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A categorical treatment of numerical semigroups

By ANTONIO M. CEGARRA (Granada) and MARIO PETRIC (Brač)

Abstract. A subsemigroup of the additive semigroup of positive integers P

which generates the group of integers Z as a group bears the label of numer-
ical. The category of numerical semigroups and homomorphisms is compared
with several categories. The relationship turns out to be either isomorphism or
equivalence of categories. These categories have objects of diverse nature: sub-
semigroups of P, abstract semigroups satisfying strong conditions, partial orders
on Z, infinite cyclic groups partially ordered, pairs of the form (r, I) where r ∈ P

and I is a r× r-matrix over nonnegative integers N, functions from Z/(r) into N,
all of these satisfying numerous conditions.

This is an “external” study of numerical semigroups: comparison with dif-
ferent objects which may shed some light on their own structure.

1. Introduction and summary

The semigroup P of positive integers under addition is probably al-
most as old as Mathematics. Very likely, the set P is the first infinite set
encountered by Man. From the point of semigroups, or general mathe-
matics, it seems surprising that so little attention has been paid to such
natural objects as subsemigroups of P.
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Numerical semigroups are those subsemigroups of P which generate
the group Z of integers as a group. They admit other natural character-
izations and have appeared in several branches of mathematics. Every
subsemigroup of P is isomorphic to a unique numerical semigroup, so that,
abstractly, it suffices to study numerical semigroups. They have attracted
more attention than general subsemigroups of P so there is a greater body
of information about them. The literature dealing with them is not only
extensive but is also varied in the aspects studied.

The purpose of this work is the study of the category of numerical
semigroups and their homomorphisms by constructing a number of cate-
gories related to it. These categories have objects: subsemigroups of P, a
class of abstract semigroups, certain partial orders on Z, certain partially
ordered infinite cyclic groups, and pairs that occur in Tamura’s representa-
tion of a class of commutative cancellative semigroups. The relationships
of these categories are either equivalences or isomorphisms.

Section 2 contains a minimal amount of needed notation and termi-
nology. Various auxiliary statements are proved in Section 3. In Section 4
we study the mutual relationship of three categories of semigroups and
their homomorphisms. Section 5 contains relationship of the category of
numerical semigroups with some categories of orders and groups invoked
above. Isomorphisms of the former category with some categories whose
objects are related to certain constructions of T. Tamura are established
in Sections 6 and 7. We wind up our discussion in Sections 8, 9 and 10
with some general statements and an example.

The diagram on the next page represents the categories and functors
discussed in the paper. The functors are labelled with the number of the
section in which they are treated. We will see that O1, T1 and Φ1 are iso-
morphisms (with inverses O2, T2 and Φ2, respectively) and the remaining
ones are equivalences of categories except IT ,U .
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2. Notation and terminology

We employ the standard symbolism and nomenclature which can be
found in texts on semigroups, categories and ordered groups. For definite-
ness or emphasis, we state the following.

The symbols P, N and Z stand for positive integers, nonegative integers
and integers respectively, all under addition.

If A is a nonempty subset of a semigroup S, 〈A〉 denotes the subsemi-
group of S generated by A. If A is a nonempty subset of a group G, [A]
denotes the subgroup of G generated by A. A semigroup S is power joined
if for any a, b ∈ S, there exist m,n ∈ P such that am = bn; it is power
cancellative if for any a, b ∈ S and n ∈ P, an = bn implies a = b. For a
nonempty subset A of P, gcd(A) stands for the greatest common divisor
of all elements of A. All our semigroups (and groups) are commutative.
For any sets A and B, we write A \B = {a ∈ A | a /∈ B}.

We write functors, and most functions, on the right of the argument.
We denote categories by capital script and functors by capital Greek let-
ters. If X is a subcategory of a category Y, IX ,Y denotes the inclusion
functor X → Y. In particular IX = IX ,X is the identity functor on X . For
an object X of a category, idX denotes the identity morphism on X.
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3. Lemmas

We prove here a number of auxiliary statements to be used later some
of which are of independent interest.

Lemma 3.1. (i) If X is a nonempty subset of Z, then [X] = gcd(X)Z.

(ii) If S is a subsemigroup of Z, then [S] = {a− b | a, b ∈ S}.

We have defined a numerical semigroup in Section 1. Paraphrasing: a
subsemigroup S of P is numerical if (and only if) [S] = Z.

The next six lemmas are known. Since they will be used several times,
we give them a short proof.

Lemma 3.2. The following conditions on a subsemigroup S of P are

equivalent.

(i) S is numerical. (ii) gcd(S) = 1. (iii) P \ S is finite.

Proof. (i) and (ii) are equivalent. This is a direct consequence of
Lemma 3.1(i).

(ii) implies (iii). By hypothesis, 1 =
∑m

i=1 nisi for some ni ∈ Z \ {0}
and si ∈ S. We may suppose that ni > 0 if and only if i ≤ r for some
1 ≤ r ≤ m. This way, we may write 1 = s − t where both s =

∑r
i=1 nisi

and t =
∑m

i=r+1(−ni)si are in S.
We show next that for all n ∈ P such that n > t2 + t, we have n ∈ S.

Hence let n > t2 + t and write n = qt + p where 0 ≤ p < t. First note that
q > t. It follows that

n = pt + p + qt− pt = p(t + 1) + (q − p)t = ps + (q − p)t,

whence we see that n ∈ S. Therefore P\S ⊆ {1, . . . , t2 + t} and it is finite.
(iii) implies (i). In view of the hypothesis, there exists s ∈ S such

that s + 1 ∈ S. By Lemma 3.1(ii), we get 1 ∈ [S] whence [S] = Z and S is
numerical. �

Lemma 3.3. Let S be a subsemigroup of P. Then S is finitely gen-

erated.

Proof. Let d = gcd(S). The mapping s �→ s
d is an isomorphism of

S onto a numerical semigroup, so we may assume that S is numerical.
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By Lemma 3.2(iii), there exists m ∈ S such that m + k ∈ S for all k ∈ N.
For each i = 0, . . . ,m− 1, let

pi = min{s ∈ S | s ≡ i (mod m)}.

Note that p0 = m. We show next that the set {p0, . . . , pm−1} generates
S. Let s ∈ S. Then s ≡ pi(mod m) for some 0 ≤ i < m, so that
s = qm + pi for some q ∈ Z. Since s ≥ pi, we must have q ∈ N and thus
s = qm + pi =qp0 + pi ∈ 〈p0, . . . , pm−1〉. �

Lemma 3.4. Let S and T be subsemigroups of P.

(i) Every homomorphism of S into T has the form

ϕd : s �→ d
gcd(T )
gcd(S)

s (s ∈ S)

for some (unique) d ∈ P.

(ii) If S and T are numerical and ϕ is an isomorphism of S onto T ,

then ϕ = idS .

