX only.

Here we have used what is known as the“standard analysis” for com-
pactification. This is the classical approach. In recent years “nonstan-
dard analysis” has emerged as a powerful, yet simple, tool whereby non
Hausdorff compactification is easily obtained. Another step using quo-
tient topology leads to compact Hausdorff. Stone–Čech compactification
is obtained by a particular choice of an equivalence relation. For an excel-
lent exposition of the nonstandard analysis and its application to point-
set topology the reader is referred to the recent papers of Salbany and
Todorov [14], [10].

Nonstandard analysis has been also used byOberguggenberger [11]
and Todorov [12], [13] to construct generalized solutions for ordinary and
partial differential equations with smooth coefficients. Here we deal with
abstract evolution equations on Banach spaces which cover many physi-
cal problems such as Navier–Stokes equation, MHD equations, Nonlinear
Klein–Gordon equation, Reaction–Diffusion equation with bounded as well
as unbounded coefficients [2], [4], [15], [16].

3. An application

Consider the semilinear evolution equation:

(3.1)
ẋ+Ax = f(x), t ∈ I ≡ [0, T ], T <∞,

x(0) = x0,
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in a Banach space E. Let −A be the infinitesimal generator of an analytic

semigroup on E and α ∈ (0, 1] and let Aα denote the fractional power of A.

Denote by Eα ≡ [D(Aα)] the normed space induced by the graph norm

(3.2) ∥x∥α ≡ ∥x∥E + ∥Aαx∥E , for x ∈ D(Aα).

Clearly [D(A)] ⊆ Eγ ⊂ Eβ ⊂ E0 = E for 0 < β ≤ γ ≤ 1. Since A and its

fractional powers are closed operators, these are Banach spaces (see [3])

and further, the injections are continuous.

Let ϕ ∈ BC(Eα) and Dϕ its Frechet derivative on Eα with values

Dϕ(ξ) ∈ E∗
α for ξ ∈ Eα, where E

∗
α is the dual of Eα. Since the embedding

Eα ↪→ E is continuous and dense we have E∗ ⊂ E∗
α. For study of measure

solutions we introduce the following class of test functions denoted by Fα.

This is given by

Fα ≡ {ϕ ∈ BC(Eα) : Dϕ exists, Dϕ(ξ) ∈ D(A∗) ⊂ E∗, ξ ∈ Eα

and Dϕ ∈ BC(Eα, E
∗)}.

For each ϕ ∈ Fα, let ϕ̃ denote its continuous extension from Eα to βEα so

that ϕ̃ ◦ eα = ϕ where eα denotes the embedding of Eα into βEα. Define

the operator Ã with domain

D(Ã) ≡ {ϕ̃ ∈ BC(βEα) : A(ϕ̃ ◦ eα) ∈ BC(Eα)}

by setting

Ã(ψ) ≡ A(ψ ◦ eα) for ψ ∈ D(Ã),

where the operator A is given by

(3.3) (Aϕ)(ξ) = −⟨A∗Dϕ(ξ), ξ⟩E∗,E + ⟨Dϕ(ξ), f(ξ)⟩E∗,E , ξ ∈ Eα,

for ϕ ∈ D(A) ⊂ Fα. As in Section 2, here βEα is the Stone–Čech com-

pactification of Eα. Note that D(A) ̸= ∅. For example, for ψ ∈ Fα, the

function φ defined by φ(x) ≡ ψ(rR(r,−Aα)x), belongs to D(A) for each

r ∈ ρ(−Aα), the resolvent set of −Aα.

In finite dimensional spaces, if f is only continuous one can construct a

classical solution possibly defined only locally with finite blow up time. But

in infinite dimensional spaces, the situation is very different. If f is merely

continuous and even bounded on bounded sets, the evolution equation
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(3.1) may not possess any solution in any one of the classical senses such

as classical, strong, mild or weak. For examples, see Godunov [8] and

the references therein, where he shows the invalidity of Peano’s theorem

in Hilbert spaces. Similar counter examples can be easily constructed in

the Banach space co, the space of infinite sequences converging to zero.

