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ε-convergent splines difference scheme

By MIRJANA STOJANOVIĆ (Novi Sad)

Abstract. We derive the spline difference scheme which is first order ε-convergent
in the uniform norm for the selfadjoint singular perturbation problem.

Introduction

Singular perturbation problem in one dimension has been used as a
model equation for reaction-diffusion processes (see [8]). We are concen-
trated on the selfadjoint non-turning point case of the singularly perturbed
equation

(1) Lu = −εu′′ + p(x)u = f(x), x ∈ [0, 1], u(0) = α0, u(1) = α1,

where p, f ∈ C2[0, 1], 0 < ε ¿ 1, p(x) ≥ β > 0. Under these assumptions
(1) has boundary layers at both endpoints.

Many methods have been proposed in the literature for the solution of
this problem. A selection can be found in, say [4], [6], [5]. We require these
numerical methods to be independent of the value (h/

√
ε) and to model the

solution with given accuracy inside and outside the boundary layers. The
difference schemes which are uniformly accurate, model well the behaviour
of the solution inside the layers, but they are not strict enough outside of
them. To impose stricter criteria than uniform convergence Doolan et.
al. in [2] introduced criteria of optimal convergence for the initial value
problems. The schemes optimal in ε have reduced schemes that model
the reduced problem accurately. It turns out that these schemes perform
better than the uniform ones. The investigation of optimal schemes for
initial value problems was contiuned by Farrell in [3]. He found a class of
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initial differential schemes which are first order accurate. In [9] is given the
first order optimally convergent difference scheme for the non-selfadjoint
perturbation problem, and in [10] we find the difference scheme which is
second order optimally accurate for the selfadjoint perturbation problem.

In [9] we propose ε-convergence as a criterion, interesting for a very
small ε, to improve results in that case. We generate the difference schemes
for the non-selfadjoint perturbation problem which are dependent only on
ε in the whole region, i.e., the ε-convergent difference schemes.

We define ε-convergence in the following way:
A scheme is ε-convergent of order q if

|u(xi)− ui| ≤ M(
√

ε)q,

where M is a constant independent of ε, h, i and q > 0; u(xi) is the exact
solution of the differential equation and ui is the solution of the approxi-
mate equation at the point xi.

In this paper we derive the difference scheme for the selfadjoint prob-
lem (1) which is first order ε-convergent in uniform norm. We generate
the scheme in Section 2. In Section 3 we give the proof of ε-convergence.
Section 4 contains a numerical experiment which confirms the theoretical
predictions.

Notation. We assume a uniform partition of the interval [0, 1] with
step size h = 1/N,N being an integer. Throughout the paper M denotes
a generic constant independent of the step size h or the perturbation pa-
rameter ε. Let ρ̄ = h/

√
ε, ρi = piρ̄ where pi = p(xi). Then, |u(xi) − ui|

denotes nodal errors, where u(xi) and ui are the exact solution and the
approximate solution at the mesh point xi, respectively. Truncation error
of the difference scheme is defined as τi(u) = R(u(xi)− ui) = Rui −QLui

where R and L are the corresponding, operators.

2. A scheme generation

Consider as in [7] the “comparison” problem

(2) LS∆(x) = −εS′′∆(x) + p̄iS∆(x) = f̄i, x ∈ (xi−1, xi),

which satisfies boundary conditions on [xi−1, xi] : S∆(xi−1) = ui−1, S∆(xi)
= ui, p̄i = p(xi), and f̄i = fi−1/2[2/h2(x− xi−1/2)(x− xi)] + fi[2/h2(x−
xi−1/2) (x− xi−1)] + fi−1/2[−4/h2(x− xi−1)(x− xi)]. By solving (2) and
by using the continuity condition of the second derivative of the spline at
the mid-points, we obtain the following discretization of (1):

Rui = QLui, u(0) = α0, u(1) = α1,
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where

Rui = ui−1r
−
i + uir

c
i + ui+1r

+
i ,

Qfi = q−i−1fi−1 + qc
i fi + q+

i+1fi+1 + q−i1/2fi−1/2 + q+
i1/2fi+1/2.