Proof. (i) Let ϕ : S → T be a homomorphism. Fix a ∈ S. For any
s ∈ S, there exist p, q ∈ P such that pa = qs. Then p(aϕ) = q(sϕ) whence

sϕ =
p

q
(aϕ) =

s

a
(aϕ) =

aϕ

a
s.

In particular, Sϕ = aϕ
a S ⊆ T which implies that aϕ

a [S] ⊆ [T ]. By
Lemma 3.1(i), we get

aϕ

a
gcd(S)Z ⊆ gcd(T )Z

whence d = aϕ
a

gcd(S)
gcd(T ) ∈ P so that ϕ = ϕd.

(ii) Let ϕd be an isomorphism of S onto T where S and T are numeri-
cal. Then dS = T which implies that d is a common divisor of all elements
of T forcing d = 1. But ϕ1 = idS . �

The next lemma shows that the conjunction of power joinedness and
power cancellation yields unexpected results.

Lemma 3.5. Let S be a nontrivial commutative power joined power

cancellative semigroup. Then S is idempotent-free and cancellative.
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Proof. Suppose that S has an idempotent e. For any a ∈ S, by power
joinedness, there exist m,n ∈ P such that am = en. But then am = em

so by power cancellativity, a = e contradicting the hypothesis that S in
nontrivial. Therefore S is idempotent-free. In particular, every element of
S is of infinite order.

Next let ax = ay for some a, x, y ∈ S. By power joindness, there exist
m,n, p, q ∈ P such that am = xn and ap = yq. The equality (ax)nq =
(ay)nq implies that anq+mq = anq+np whence nq + mq = nq + np so that
mq = np. But then xnq = amq = anp = ynq and power cancellativity yields
that x = y. Therefore S is cancellative. �

On any semigroup S we define relations ≤ and θ by

a ≤ b⇐⇒ am = bn for some m,n ∈ P, m ≥ n,

a θ b⇐⇒ an = bn for some n ∈ P. (1)

Lemma 3.6. Let S be a commutative idempotent-free semigroup.

(i) The relation θ is the symmetric part of ≤ and is the least power

cancellative congruence on S.

(ii) The preorder ≤ is antisymmetric (and is thus a partial order) if

and only if S is power cancellative.

(iii) The preorder ≤ is a total order if and only if S is power joined

and power cancellative.

Proof. Straightforward. �

Lemma 3.7. Let S be a nontrivial commutative finitely generated

power cancellative power joined semigroup.

(i) The preorder ≤ is a total order with a least element, say fS .

(ii) There exists m ∈ P such that for all a ∈ S, we have am ∈ 〈fS〉.

Proof. (i) By Lemma 3.5, S is idempotent-free and, by Lemma 3.6
(iii), ≤ is a total order. By hypothesis, S has a finite set of generators,
say {a1, . . . , ak}. We may suppose that a1 < a2 < · · · < ak, and will show
that a1 is the least element of S.

Let a, b ∈ S. Since S is power joined, we have ap = bq for some
p, q ∈ P. Then (ab)q = aqbq = ap+q which implies that a ≤ ab. Now for
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any a ∈ S, we have a = am1
1 . . . amk

k where mj ∈ P for some j. Hence
aj ≤ a and thus a1 ≤ a for all a ∈ S.

(ii) Continuing with the same notation and fS = a1, since fS ≤ ai for
i = 1, . . . , k, we get ami

i = fni
S for some mi, ni ∈ P such that mi ≤ ni.

Letting m = m1 · · ·mk, we obtain am
i ∈ 〈fS〉 for i = 1, . . . , k, and thus

am ∈ 〈fS〉 for all a ∈ S. �

4. Categories of semigroups

We consider here the relationship of the following categories:

N – numerical semigroups,

P – subsemigroups of P,

S – nontrivial commutative finitely generated power joined power can-
cellative semigroups (written multiplicatively),

all with homomorphisms.
Observe that, by Lemma 3.5, the hypotheses imposed upon objects S

of S imply that S is idempotent-free and cancellative. We will make full
use of Lemma 3.7 for objects of S. For the relationship of the first two
categories above, we observe first that N is a full subcategory of P. Define

SΠ =
{

m

gcd(S)

∣∣ m ∈ S

}
(S ∈ ObP),

and for ϕ ∈ HomP(S, T ),

ϕΠ : m �→ (gcd(S)m)ϕ
gcd(T )

(m ∈ SΠ).

It is immediate that Π is a functor. For it and IN ,P , we need a natural
transformation: π : IP → ΠIN ,P defined for every S ∈ ObP by

Sπ : m �→ m

gcd(S)
(m ∈ S).

Theorem 4.1. The quadruple (Π, IN ,P , π, id) is an equivalence of cat-

egories N and P.
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Proof. It is immediate that π is a natural transformation. Since
IN ,PΠ = IN , it only remains to observe that for any S ∈ ObP, we have
that Sπ : S → SΠ is an isomorphism. But the mapping

m �→ gcd(S)m (m ∈ SΠ)

is clearly the inverse of Sπ. �

For the relationship of the first and the third categories above, we
first note that by Lemma 3.3 every S ∈ ObP is finitely generated. The
other properties of objects of S are clearly satisfied by S so that P is a full
subcategory of S (ignoring the additive notation in ObP and multiplicative
notation in ObS). Here we need only the existence of the inclusion functor
IN ,P : N → S. For a functor in the opposite direction, we proceed as
follows.

In view of Lemma 3.7(ii), for S ∈ ObS, we may define

mS = min{m ∈ P | am ∈ 〈fS〉 for all a ∈ S}.

For every a ∈ S, we have the equality amS = fma
S for some ma ∈ P which

depends only upon a since a is of infinite order. Hence we may define

Sσ : a �→ ma (a ∈ S), SΣ = {ma | a ∈ S}.

Lemma 4.2. For every S ∈ ObS, SΣ is a numerical semigroup and

the mapping Sσ is an isomorphism of S into SΣ.

Proof. Let a, b ∈ S. Then

(ab)mS = amSbmS = fma
S fmb

S = fma+mb
S

and thus mab = ma + mb. This shows that SΣ is a subsemigroup of P

and that Sσ is a homomorphism. If ma = mb, then amS = bmS and
power cancellativity yields a = b. Hence Sσ is injective and thus is an
isomorphism of S onto SΣ.

Let d = gcd(SΣ). For every a ∈ S, we have ma = dna where na ∈ P.
Write f = fS and m = mS , and observe that m = mf = dnf . But then
for all a ∈ S, we have adnf = fdna which implies that anf = fna by power
cancellativity. Hence m ≤ nf , and since m = dnf , we get d = 1. Therefore
SΣ is numerical. �
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For ϕ ∈ HomS(S, T ), let

ϕΣ = (Sσ)−1 ϕ (Tσ) : SΣ→ TΣ .

Theorem 4.3. The quadruple (IN ,S ,Σ, id, σ) is an equivalence of cat-

egories N and S.