Construction of such examples is possible since the unit balls in infinite

dimensional spaces are not compact.

The concept of measure valued solutions generalizes the above notions

and presents a wider horizon to look for existence of solutions. This subject

has been studied by the author in several papers [2], [4], [6], [15], [16]. In [8]

Godunov presented examples and proved the nonexistence of classical

solutions, that is, C1(I, E). It is possible that a classical solution, even in

the weakened form (see [8]), may not exist while a measure valued solution

may. However, for the later, the author of this paper has given existence

results under the assumption that f : I × Eα 7→ E is Borel measurable

and that for almost all t ∈ I, ξ −→ f(t, ξ) is continuous and bounded

on bounded sets [2], [4], [15], [16]. If such conditions are not satisfied by

the examples constructed in [8], even the question of existence of measure

valued solutions can not be settled. This requires some verification. In

order to discuss the measure solutions further, we need to consider finitely

additive measures.

Let X be a normal topological space and Ψc(X) the algebra generated

by the class of closed subsets of X. Let Σrba(X) denote the space of

regular bounded finitely additive measures defined on Ψc(X) and Σrca(X)

denote the class of regular countably additive measures defined on the

sigma field σ(Ψc(X)) generated by the class of closed subsets of X. These

spaces, furnished with the total variation norm, are Banach spaces. Let

Πrba(X) ⊂ Σrba(X) denote the space of regular finitely additive probability

measures on X. From the well known characterization results (see [7,

Theorem 2, Theorem 3, p. 262–265–265]) the dual of BC(X) is given by

Σrba(X), and ifX is a compact topological space then the dual of BC(X) is

given by Σrca(X). Thus for compact X, any µ ∈ Σrba(X) has a countably

additive extension from Ψc(X) to σ(Ψc(X)).

The action of any measure ν ∈ Σrba(X) on any element ϕ ∈ BC(X)

will be denoted by

ν(ϕ) ≡
∫
X

ϕ(ξ) ν(dξ).
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For any interval finite I = [0, τ ], let L1(I,BC(X)) denote the Lebesgue–

Bochner space of integrable functions on I taking values from the Banach

space BC(X). Since BC(X) does not satisfy the Radon–Nikodym prop-

erty, the dual of L1(I,BC(X)) is not given by L∞(I,Σrba(X)). However,

by the theory of “lifting” [9], its dual is given by Lw
∞(I,Σrba(X)) which is

the space of weak∗ measurable functions on I with values in Σrba(X) with

the norm given by

∥λ∥ ≡ inf{k ≥ 0 : ess-sup
t∈I

λt(ϕ) ≤ k, ∀ϕ ∈ BC(X) : ∥ϕ∥BC(X) = 1},

for λ ∈ Lw
∞(I,Σrba(X)).

Now we return to the system (3.1) and assume that f is a general

nonlinear map from Eα to E which is continuous and bounded on bounded

sets. The following definition for measure solutions was introduced in [2],

[4] generalizing a similar notion proposed in [5] which was further extended

to stochastic differential equations on Hilbert spaces [6]. In the stochastic

case the differential operator A is second order while in the deterministic

case it is a first order differential operator given by (3.3). Let the initial

state x0 be given by either a fixed element of Eα, in which case it is

considered as a Dirac measure on Eα concentrated at the point {x0},
or, in general, an arbitrary measure µ0 ∈ Πrba(Eα) ⊂ Σrba(Eα). Define

λ0 = µ0 · e−1
α .

Definition 3.1. A measure valued function λ ∈ Lw
∞(I,Σrba(βEα)) =

Lw
∞(I,Σrca(βEα)) is said to be a generalized solution of equation (3.1)

corresponding to the initial state µ0 if, for every ϕ̃ ∈ D(Ã) given by ϕ̃ =

ϕ ◦ e−1
α for some ϕ ∈ Fα with Dϕ having bounded supports on Eα, the

following equality holds

(3.4) λt(ϕ̃) = λ0(ϕ̃) +

∫ t

0

λs(Ãϕ̃)ds, t ∈ I,

where

λt(ψ) ≡
∫
βEα

ψ(ξ)λt(dξ), t ∈ I and ψ ∈ BC(βEα).