Here the coefficients of the scheme are given by:
1. In the case S′′∆i

(xi−1 + h/2) = S′′∆i+1
(xi−1 + h/2) we have

r−i = ρ2
i sinh(ρi/2)/ sinh(ρi), r+

i = ρ2
i+1 sinh(ρi+1/2)/ sinh(ρi+1)(3)

rc
i = ρ2

i / sinh(ρi) sinh(ρi/2)− ρ2
i+1/ sinh(ρi+1) sinh(3ρi+1/2),

q−i = 1/pi−1[−4 + sinh(ρi/2)/ sinh(ρi)(8 + ρ2
i )],

q+
i = 1/pi+1[sinh(ρi+1/2)/ sinh(ρi+1)(ρ2

i+1 + 4)

− 4 sinh(3ρi+1/2)/ sinh(ρi+1) + 4],

qc
i = 1/pi[sinh(ρi/2)/ sinh(ρi)(ρ2

i + 8)

+ 4 sinh(ρi+1/2)/ sinh(ρi+1)

− sinh(3ρi+1/2)/ sinh(ρi+1)(4 + ρ2
i+1)],

q−i−1/2 = 1/pi−1/2[−16 sinh(ρi/2)/ sinh(ρi) + 8],

q+
i+1/2 = 1/pi+1/2[−8 sinh(ρi+1/2)/ sinh(ρi+1)

+ 8 sinh(3ρi+1/2)/ sinh(ρi+1)− 8].

2. In the case S′′∆i
(xi + h/2) = S′′∆i+1

(xi + h/2) we have:

r−i = −ρ2
i sinh(ρi/2)/ sinh(ρi),(4)

r+
i = −ρ2

i+1 sinh(ρi+1/2)/ sinh(ρi+1),

rc
i = ρ2

i / sinh(ρi) sinh(ρi/2)− ρ2
i+1/ sinh(ρi+1) sinh(3ρi+1/2),

q−i = 1/pi−1[4 + sinh(ρi/2)/ sinh(ρi)(4 + ρ2
i )

− 4/ sinh(ρi) sinh(3ρi/2)],

q+
i = 1/pi+1[sinh(ρi+1/2)/ sinh(ρi+1)(−ρ2

i+1 − 8) + 4],

qc
i = 1/pi[sinh(3ρi/2)/ sinh(ρi)(ρ2

i + 4)

− sinh(ρi+1/2)/ sinh(ρi+1)(ρ2
i+1 + 8)

− 4 sinh(ρi/2)/ sinh(ρi)],

q−i1/2 = 1/pi−1/2[−8 sinh(3ρi/2)/ sinh(ρi)

+ 8/ sinh(ρi+1) sinh(ρi+1/2)− 8],

q+
i1/2 = 1/pi+1/2[16 sinh(ρi+1/2)/ sinh(ρi+1)− 8].



400 Mirjana Stojanović

3. Proof of the ε-convergence

The proof of the ε-convergence will be given for the scheme (3). The
same holds for (4). Since

(5) max
i
|u(xi)− ui| ≤ M‖A−1‖max

i
|τi(u)|,

(see [11]) we must estimate the matrix A−1 in the maximum norm and the
truncation error of the discretization (3) to obtain the nodal errors.

Matrix estimate. Since ‖A−1‖ ≤ max
i

∆i where ∆i = |r−i + rc
i + r+

i |
and

∆i = ρ2
i / sinh(ρi)(3 sinh(ρi/2)− sinh 3(ρi/2)) ≥ M

{
ρ̄4, ρ̄ ≤ 1,

ρ̄2 eMρ̄/2, ρ̄ ≥ 1,

we obtain the matrix estimate

(6) ‖A−1‖ ≤ M

{
ρ̄4, ρ̄ ≤ 1,

ρ̄2 eMρ̄/2, ρ̄ ≥ 1.

The estimate of the truncation error.
In order to estimate the truncation error we shall use the following

Lemma 1. [2]. Let f, p ∈ C2([0, 1]) and p′(0) = p′(1) = 0. Then the
solution of (1) can be expressed as

u(x) = u0(x) + ω0(x) + g(x),(7)

u0(x) = p0 e(−x
√

p(0)/ε), ω0(x) = p1 e(−(1−x)
√

p(1)/ε),(8)

p0, p1 are bounded functions of ε independent of x and

(9) |g(i)(x)| ≤ M(1 + ε1−i/2), i = 0(1)n.