Proof. It is straightforward to verify that Σ is a functor. If S ∈
ObN , then by Lemma 4.2, Sσ : S → Σ is an isomorphism of numerical
semigroups which by Lemma 3.4(ii) implies that S = SΣ and Sσ = idS .
Thus IN ,SΣ = IN . That σ : IS → ΣIN ,S is a natural transformation is
evident from the form of homomorphisms, and that it is an isomorphism
is a consequence of Lemma 4.2. �

We have seen in Lemma 4.2 that Sσ is an isomorphism of S ∈ ObS
onto SΣ. Such an S has the properties announced in Lemma 3.7. This
provides S with a total order ≤ in which S has a least element fS. The
next observation establishes the relationship between this order on S and
the natural order on SΣ.

Proposition 4.4. Let S ∈ ObS and a, b ∈ S. Then a ≤ b if and only

if a(Sσ) ≤ b(Sσ).

Proof. By power joinedness, we have ap = bq for some p, q ∈ P.
Hence apmS = bqmS whence fpma

S = f qmb
S which yields pma = qmb. There-

fore a ≤ b⇐⇒ p ≥ q ⇐⇒ ma ≤ mb. �

Let S ∈ ObS. We can arrive at the isomorphism Sσ in a different way
as follows. Fix a ∈ S. According to ([3], Theorems 3 and 5), the function
ζ defined on S by

ζ : x �→ m

n
if am = xn

is an isomorphism of S onto a subsemigroup of the additive semigroup of
positive rationals. Since S is finitely generated, there exists p ∈ P such
that p(Sζ) ⊆ P. Hence p(Sζ) ∈ ObP. We can further divide all elements
of p(Sζ) by d = gcd(Sζ) thereby obtaining p

d (Sζ) ∈ ObN . Hence the
mapping

x �→ p

d

m

n
if am = xn (a ∈ S)
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is an isomorphism of S onto the numerical semigroup p
d (Sζ). But this

semigroup is isomorphic to S and thus, by Lemma 4.2, to SΣ. Now
Lemma 3.4(ii) implies that p

d (Sζ) = SΣ.
It is remarkable that we made an arbitrary choice of the element a ∈ S

and that we did not insist that p be taken as small as possible. And it
seems that d depends on both the choice of a and p. Nevertheless, we have
arrived at the same semigroup SΣ.

5. Categories of orders and groups

We introduce here the categories O and G and prove that O is isomor-
phic to N and is equivalent to G. A partial order ξ on an additive group
G is said to be dense if for every g ∈ G, there exists h ∈ G such that 0 ξ h

and 0 ξ g + h. Define

ObO = {compatible dense partial orders on Z

contained in the natural order},

and for ξ, η ∈ ObO,

HomO(ξ, η) = {d ∈ P | m ξ n⇒ dm η dn for all m,n ∈ Z}.

The composition of morphisms is their product and the identity morphism
is d = 1.

For the functors between N and O, we define: for S ∈ ObN , let

m SO1 n⇐⇒ n = m + s for some s ∈ S (m,n ∈ Z),

and for ϕd ∈ HomN (S, T ), let ϕdO1 = d; for ξ ∈ ObO, let

ξO2 = {n ∈ P | 0 ξ n} ,

and for d ∈ HomO(ξ, η), let dO2 = ϕd.

Theorem 5.1. The functor O1 is an isomorphism of N onto O with

inverse O2.
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Proof. 1. O1 is a functor. Let S ∈ ObN . It is immediate that SO1

is a compatible partial order on Z, and since S ⊆ P, that it is contained
in the natural order of Z. Moreover, since S is numerical, it generates all
of Z as a group. Hence for every m ∈ Z, there exist p, q ∈ S such that
m = p− q so that p = m + q. Since 0 SO1 q and 0 SO1 m + q, the order
SO1 is dense. Therefore SO1 ∈ ObO.

Next let ϕd ∈ HomN (S, T ). Then dS ⊆ T . Hence n = m + q with
q ∈ S implies that dn = dm + dq where dq ∈ T . Thus m SO1 n implies
dm TO1 dn for all m,n ∈ Z. Consequently d = ϕdO1 ∈ HomO(SO1, TO1).
Clearly O1 respects compositions and identities. Therefore O1 is a functor.

2. O2 is a functor. Let ξ ∈ ObO. It is immediate that ξO2 is a
subsemigroup of Z, and since ξ is contained in the natural order of Z,
we obtain that ξO2 ⊆ P. Moreover, since ξ is dense, for every m ∈ Z,
there exists q ∈ Z such that 0 ξ q and 0 ξ m + q, which implies that m =
(m+q)−q belongs to the subgroup generated by ξO2 since q,m+q ∈ ξO2.
Consequently ξO2 ∈ ObN .

Now let d ∈ HomO(ξ, η). Then d ∈ P and 0 ξ n implies 0 η dn

for all n ∈ Z. It follows that d(ξO2) ⊆ ηO2 and thus ϕd = dO2 ∈
HomN (ξO2, ηO2). Clearly O2 respects compositions and identities. There-
fore O2 is a functor.

3. O1O2 = IN . For every S ∈ ObN and n ∈ P, we have 0 SO1 n if
and only if n ∈ S. Hence SO1O2 = S and O1O2 is the identity on objects.
Since it is the identity on morphisms, we conclude that O1O2 = IN .

4. O2O1 = IO. Let ξ ∈ ObO. Let m,n ∈ Z be such that m ξO2O1 n.
Then n = m+q for some q ∈ ξO2, that is 0 ξ q. But then m+0 ξ m+q and
m ξ n. Therefore ξO2O1 ⊆ ξ. Conversely, let m ξ n. Taking n = m + q,
it follows that 0 ξ q and q ∈ ξO2 whence m ξO2O1 n. Thus ξ ⊆ ξO2O1

and equality prevails. Therefore O2O1 is the identity on objects and it is
plainly the identity on morphisms. Consequently O2O1 = IO. �

Our second category in this section follows. Define

ObG = {(G, ξ) | G is a infinite cyclic group written additively and

ξ is a compatible dense partial order on G},
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and for (G, ξ), (H, η) ∈ ObG, let

HomG
(
(G, ξ), (H, η)

)
= {θ : G→ H | θ is a nontrivial

homomorphism of partially ordered groups} .

For the functor from O to G, we define: for ξ ∈ ObO, let ξΓ1 = (Z, ξ),
and for d ∈ HomO(ξ, η), let dΓ1 = ϕd.

In order to define Γ2, we shall need the following result.

Proposition 5.2. Let (G, ξ) ∈ ObG and let g be a generator of G.

Then exactly one of the following assertions holds:

(a) there exists n ∈ P such that 0 ξ ng,

(b) there exists n ∈ P such that 0 ξ n(−g).

