Publ. Math. Debrecen 45 / 3-4 (1994), 395–396

A minimax theorem not involving convexities of the function

By I. JOÓ (Budapest)

Dedicated to Professor Ákos Császár for his 70th birthday

In this paper we prove the following

Theorem. Let X be a compact topological space, Y be an arbitrary topological space and $f: X \times Y \to \mathbb{R}$ a function continuous in x for every fixed $y \in Y$ and lower semicontinuous in y for every fixed $x \in X$. This means that the level sets $H_c^y = \{x : f(x,y) \ge c\}$ and $H_x^c = \{y : f(x,y) \le c\}$ are closed in X resp in Y and $\hat{H}_c^y = \{x : f(x,y) \succ c\}$ are open in X. Suppose further that

a) The intersection of any (not necessarily finite numbers of H_x^c sets), $x \in X, c \in \mathbb{R}$ is connected (may be empty).

b) The intersection of any finitely many \hat{H}_c^y is connected (may be empty).

Then

$$\sup_{x} \inf_{y} f(x,y) = \inf_{y} \sup_{x} f(x,y).$$

PROOF of the Theorem. Define an interval structure on Y as follows: let $[y_1, y_2] = \bigcap_{x,c} \{H_x^c : y_1, y_2 \in H_x^c\}.$

If we choose the constant c sufficiently large, we obtain $y_1, y_2 \in H_x^c$. Hence $[y_1, y_2]$ is well-defined, closed connected and $y_1, y_2 \in [y_1, y_2]$. The sets H_x^c become convex in the sense that $y_1, y_2 \in H_x^c$ implies $[y_1, y_2] \in H_x^c$. Consequently we can apply Theorem B of Joó [1] stating that if

- (1) $H_x^c \cap [y_1, y_2]$ is closed in $[y_1, y_2]$
- (2) H_x^c is convex

Supported by the grant OTKA T7546.

396 I. Joó : A minimax theorem not involving convexities of the function

(3) $\bigcap_{i=1}^{n} \hat{H}_{c}^{y_{i}}$ is connected for every finite intersection

then $\bigcap_{i=1}^{n} \hat{H}_{c}^{y_{i}} \neq 0$ for every $c < c^{y} = \inf_{y} \sup_{x} f$ hence the sets H_{c}^{y} have also the finite intersection property. In our case (1) holds since H_{c}^{c} and $[y_{1}, y_{2}]$ are closed in Y, (2) was remarked above and (3) is identical to b), hence Theorem B of [1] applies. Since the sets H_{c}^{y} are compact, this implies $\bigcap_{y \in Y} H_{c}^{y} \neq 0$ i.e. there exist $x_{0} \in X$ with $f(x_{0}, y) \geq c$ for all $y \in Y$. Hence $c < c^{*}$ implies $c \leq \sup_{x} \inf_{y} f$ i.e. $c^{*} \leq \sup_{x} \inf_{y} f$ which proves the desired minimax equality. \Box

References

 I. Joó, On a fixed point theorem, Publicationes Mathematicae, Debrecen 36 (1989), 127–128.

I. JOÓ DEPARTMENT OF ANALYSIS L. EÖTVÖS UNIVERSITY M-1088-BUDAPEST MÚZEUM KRT. 6-8.

(Received November 15, 1993; revised May 13, 1994)