The following result was proved in [2].
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Theorem B. Let −A be the infinitesimal generator of an analytic

semigroup in the Banach space E and f : Eα 7→ E continuous and bounded

on bounded subsets of Eα, for some α ∈ (0, 1). Then for each x0 ∈ Eα,

or more generally, for each λ0 ∈ Πrba(βEα), the evolution equation (3.1)

has at least one measure solution λ ∈ Lw
∞(I,Σrba(βEα)) in the sense of

Definition 3.1. Further t→ λt is w
∗ continuous with values in Πrba(βEα).

Proof. For detailed proof see [2] and more general results see [16].

□

Remark. We note that if the problem (3.1) has a solution in the sense

of any one of the standard notions of solutions like the classical, strong,

mild, weak, then these solutions are also measure valued solutions satisfy-

ing the identity (3.4) [2], [16]. However the reverse is not true. In general

the (locally convex) topological vector space C(I, Ew
α ), the space of vec-

tor valued functions on I which are weakly continuous, is embedded in

Lw
∞(I,Σrba(Eα)).

Since βEα is a compact Hausdorff space we have Σrba(βEα) =

Σrca(βEα). According to Theorem B, for each t ∈ I, λt ∈ Πrba(βEα)

and hence λt ∈ Πrca(βEα). By Theorem A of the previous section we

have βE ⊂ βEα, and clearly this means that the measure solutions are

supported on a rather very large space. Our concern in this section is to

investigate the properties of their restrictions to smaller spaces. Let e de-

note the embedding of E into
∏
{Iϕ, ϕ ∈ BC(E)} and eα the embedding

of Eα into
∏
{Iϕ, ϕ ∈ BC(Eα)}. Associated with any measure solution λ

of (3.1), we define the following pair of measure functions {µE , µα} given

by:

(1) : µE
t ≡ νEt ◦ e, where νEt ≡ λt|e(E)

(2) : µα
t ≡ ναt ◦ eα, where ναt ≡ λt|eα(Eα)

for t ∈ I.

Since λ is weak star continuous in t, for each t ∈ I these are well defined

functions on the field of sets Ψc(E) and Ψc(Eα) respectively. In general

the measure solution {λt, t ∈ I} is supported on βEα. The measure νEt
(and hence µE

t ) is nontrivial only if the

spt(λt) ⊂ βE ⊂ βEα.
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The measures {νEt , ναt } are defined on Ψc(e(E)) and Ψc(eα(Eα)) respec-

tively and their countably additive extensions to the σ-algebras generated

by the fields Ψc(e(E)) and Ψc(eα(Eα)) respectively are λt|βE and λt re-

spectively. Clearly, for almost all t ∈ I,

µE
t ∈ Σrba(E) and µα

t ∈ Σrba(Eα),

and further

µE
t ∈ Πrba(E) and µα

t ∈ Πrba(Eα),

if and only if

νEt ∈ Πrba(βE), and ναt ∈ Πrba(βEα)

respectively.

The following result is useful for defining measure solutions in terms

of the basic spaces E and Eα.

Theorem C. For each t ∈ I, the measure µE
t is µα

t continuous on

Ψc(Eα) in the sense that

lim
µα
t (Γ)→0

µE
t (Γ) = 0, for Γ ∈ Ψc(Eα).

Further µα, an element of Lw
∞(I,Σrba(Eα)), is a measure solution of equa-

tion (3.1) in the sense that

(3.5) µα
t (ϕ) = µα

0 (ϕ) +

∫ t

0

µα
s (Aϕ)ds, ∀t ∈ I,

for all ϕ ∈ D(A) having Frechet derivatives with bounded supports.