Proof. We show first that at least one of these two alternatives takes
place. Since ξ is dense, there exists mg ∈ G such that 0 ξ mg and 0 ξ mg+g.
If m ∈ N, then from the second expression, we get option (a) with n =
m + 1. If −m ∈ P, then from the first expression we obtain 0 ξ (−m)(−g)
and we have option (b) with n = −m.

Now suppose that both alternatives take place. Let n ∈ P be the least
verifying (a) and m ∈ P the least verifying (b). Since 0 ξ ng and 0 ξ m(−g)
imply 0 ξ (n −m)g and n −m < n, we cannot have n −m ∈ P and thus
m − n ∈ N. But since 0 ξ (m − n)(−g) and m− n < m, we cannot have
m − n ∈ P. Therefore m = n. But then 0 ξ ng and 0 ξ n(−g) whence
0 ξ ng and ng ξ 0 which would imply ng = 0, contradicting n ∈ P. �

For ([g], ξ) ∈ ObG, let

ĝ =

g if 0 ξ ng for some n ∈ P

−g otherwise,

and define
m ([g], ξ)Γ2 n⇐⇒ mĝ ξ nĝ (m,n ∈ Z),

and for θ ∈ HomG
(
([g], ξ), ([h], η)

)
, let θΓ2 = d where ĝθ = dĥ.

We will also need: for ([g], ξ) ∈ ObG, let

([g], ξ)γ : mĝ �→ m (m ∈ Z).
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Theorem 5.3. The quadruple (Γ1,Γ2, id, γ) is an equivalence of cat-

egories O and G.

Proof. 1. Γ1 is a functor. This requires straightforward verification.
2. Γ2 is a functor. Let (G, ξ) ∈ ObG where G = [g]. Since G is

an infinite cyclic group and ĝ is one of its two generators, the function
(G, ξ)γ is an isomorphism of G onto Z. Given that (G, ξ)Γ2 is exactly the
translate of ξ via the isomorphism (G, ξ)γ, we deduce that (G, ξ)Γ2 is a
compatible dense partial order on Z, which by Proposition 5.2 satisfies the
implication: 0 (G, ξ)Γ2 n implies n ∈ P. Hence (G, ξ)Γ2 is contained in
the natural order of Z. Therefore (G, ξ)Γ2 ∈ ObO.

Next let θ ∈ HomG
(
([g], ξ), ([h], η)

)
. Suppose that ĝθ = dĥ for some

d ∈ Z. Since θ is nontrivial, we must have d �= 0. Moreover, 0 ξ nĝ for
some n ∈ P by Proposition 5.2. It follows that 0 η n(ĝθ) and 0 η ndĥ. By
the same reference, we get that nd ∈ P which implies that d = θΓ2 ∈ P.

Now let m ([g], ξ)Γ2 n for m,n ∈ Z. Then mĝ ξ nĝ which implies
that m(ĝθ) η n(ĝθ), that is (md)ĥ η (nd)ĥ. But then dm ([h], η)Γ2 dn.
Therefore d = θΓ2 ∈ HomO

(
([g], ξ)Γ2, ([h], η)Γ2

)
.

Let ([g], ξ) θ−→ ([g′], ξ′) θ′−→ ([g′′], ξ′′) be two composable G-morphisms,
and d = θΓ2, d′ = θ′Γ2. Then

ĝ(θθ′) = (ĝθ)θ′ = (dĝ′)θ′ = d(ĝ′θ′) = d(d′ĝ′′) = (dd′)ĝ′′

and thus (θθ′)Γ2 = dd′ = (θΓ2)(θ′Γ2). Hence Γ2 preserves composition.
Clearly id(G,ξ) Γ2 = 1. Therefore Γ2 is a functor.

3. Γ1Γ2 = IO. Let ξ ∈ ObO. Then ξΓ1 = (Z, ξ) and since ξ is
contained in the natural order of Z, there exists n ∈ P such that 0 ξ n1.
Hence in this case 1̂ = 1. Thus for any m,n ∈ Z, we have m ξΓ1Γ2 n if and
only if m ξ n. Therefore ξΓ1Γ2 = ξ. Let d ∈ HomO(ξ, η). Then dΓ1 = ϕd

and in particular, 1̂ = 1 �→ d = d1̂. Thus dΓ1Γ2 = d. This proves that
Γ1Γ2 = IO.

4. γ : IG → Γ2Γ1 is a natural isomorphism. Let (G, ξ) ∈ ObG where
G = [g]. Then (G, ξ)Γ2Γ1 = (Z, (G, ξ)Γ2) where

m (G, ξ)Γ2 n⇐⇒ mĝ ξ nĝ (m,n ∈ Z).
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Since ĝ is a generator of G, which is infinite cyclic, it is clear that

(G, ξ)γ : mĝ �→ m (m,n ∈ Z)

is a G-isomorphism between (G, ξ) and (G, ξ)Γ2Γ1.
To prove the naturalness of γ, let θ ∈ HomO

(
(G, ξ), (H, η)

)
. We must

show commutativity of the diagram

(G, ξ)
(G,ξ)γ

��

θ
��

(G, ξ)Γ2Γ1

θΓ2Γ1

��
(H, η)

(H,η)γ
�� (H, η)Γ2Γ1

Let G = [g], H = [h], and assume that ĝθ = dĥ. With d = θΓ2, we get

ĝ[(G, ξ)γ · (θΓ2Γ1)] = (ĝ(G, ξ)γ)(dΓ1) = 1(dΓ1) = d1 = d

= (dĥ)[(H, η)γ] = (ĝθ)[(H, η)γ] = ĝ[θ · (H, η)γ].

Since ĝ is a generator of G, we deduce that (G, ξ)γ · (θΓ2Γ1) = θ · [H, η)γ].
�

6. A category of pairs

Here we establish an isomorphism between N and a category whose
objects are pairs of the form (r, I) where I is a r × r-matrix over N. We
start with the relevant construction.

Let G be a (abelian) group and I : G×G→ N be a function. We will
need the following conditions on the function I: for any a, b, c ∈ G,

(A) I(a, b) + I(ab, c) = I(a, bc) + I(b, c),
(C) I(a, b) = I(b, a),
(N) I(e, e) = 1,

where e is the identity of G.
When G is finite, the following notation will prove very handy:

Ia =
∑
x∈G

I(a, x) (a ∈ G). (2)
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We may think of I as a matrix so that Ia is the sum of the matrix entries
in the row (or column in view of condition (C)) of a.

Now let r ∈ P and G = Zr (= Z/(r)). For each m ∈ P, let m be the
residue class modulo r. In this case, we will need two more conditions:

(P) I1̄ = 1̄, (Q) Ia ≥ r (a ∈ Zr).

We are now ready to introduce the category invoked above. Let

Ob T = {(r, I) | r ∈ P and I : Zr × Zr → N is

a function satisfying (A), (C), (N), (P ), (Q)}.

For (r, I), (s, J) ∈ Ob T , let

HomT
(
(r, I), (s, J)

)
= {d ∈ P | for any a ∈ Zr, there exist

n ∈ N and b ∈ Zr such that dIa = ns + Jb}.