Hence, τi(u) = τi(u0) + τi(ω0) + τi(g).
Truncation error for g. The truncation error appropriate for g is

τi(g) = τ
(0)
i g(0) + τ

(1)
i g(1) + τ

(2)
i g(2) + τ

(3)
i g(3) + r−i h4/4! g(4)(ξ1)

+ r+
i h4/4! g(4)(ξ2) + εq−i h2/2g(4)(ξ1) + εh2q+

i g(4)(ξ4)

+ εh2/8q−i1/2g
(4)(ξ5) + εh2/8q+

i1/2g
(4)(ξ6)(10)

− pi−1h
4/4! g(4)(ξ2)q−i − pi+1h

4/4! g(4)(ξ2)q+
i

− pi−1/2h
4/(4! 16)g(4)(ξ5)q−i1/2

+ q+
i1/2pi+1/2h

4/(4! 16)g(4)(ξ6),
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where
xi−1 ≤ ξ5 ≤ xi−1/2 ≤ ξ1 ≤ ξ2 ≤ xi+1/2 ≤ ξ6 ≤ xi+1,

and

τ
(0)
i = r−i + rc

i + r+
i − pi−1q

−
i − piq

c
i − pi+1q

+
i − pi−1/2q

−
i1/2

− pi+1/2q
+
i1/2 = 0,

τ
(1)
i = h(r+

i − r−i )− h(−pi−1q
−
i + pi+1q

+
i − pi−1/2q

−
i1/2

+ pi+1/2q
+
i1/2) = 0.

Since

τ
(2)
i = h2/2(r+

i + r−i ) + ε(q−i + q+
i + qc

i + q−i1/2 + q+
i1/2)

− h2/2(pi−1q
−
i + pi+1q

+
i + 1/4pi−1/2q

−
i1/2);

and τ
(2)
i (ρi) = 0, where ρi = ρ̄pi, pi = const we have

τ
(2)
i = τ

(2)
i (ρi) + h2/2(ρi+1 − ρi)

∂τ
(2)
i

∂ρi+1
(ρi) + Q,

where Q is the part in error estimate which is of the lower order than the

previous ones. Because of |ρi+1 − ρi| ≤ Mh2/
√

ε,
∣∣∣∣

∂τ
(2)
i

∂ρi+1
(ρi)

∣∣∣∣ ≤ Mh/
√

ε,

we obtain |τ (2)
i g′′| ≤ Mh5/ε for ρ̄ ≤ 1. In the opposite case for ρ̄ ≥ 1 we

obtain |τ (2)
i | ≤ Mh2eMρ̄. Further,

τ
(3)
i = h3/6(r+

i − r−i ) + εh(−q−i + q+
i + 1/2(q+

i1/2 − q−i1/2))

− h3/6(−pi−1q
−
i + pi+1q

+
i + 1/8(pi+1/2q

+
i1/2 − pi−1/2q

−
i1/2)),

and τ
(3)
i = h3/6{10−5 sinh(3/2ρi)/ sinh(ρi)−5 sinh(ρi/2)/ sinh(ρi)}. Clear-

ly, |τ (3)
i | ≤ Mh3ρ̄2, ρ̄ ≤ 1, |τ (3)

i | ≤ Mh3eMρ̄, ρ̄ ≥ 1. With (9) it gives
|τ (3)

i g′′′| ≤ Mh3/
√

ερ̄2, ρ̄ ≤ 1, and |τ (3)
i g′′′| ≤ Mh3/

√
εeMρ̄, ρ̄ ≥ 1. Since

the remainders are of the same or lower order we obtain

(11) |τi(g)| ≤ M

{
h5/(ε

√
ε), ρ̄ ≤ 1,

h3/(
√

ε)eMρ̄, ρ̄ ≥ 1.

Truncation error for boundary layer terms.
We shall give the estimate for the boundary layer u0(x). Since τi(u0)

= Rui − QLui where Rui = u0i(r−i eρ0 + rc
i + r+

i e−ρ0) and −QLui =
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u0ip0/ε {(p0−pi−1)q−i eρ0 +(p0−pi)qc
i +(p0−pi+1)q+

i e−ρ0 +(p0−pi−1/2)

q−i1/2e
ρ0/2 + (p0 − pi+1/2)q+

i1/2e
−ρ0/2}, u0i = e−xi

√
p0/ε, we have Rui =

u0i(−1/16)(p0−pi)ρ4
i +O(h5/(ε

√
ε)) and −QLui = u0i(−1/16)(p0−pi)ρ4

i

+O(h5/(ε
√

ε)). After cancelling the hardest parts in the error estimate
we obtain that

(12) |τi(u0)| ≤ Mh5/(ε
√

ε) for ρ̄ ≤ 1.

Similarly,

(13) |τi(ω0)| ≤ Mh5/(ε
√

ε) for ρ̄ ≤ 1.

In the opposite case, if ρ̄ ≥ 1, since Rui(ρ0) = 0, ρ0 =
√

p0/εh, we have
Rui−Rui(ρ0) = u0i{(r−i −r−i (ρ0)) eρ0 +(rc

i−rc
i (ρ0)) +(r+

i −r+
i (ρ0))e−ρ0}.