Proof. For convenience of presentation, we accept a slight abuse of

notation. For any measure ν ∈ Σrba(Eα) and any set Γ ∈ Ψc(Eα), we write

ν(Γ) for ν(ξΓ) where ξΓ denotes the characteristic function of the set Γ.

Though ξΓ /∈ BC(Eα), ν(ξΓ) is well defined which can be demonstrated by

simple regularisation and taking limits. We show that µE
t is µα

t continuous.

This will follow if we show that for each set Γ ∈ Ψc(Eα)

(3.6) µE
t (Γ) ≤ µα

t (Γ).

Let Γ̃ ∈ Ψc(E) and define Γ ∈ Ψc(Eα) as being the largest set contained

in Γ̃. Clearly the set Γ ̸= ∅ whenever Γ̃ ̸= ∅ and the map Γ̃ −→ Γ
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exhausts Ψc(Eα). Indeed, this map can be characterized by the expression

Γ = cℓEα(Γ̃ ∩ Eα). Clearly, Γ ⊂ Γ̃ and we have

(3.7) µE
t (Γ) ≤ µE

t (Γ̃).

Since BC(E) ⊂ BC(Eα), it follows from similar arguments as used in

Theorem A that eα(Γ) ⊇ e(Γ̃). Thus

(3.8) (λt ◦ eα)(Γ) ≥ (λt ◦ e)(Γ̃).

Using these identities and the definition of the measures µE
t and µα

t , it

follows that

(3.9) µE
t (Γ) ≤ µE

t (Γ̃) ≤ µα
t (Γ).

This gives (3.6) thereby proving the first assertion. In fact this also proves

that µE
t is µα

t null. For the second part we use the fact that λ is a gener-

alized solution of equation (3.1) in the sense of Definition 3.1. We use the

expression (3.4) for this. Let ϕ ∈ D(A) with Dϕ having bounded support

and let ϕ̃ denote the extension of ϕ from Eα to βEα so that ϕ̃ ◦ eα = ϕ.

Then

λt(ϕ̃) ≡
∫
βEα

ϕ̃(ξ)λt(dξ) =

∫
Eα

(ϕ̃ ◦ eα)(η)(λt ◦ eα)(dη)(3.10)

=

∫
Eα

ϕ(η)µα
t (dη).

Similarly we have

(3.11) λ0(ϕ̃) =

∫
Eα

ϕ(η) µα
0 (dη) = µα

0 (ϕ).

Again for any t ∈ I,

λt(Ãϕ̃) ≡
∫
βEα

(Ãϕ̃)(ξ)λt(dξ)(3.12)

=

∫
Eα

A(ϕ̃ ◦ eα)(η) (λt ◦ eα)(dη)

=

∫
Eα

Aϕ(η)µα
t (dη).
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Thus it follows from (3.4) and (3.10)–(3.12) that

µα
t (ϕ) = µα

0 (ϕ) +

∫ t

0

µα
s (Aϕ)ds, ∀t ∈ I.

This proves the second part. □
From this result it is clear that the Definition 3.1 for measure solutions

of the evolution equation (3.1) can be rephrased directly in terms of the

basic space Eα as follows.

Definition 3.2. A measure valued function µ ∈ Lw
∞(I,Σrba(Eα)) is

said to be a generalized solution of equation (3.1) corresponding to the

initial state µ0 if, for every ϕ ∈ D(A) with Frechet derivative Dϕ having

bounded supports on Eα, the following equality holds

(3.13) µt(ϕ) = µ0(ϕ) +

∫ t

0

µs(Aϕ)ds, t ∈ I.

This is obtained at the cost of countable additivity, though its exten-

sion to βEα is countably additive.

Remark. The measure function {µE
t , t ∈ I} cannot be a generalized

solution of equation (3.1) unless f is defined on all of E. Here f is a much

more general operator mapping Eα ⊂ E into E.