The composition of morphisms is their product and the identity morphism
is d = 1.

The next two lemmas will prove very useful in our development.

Lemma 6.1. Let r ∈ P and I : Zr × Zr → N be a function satisfying

(A), (C) and (N).

(i) Ia + Ib = rI(a, b) + Ia+b (a, b ∈ Zr). (3)

(ii) kI1̄ − Ik̄ ∈ rN (1 ≤ k ≤ r).

(iii) I(a, 0̄) = 1 (a ∈ Zr). (4)

Proof. (i) Indeed,

Ia + Ib =
∑
x∈Zr

I(a, x) +
∑
x∈Zr

I(b, x) =
∑
x∈Zr

I(a, b + x) +
∑
x∈Zr

I(b, x)

=
∑
x∈Zr

(
I(a, b + x) + I(b, x)

)
(A)
=
∑
x∈Zr

(
I(a, b) + I(a + b, x)

)

=
∑
x∈Zr

I(a, b) +
∑
x∈Zr

I(a + b, x) = rI(a, b) + Ia+b.
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(ii) The proof is by induction on 1 ≤ k ≤ r. The case k = 1 is trivial.
Further,

(k + 1)I1̄ − Ik+1

(3)
= kI1̄ + I1̄ −

(
I1̄ + Ik̄ − rI(1̄, k̄)

)
= kI1̄ − Ik̄ + rI(1̄, k̄).

The induction hypothesis is kI1̄ − Ik̄ ∈ rN whence it follows that

(k + 1)I1̄ − Ik+1 ∈ rN.

(iii) For any a ∈ Zr, by condition (A), we have

I(0̄, 0̄) + I(0̄, a) = I(0̄, a) + I(0̄, a)

so that I(0̄, a) = I(0̄, 0̄) = 1. �

Note that property Lemma 6.1(iii) is valid in any group; we will use
it without express mention.

Lemma 6.2. Let (r, I) ∈ Ob T .

(i) Ia = a (a ∈ Zr). (ii) I0̄ = r. (5)

Proof. (i) By Lemma 6.1(ii), for any 1 ≤ k ≤ r, we obtain

Ik̄ = kI1̄ = kI1̄
(P )
= k̄.

(ii) I0̄ =
∑

x∈Zr
I(0̄, x) =

∑
x∈Zr

1 = r. �

Lemma 6.3. T is a category.

Proof. The only nontrivial part here is that the composition of mor-
phisms in T is again a morphism in T . Let

(r, I) d−→ (s, J) e−→ (t,K)

be composable morphisms in T and let a ∈ Zr. Then dIa = ns + Jb for
some n ∈ N and b ∈ Zs, and

es
(5)
= eI0̄ = mt + Kc, eJb = pt + Kq
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for some m, p ∈ N and c, q ∈ Zr. It follows that

edIa = e(ns + Jb) = n(mt + Kc) + pt + Kq

= (nm + p)t + Kc + Kq
(5)
= (nm + p)t + tK(c, e) + Kc+e

= (nm + p + K(c, e))t + Kc+e,

whence ed ∈ HomT
(
(r, I), (t,K)

)
. �

In order to define a functor from N to T , we need some preparation.
Let S ∈ ObN . We denote by rS the least element of S in the natural

order of P, and for each m ∈ S, by m its class in ZrS
.

Since S is numerical, by Lemma 3.2(iii), there exists c ∈ S such that
c + k ∈ S for all k ∈ N. Hence the homomorphism S → ZrS

, mapping
m �→ m, is surjective, so for each a ∈ ZrS

, there is an element

ιa = min{m ∈ S | m = a}. (6)
Note that

ι0̄ = rS . (7)

For any m ∈ S, if m = a then m = ιa and hence

m = rrS + ιa (8)

for some integer r. Since m ≥ ιa, we must have r ∈ N. The representation
of m in (8) is unique, that is, if rrS + ιa = nrS + ιb with r, n ∈ N and
a, b ∈ ZrS

, then forming the classes modulo rS , we see that a = b and thus
also r = n.

If a, b ∈ ZrS
, since ιa + ιb = ιa + ιb = a + b, we get

ιa + ιb = IS(a, b)rS + ιa+b (9)

for a (unique) IS(a, b) ∈ N. In this way, formula (9) defines a function

IS : ZrS
× ZrS

→ N.

For every S ∈ ObN , define ST1 = (rS , IS), and for ϕd ∈ HomN (S, T )
(see Lemma 3.4(i)), let ϕdT1 = d.
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Lemma 6.4. T1 : N → T is a functor.

Proof. Let S ∈ ObN . We adopt the notation introduced above and
write r = rS , I = IS . As is well known, condition (A) for I follows from
the identity in S: (ιa + ιb) + ιc = ιa + (ιb + ιc) and condition (C) from the
equality ιa + ιb = ιb + ιa. By (7), the equality ι0̄ + ι0̄ = r + ι0̄+0̄ implies
tat I(0̄, 0̄) = 1 which verifies condition (N).

In order to prove conditions (P ) and (Q) for I, we first observe that
from (9) follows the equality∑

x∈Zr

(ιa + ιx) =
∑
x∈Zr

(I(a, x)r + ιa+x)

whence
rιa +

∑
x∈Zr

ιx = r
∑
x∈Zr

I(a, x) +
∑
x∈Zr

ιa+x.

Since
∑

x∈Zr
ιx =

∑
x∈Zr

ιa+x, we deduce that

ιa =
∑
x∈Zr

I(a, x) = Ia. (10)

It follows that conditions (P ) and (Q) for I are equivalent to ι1̄ = 1̄ and
ιa ≥ r for all a ∈ Zr, respectively. The latter relations are obvious in view
of (6) and the minimality of r in S.

We have proved that ST1 ∈ Ob T .
Let ϕd ∈ HomN (S, T ). For any a ∈ Zr, we have ιa ∈ S and ιaϕ =

dιa ∈T . According to equality (8) for elements of T , there exist n∈N and
b ∈ ZrT

such that dιa = nrT + ιb. We conclude from (10) for S and T , re-
spectively, that dIa = nrT +(IT )b. Therefore d = ϕdT1 ∈ HomT (ST1, TT1),
which proves that T1 maps morphisms onto morphisms. That T1 respects
compositions and identities follows immediately from the definitions since
ϕdϕe = ϕde and idS = ϕ1. �

For each (r, I) ∈ Ob T , let

(r, I)T2 = {mr + Ia | m ∈ N, a ∈ Zr}, (11)

and for d ∈ HomT
(
(r, I), (s, J)

)
, let dT2 = ϕd.
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Lemma 6.5. T2 : T → N is a functor.

Proof. Let (r, I) ∈ Ob T . Since Ia ≥ r for every a ∈ Zr, it is clear
that (r, I)T2 ⊆ P. That (r, I)T2 is a subsemigroup of P follows from the
equality

(mr + Ia) + (nr + Ib)
(3)
= (m + n)r + rI(a, b) + Ia+b

= (m + n + I(a, b))r + Ia+b.

By (5), we have I0̄ = r and by condition (P ), I1̄ ≡ 1 (mod r) so that
gcd(I0̄, I1̄) = 1. Since I0̄, I1̄ ∈ (r, I)T2, we conclude that gcd

(
(r, I)T2

)
= 1

so that (r, I)T2 ∈ ObN .
Let d ∈ HomT

(
(r, I), (s, J)

)
. The elements of (r, I)T2 are of the form

mr + Ia with m ∈ N and a ∈ Zr. By hypothesis dIa ∈ (s, J)T2. In
particular, by Lemma 6.2(ii), we have dI0̄ = dr ∈ (s, J)T2 and thus

d(mr + Ia) ∈ (s, J)T2

which implies that dT2 ∈ HomN
(
(r, I)T2, (s, J)T2

)
.

The remaining parts of the proof are routine. �

Theorem 6.6. The functor T1 is an isomorphism of N onto T with

inverse T2.

Proof. In view of Lemmas 6.4 and 6.5, it remains to prove that (a)
T1T2 = IN and (b) T2T1 = IT .

(a) Let S ∈ ObN and ST1 = (rS , IS), see (6) and (7). Then

ST1T2
(11)
= {mrS + ιa | m ∈ N, a ∈ ZrS

} (8)
= S.

Hence T1T2 is the identity on objects. The equality ϕdT1T2 = dT2 = ϕd

shows the same for morphisms.
(b) Let (r, I) ∈ Ob T . By Lemma 6.5, (r, I)T2 is a numerical semi-

group, which by condition (Q) has r = I0̄ as its least element, that is
r(r,I)T2

= r. Moreover, for every a ∈ Zr, we have mr + Ia = Ia = a and
thus

Ia = min{x ∈ (r, I)T2 | x̄ = a}.
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Comparing (3) and (9), we see that I = I(r,I)T2
. Consequently

(r, I)T2T1 =
(
r(r,I)T2

, I(r,I)T2

)
= (r, I).

In addition, dT2T1 = ϕdT1 = d and thus T2T1 is the identity both on
objects and on morphisms. �

Corollary 6.7. Let (r, I) ∈ Ob T . Then (r, I)T2 is generated by the

set {I0̄, . . . , Ir−1}. Consequently, if S ∈ ObN , then S admits a set of

generators having rS elements.

Proof. By Lemma 6.2(ii), we have I0̄ = r. Now recalling formula
(11) and the definition of the functor T2, the first assertion follows. The
second follows from Theorem 6.6 since for S ∈ ObN we have S ∼= ST1T2

and r = rS. �

Conditions (A), (C) and (N) occur in various contexts, but mainly
in Schreier-type extensions of groups and semigroups. We will encounter
them also in the next section. As contrasted to this, conditions (P ) and
(Q) are new. The first one is a normalization type condition which can also
be written more explicitly as I1̄ ≡ 1 (mod r), and bears only upon the row
sum of 1̄. The second condition imposes a restriction upon all row sums,
recall that I0̄ = r. It should be noticed that on account of their strength,
it was possible to achieve the isomorphism of categories N and T .

7. A category of functions

There is a category whose objects are similar to those of the category
T with the same morphisms. This is a consequence of the observation: the
expression for the effect of the functor T2 on objects of T uses only Ia’s
and no I(a, b)’s. Hence we can omit all reference to I(a, b) and consider
only Ia’s. The latter form a r-tuple (I0̄, . . . , Ir−1) of positive integers. The
conditions these integers must satisfy can be derived from the conditions
I(a, b) must fulfill, that is (A), (C), (N), (P ) and (Q). All this will be
expressed categorically. Let

ObF =
{

(r, α) | r ∈ P, α : Zr → P is a function satisfying
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(N ′) 0̄α = r, (P ′) 1̄α ≡ 1 (mod r),

(Q′) aα ≥ r (a ∈ Zr),

(R) aα + bα− (a + b)α ∈ rN (a, b ∈ Zr)
}

,

and for (r, α), (s, β) ∈ ObF , let

HomF
(
(r, α), (s, β)

)
= {d ∈ P | for every a ∈ Zr, there exist

n ∈ P and b ∈ Zs such that d(aα) = ns + bβ}.

The composition of morphisms is the product and the identity morphism
is d = 1.

For (r, I) ∈ Ob T , define (r, I)Φ1 = (r, α) where

α : a �→ Ia (a ∈ Zr) .

For (r, α) ∈ ObF , let (r, I)Φ2 = (r, I) where

I(a, b) =
1
r
(aα + bα− (a + b)α) (a, b ∈ Zr).

For i = 1, 2, let dΦi = d.

Theorem 7.1. The functor Φ1 is an isomorphism of T onto F with

inverse Φ2.

Proof. Let (r, I) ∈ Ob T . Clearly, we have the implications

(N) =⇒ (N ′), (P ) =⇒ (P ′), (Q) =⇒ (Q′). (12)

Moreover, by Lemma 6.1(i), (R) holds as well. Thus (r, I)Φ1 ∈ ObF . The
remaining requirements for a functor follow easily. Hence Φ1 : T → F is a
functor.

Next let (r, α) ∈ ObF and (r, I) = (r, α)Φ2. Condition (R) assures
that I(a, b) ∈ N. For any a, b, c ∈ Zr, we get

I(a, b) + I(a + b, c) =
1
r

(
aα + bα− (a + b)α

)
+

1
r

(
(a + b)α + cα− (a + b + c)α

)
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I(a, b + c) + I(b, c) =
1
r

(
aα + (b + c)α − (a + b + c)α

)
+

1
r

(
bα + cα− (b + c)α

)
which verifies condition (A);

I(a, b) = aα + bα− (a + b)α = bα + aα− (b + a)α = I(b, a)

giving (C). Clearly, the reverse implications in (12) are valid. Therefore
(r, α)Φ2 ∈ Ob T . The conditions for a functor are straightforward to verify.
Therefore Φ2 : F → T is a functor.

Now let (r, I) ∈ Ob T . Then (r, I)Φ1Φ2 = (r, α)Φ2 = (r, J) where for
any a, b ∈ Zr, we have

J(a, b) =
1
r
(Ia + Ib − Ia+b)

(3)
= I(a, b).

For (r, α) ∈ ObF , we get (r, α)Φ2Φ1 = (r, I)Φ2 = (r, β), where for any
a ∈ Zr,

aβ = Ia =
∑
x∈Zr

I(a, x) =
∑
x∈Zr

1
r

(
aα + xα− (a + x)α

)
=

1
r

( ∑
x∈Zr

aα +
∑
x∈Zr

xα−
∑
x∈Zr

(a + x)α
)

=
1
r
r(aα) = aα.