It is evident from the integral expression (3.13) that one could consider

µ as being the weak solution of the abstract linear differential equation

(3.14) (d/dt)µ = A∗µ, µ(0) = µ0,

on the state space Σrba(Eα) which is a Banach space with respect to the

total variation norm. The interesting fact is, looked at it from this point

of view, it is always a linear evolution equation with unbounded operator

A∗ with both domain D(A∗) and range R(A∗) in Σrba(Eα). Here A∗ is

the dual of the operator A. Since by Theorem B this equation has a w∗-

continuous solution, there exists a w∗-continuous semigroup U(t), t ≥ 0,

on Σrba(Eα) so that the solution is given by

(3.15) µt = U(t)µ0, t ≥ 0.

For the time varying case, it is given by µt = U(t, 0)µ0, where {U(t, s),

0 ≤ s ≤ t ≤ T} is a weak star continuous evolution operator on Σrba(Eα).
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4. Utility of measure solutions

In view of the remark following Theorem B, one may question, how

a measure valued solution can be useful in physical problems. One simple

answer is: the measure solutions can be used in the same spirit as the

solutions of stochastic differential equations. There one may solve the

associated Kolmogorov equation which yields probability measure valued

functions as solutions. Another possibility is to construct vector valued,

in this case, Eα-valued, trajectories from the measure valued solution {µt,

t ∈ I} as follows. Suppose the measure solution has a bounded support

in Eα and let e∗ ∈ E∗
α. Let E

w
α denote the B-space Eα furnished with the

weak topology. Define the process x ∈ C(I, Ew
α ) as follows:

(e∗, x(t)) ≡
∫
Eα

(e∗, ξ) µt(dξ), t ∈ I,

with the initial value x(0) as given in (3.1). Since the map t −→ µt is only

weak star continuous with values in the space of regular bounded finitely

additive measures on Eα, the process x is only weakly continuous. In

control problems where f depends also on a control variable, the measure

valued process is a controlled process [4] and if one wishes to find a control

to capture a target, one may force the process x itself to hit the target.

By the phrase, capturing a target, here means∪
t∈I

{sptµt ∩ T (t)} ̸= ∅,

where T (t) is a moving target (multi function) with values from the class

of nonempty closed subsets of the Banach space Eα, continuous on I with

respect to the Hausdorff metric. Readers interested in detailed application

of measure solutions to control problems are referred to [4], [15].

In case the support of the measure process {µt, t ∈ I} is unbounded,

one can construct a family of solution trajectories as follows. Take any

element e∗ ∈ E∗
α and the open ball Br ∈ Eα of radius r > 0 with center

at the origin and define

φr(ξ) =

{
(e∗, ξ), if ξ ∈ Br;

(r/∥ξ∥)(e∗, ξ), otherwise.
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Using the function φr we may define a sequence of mean trajectories

{xr(t), t ∈ I} through the identity,

(e∗, xr(t)) ≡
∫
Eα

φr(ξ)µt(dξ), t ∈ I.

If x0 ∈ Br ⊂ Eα, the process xr is well defined and lies in the ball B̄r for

all t ∈ I. However the limit process limr→∞ xr(t), t ∈ I, may leave Eα

and escape to βEα. In any case these trajectories may play the role of

vector valued solutions in place of the measure valued solutions.

For application to systems and control problems, one is generally in-

terested in evaluating functionals of the form:

(3.16)

F (µ) ≡
∫ τ

0

G(µt(ϕ1), µt(ϕ2), . . . , µt(ϕn))dt,

F (µ) ≡ G(µτ (ϕ1), µτ (ϕ2), . . . , µτ (ϕn)),

F (µ) ≡
∫ τ

0

∫
Eα

g(t, ξ)µt(dξ)dt,

where G ∈ C(Rn), g ∈ L1(I,BC(Eα)) and the functions ϕk ∈ BC(Eα),

k = 1, 2, . . . , n, are given. It is the action of the measure solutions on

certain observables that matter, not the measure itself. These quantities

have physical significance though not easy to compute. One must use

some approximation techniques, similar to the Galerkin method, to solve

the differential equation (3.14) to compute such functionals. This is left

as an open problem for future work.
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