Since for i = 1, 2, dΦi = d we conclude that Φ1Φ2 = IT and Φ2Φ1 = IF .
�

8. The semigroup N(G, I)

Here we impose some of the semigroup conditions we have studied so
far on the semigroup N(G, I) defined below. In the next section we will
relate these semigroups to numerical semigroups.

Let G be a (abelian) group and I : G×G→ N be a function satisfying
conditions (A), (C) and (N). On N×G define a multiplication by

(m,a)(n, b) = (m + n + I(a, b), ab).
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Denote the resulting groupoid by N(G, I).
By ([1], Theorem 4.3), S = N(G, I) is a commutative cancellative

idempotent-free and subarchimedean (i.e., there exists z ∈ S such that for
every a ∈ S, there exist n ∈ P and x ∈ S such that zn = ax) semigroup,
and conversely, every semigroup having these properties is isomorphic to
some N(G, I).

Recall that a semigroup S is called a N-semigroup if S is a commu-
tative cancellative idempotent-free and archimedean (i.e., every z ∈ S has
the property in the definition of subarchimedean above).

Proposition 8.1. Let S = N(G, I).

(i) S is power joined if and only if G is periodic.

(ii) The following conditions are equivalent.

(a) S is archimedean and finitely generated.

(b) S is power joined and finitely generated.

(c) G is finite.

Proof. (i) Let S be power joined. Then for any a ∈ G there exist
m,n ∈ P such that (0, a)m = (0, e)n. Hence am = en = e and G is periodic.
Conversely, assume that G is a periodic group and let a ∈ G be of order k.
Then for any m ∈ N, we have

(m,a)k
(

km +
k−1∑
i=1

I(a, ai), ak

)
= (l − 1, e),

where l = km +
∑k−1

i=1 I(a, ai) + 1. Since l > 0 and

(0, e)l =

(
l−1∑
i=1

I(e, e), e

)
= (l − 1, e),

we get (m,a)k = (0, e)l. From this, we conclude that S is power joined.

(ii) (a) implies (b) implies (c). Then S is a N-semigroup and the
assertions follow from ([2], Theorems II.7.3 and II.7.4).

(c) implies (a). By part (i), S is power joined and thus is a N-
semigroup. The equalities

(m,a) = (0, e)m(0, a) (m ∈ P, a ∈ G)
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show that the set {(0, a) | a ∈ G} generates S. �

Proposition 8.2. Let S ∈ ObS. Every group homomorphic image of

S is cyclic and finite.

Proof. By Lemma 4.2, S is isomorphic to a numerical semigroup so
that we may assume that S ∈ ObN . Let ϕ be a homomorphism of S onto
a group G. Since S is numerical, we have Z = {s − t | s, t ∈ S}. Then ϕ

extends to an epimorphism ϕ̄ : Z→ G such that (s−t)ϕ̄ = sϕ (tϕ)−1 for all
s, t ∈ S. Hence G is a homomorphic image of Z and it is cyclic. If G were
infinite, ϕ̄ would be an isomorphism and thus ϕ : S → G would be also.
But this would mean that S is a group which is manifestly impossible. �

Theorem 8.3. Let S = N(G, I). Then S is power joined finitely

generated and power cancellative if and only if G is finite, say of order r

and

Ia ≡ Ib (mod r) =⇒ a = b. (13)

In such a case, G is also cyclic.

Proof. Necessity. Since S is power joined and finitely generated, by
Proposition 8.1(ii), G must be finite. Power cancellativity in view of ([4],
Proposition 3.7) implies condition (13).

Sufficiency. By Proposition 8.1, S is power joined and finitely gen-
erated. Hence S is a N-semigroup and the second reference above yields
that S is also power cancellative.

Now assume all these conditions. Then S is nontrivial commutative
power joined finitely generated and power cancellative so S ∈ ObS. The
mapping

(m,a) �→ a
(
(m,a) ∈ S

)
is a homomorphism of S onto G and Proposition 8.2 gives that G is cyclic.

�

Through the sequence of statements in Proposition 8.1 and Theo-
rem 8.3, we started with power joined, strengthened by finitely generated,
and finished with adding power cancellative. This of course can be ramified
by other combinations of these properties.
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9. Semigroups N(G, I) and a related category

We introduce here a category related to T and study the interplay of
this category, semigroups N(G, I) satisfying the conditions in Theorem 8.3
and the category N . First we generalize the category T . Let

ObU = {(r, I) | r ∈ P and I : Zr × Zr → N is a function
satisfying (A), (C), (N)}.

and for HomU we adopt the same definition as for HomT but now for
objects of U . Hence U is a category having T as a full subcategory. We
also define T by the same formulas as for T2 thereby obtaining a functor
T : U → P.

By m | n we mean that m divides n.

Lemma 9.1. Let (r, I) ∈ ObU and d ∈ P. Then the following state-

ments are equivalent.

(i) d | I0̄ and d | I1̄. (ii) d | Ia for all a ∈ Zr. (iii) d | s for all s ∈ (r, I)T .

Proof. (i) implies (ii). By Lemma 6.2(ii), d | I0̄ = r and by Lemma
6.1(i), we have I1̄ + I1̄ = rI(1̄, 1̄) + I2̄ so that d | I2̄. Continuing this
procedure, we get the assertion.

(ii) implies (iii). By Lemma 6.2(ii) and we have I0̄ = r and hence
by (11), the definition of T2 and thus also of T , we have that I0̄, . . . , Ir−1

generate (r, I)T , whence follows the claim.
(iii) implies (i). This is trivial. �

Theorem 9.2. Let (r, I) ∈ ObU and on S = N(Zr, I) define a func-

tion τ by

τ : (m,a) �→ mr + Ia. (14)

Then τ is a homomorphism of S onto (r, I)T which induces the least power

cancellative congruence θ on S. Moreover, gcd
(
(r, I)T

)
= gcd(r, I1̄).

Proof. For any (m,a), (n, b) ∈ S, we obtain(
(m,a)(n, b)

)
τ = (m + n + I(a, b), a + b)τ = r

(
m + n + I(a, b)

)
+ Ia+b

(3)
= rm + rn + Ia + Ib = (m,a)τ + (n, a)τ
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and τ is a homomorphism; it is surjective by the construction of (r, I)T .
Since Sτ is a subsemigroup of P, which is power cancellative, we deduce

that τ̄ , the congruence induced by τ , is power cancellative. By Lem-
ma 3.6(i), it follows that θ ⊆ τ̄ by the minimality of θ.

For the opposite inclusion, we proceed as follows. Let a ∈ Zr. Then

(0, a)r =

(
r−1∑
i=1

I(a, ai), 0̄

)

and applying τ , we get

rIa = r
r−1∑
i=1

I(a, ai) + I0̄
(4)
= r

r−1∑
i=1

I(a, ai) + r = r

(
r−1∑
i=1

I(a, ai) + 1

)

whence

Ia =
r−1∑
i=1

I(a, ai) + 1. (15)

Now let (m,a) τ̄ (n, b). Then (m,a)τ = (n, b)τ whence mr + Ia = nr + Ib

which by (15) yields

(m,a)r =

(
mr +

r−1∑
i=1

I(a, ai), 0̄

)
= (mr + Ia − 1, 0̄)

= (nr + Ib − 1, 0̄) =

(
nr +

r−1∑
i=1

I(b, bi), 0̄

)
= (n, b)r.

Hence by (1), we have (m,a) θ (n, b). Therefore τ̄ ⊆ θ and equality
prevails.

The final assertion of the theorem follows directly from Lemma 9.1. �

Theorem 9.3. Let (r, I) ∈ ObU and S = N(Zr, I). Then the follow-

ing statements are equivalent

(i) S is power cancellative.

(ii) τ is injective (see (14)).

(iii) (r, I)T is numerical.

(iv) gcd(r, I1̄) = 1.
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(v) Ia ≡ 0 (mod r) =⇒ a = 0̄ (a ∈ Zr).

(vi) Ia ≡ Ib (mod r) =⇒ a = b (a, b ∈ Zr).

Proof. By Theorem 9.2, (i) and (ii) are equivalent, and also (iii) and
(iv) are equivalent.

(ii) implies (iii). Suppose that gcd(r, I1̄) = d > 1. Then r = dk and
I1̄ = dl for some k, l ∈ P. Hence kI1̄ = kdl = rl. By Lemma 6.1(ii),
kI1̄− Ik̄ ∈ rN so that rl = Ik̄ +rt for some t ∈ N. Thus (l−1, 0̄)τ = (t, k̄)τ
which contradicts the hypothesis that τ is injective since 1 < k < r so that
k̄ �= 0̄.

(iv) implies (v). Let Ik̄ ≡ 0 (mod r). By the cited reference, we deduce
that kI1̄ = 0̄ in Zr. By virtue of the hypothesis, I1̄ is a unit in the ring Zr

and hence k̄ = 0̄.
(v) implies (iv). Let Ia ≡ Ib (mod r). We may assume that Ia ≥ Ib so

that Ia = Ib + rm for some m ∈ N. By Lemma 6.1(i), we have

Ia−b + Ib = rI(a− b, b) + Ia

whence
Ia−b + Ib = r

(
I(a− b, b) + m

)
+ Ib

so that Ia−b = r
(
I(a− b, b) + m

)
∈ rN. By hypothesis, a− b = 0̄ and thus

a = b.
(vi) implies (ii). Assume that (m,a)τ = (n, b)τ , that is rm + Ia =

rn + Ib. Then Ia ≡ Ib (mod r) and the hypothesis implies that a = b. But
then rm = rn so m = n. This proves that τ is injective. �

With the conditions (A), (C), (N), (P ) and (Q), we restricted the
function I so strongly that we arrived at the following situation. Let
N(Zr, I) ∼= N(Zs, J). Applying τ , we get (r, I)T ∼= (s, J)T , see Theo-
rem 9.3. By Lemma 3.4(ii), we get (r, I)T2 = (s, J)T2 since these semi-
groups are numerical. Now Theorem 6.6 yields that (r, I) = (s, J) so that
r = s and I = J .

In constructing the Tamura representation of a N-semigroup, we gen-
erally arrive at many N(G, I) where two such N(G, I) and N(H,J) have
very little in common. The Tamura representation is based on the choice
of a “standard element”. Here we may choose the least element of a nu-
merical semigroup to be such an element. This is not sufficient to produce
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the uniqueness of the representation discussed in the preceding paragraph.
The function I must be further restricted by condition (Q). This is, to our
best knowledge, the only instance of a unique Tamura representation.

10. An example

There remains the herculean task of transferring various parameters
associated to a numerical semigroup to the objects we have constructed
in these categories. A yet larger labor would be required to establish the
counterparts of statements valid for these parameters in the context of
new objects, some of which are quite different from numerical semigroups.
All this is relegated to the interested and assiduous reader. We limit
ourselves here to small examples showing the various associations for a
given numerical semigroup.

In the diagram of categories and functors at the end of Section 1, in the
position of N we put the numerical semigroup S = {2, 3, . . . }. Inclusion
functors IN ,S , IN ,P , IT ,U and the functor Γ1 do not change objects and
thus we may restrict our attention to the functors O1, T1 and Φ1.

Recall that

m SO1 n⇐⇒ n = m + s for some s ∈ S (m,n ∈ Z)

so that in our case

m SO1 n⇐⇒ n−m ≥ 2 (m,n ∈ Z).

Next ST1 = (rS , IS) where
rS is the least element of S,
IS satisfies equation (9) with definition (6).

Hence in our case: rS = 2 and (9) becomes

ιa + ιb = 2 IS(a, b) + ιa+b (a, b ∈ Z2).

By (6), we have

ι0̄ = 2, ι1̄ = 3 (16)
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and thus
ιa + ιb ιa+b ιa + ιb − ιa+b

0̄ 1̄
0̄ 4 5
1̄ 5 6

0̄ 1̄
0̄ 2 3
1̄ 3 2

0̄ 1̄
0̄ 2 2
1̄ 2 4

whence

ST1 =
(

2,
[
1 1
1 2

])
.

For (r, I) ∈ Ob T , by definition (r, I)Φ1 = (r, α) where

α : a �→ Ia (a ∈ Zr).

By (10), Ia = ιa so by (16), we obtain I0̄ = 2 and I1̄ = 3 and hence

ST1Φ1 =
(

2,
(

0̄ 1̄
2 3

))
.

Summarizing

≺ O1←− S
T1−→
(

2,
[
1 1
1 2

])
Φ1−→
(

2,
(

0̄ 1̄
2 3

))
.

where m ≺ n⇔ n−m ≥ 2. �
The above details may serve as a prototype for handling more complex

examples. For instance, the treatment of numerical semigroups such as
S = {k, k +1, . . . }, or with holes, say S = {2, 4, 5, 6, . . . }, follows the same
lines as above.

Hence for S = {k, k + 1, . . . }, we have
S

O1−→ ≺ where m ≺ n⇔ n−m ≥ k (m,n ∈ Z) ,

S
T1−→ (k, I) Φ1−→

(
k,

(
0̄ 1̄ · · · k − 1
k k + 1 · · · 2k − 1

))
,

where, for 0 ≤ r, s < k, it holds

I(r̄, s̄) =
{

1 r + s < k

2 r + s ≥ k.

Similarly, for S = {2, 4, 5, 6, . . . }, we obtain

S
O1−→ ≺ where m ≺ n⇔ n−m ≥ 4 or n = m + 2 (m,n ∈ Z),

S
T1−→
(

2,
[
1 1
1 4

])
Φ1−→
(

2,
(

0̄ 1̄
2 5

))
.
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