By using |r
+−
i −r

+−
i (ρ0)| ≤ Mh/

√
ερ̄2 x2

i+1, |rc
i −rc

i (ρ0)| ≤ Mh/
√

ερ̄2x2
i e

ρi/2

because of |x2
i /εe−

√
p0/εxi | ≤ Me−δxi/ε, where 0 < δ < 1, we obtain

(14) |Rui| ≤ Mhερ2
i e

ρi/2, if ρ̄ ≥ 1.

Similarly, since |p0 − p(·)| ≤ Mx2
(·) where (·) = xi±1 or xi±1/2 we obtain

(15) |QLui| ≤ Mhερ2
i e

Mρi/2 if ρ̄ ≥ 1.

From (14), (15), follows that

(16) |τi(u0)| ≤ Mh
√

ερ̄2eMρ̄, ρ̄ ≥ 1.

By similar calculation we obtain

(17) |τi(ω0)| ≤ Mh
√

ερ̄2eMρ̄, ρ̄ ≥ 1.

Hence, Lemma 1, (11), (12), (13), (16) and (17) give the truncation error
for the discretization (3):

(18) |τi(u)| ≤ M

{
h5/(ε

√
ε), for ρ̄ ≤ 1,

h3/
√

ε eMρ̄, for ρ̄ ≥ 1.

From (5), (6), and (18) we obtain the nodal errors for the discretization
(3)

|ui − u(xi)| ≤ Mh
√

ε,

in both cases.

We have just proved the following theorem:
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Theorem 1. Let p, f ∈ C2[0, 1], and p′(0) = p′(1) = 0, in (1). Let
{ui}, i = 0(1)n, be the solution of the linear system (3). Then the nodal
errors are

|u(xi)− ui| ≤ Mh
√

ε.

The same result holds for the scheme (4).

Theorem 2. Let p, f ∈ C2[0, 1], and p′(0) = p′(1) = 0 in (1). Then
the discretization (4) has the first order of the ε-convergence.

4. Computational results

A technique to test the rate of uniform convergence is the well-known
double mesh technique ([2]). The errors ei,ε,h,k determine

RATEh,ε,k =
ln(eε,h,k/eε,h,k+1)

ln 2
,

where
eε,h,k = max

i
|ui,ε,h/2k − ui,ε,h/2k+1 |,

and ui,ε,h/2k is the approximate values at the points xi = ih/2k. The next
meshes, of lenght h = 1/N , were obtained by halving the previous ones.
The first one has N = 16 and the last one contains N = 1024 points.

In Table 1 is given the test of ε-convergence for the scheme (3) as
applied to the example

(19) −εu′′ + u = − cos2(πx)− 2επ2 cos(2πx), u(0) = u(1) = 0,

whose known exact solution is

u(x) = (exp(−(1− x)/
√

ε) + exp(−x/
√

ε))/(1 + exp(−1/
√

ε))− cos2(πx)

taken from [2].
The rate of convergence in h is also one: O(h). It can be seen from

Table 1.
In Table 2 is given the difference between the exact and the approxi-

mate solution in the max norm

MAXε,Nk
= max

0≤i≤N
|u(xi)− ui|,

attained at mesh points for Nk = 2k, k = 4, 5, 6, 7, 8.
From this Table 2 we can see that the convergence is on ε.
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Table 1:
The RATE1/16,ε,k to show the convergence of the scheme (3) for problem (19)

ε/k 1 2 3 4 5

1 1.19 1.09 1.04 1.02 1.01
2−1 1.18 1.08 1.04 1.02 1.00
2−2 1.16 1.07 1.03 1.01 1.00
2−3 1.14 1.06 1.03 1.01 1.00
2−4 1.11 1.05 1.02 1.01 1.00
2−5 1.12 1.04 1.01 1.00 1.00
2−6 1.14 1.04 1.01 1.00 1.00
2−7 1.21 1.06 1.01 1.01 1.00
2−8 1.31 1.11 1.03 1.01 1.00
2−9 1.42 1.19 1.05 1.01 1.00

10−5 0.91 0.84 1.06 1.01 1.00
10−7 0.92 0.98 0.99 0.99 0.99
10−8 0.92 0.98 0.99 0.99 0.99

Table 2:
The maximum error MAXε,Nk

to show the ε-convergence.

ε/Nk 4 5 6 7 8

10−5 .1930E-04 .108E-04 .510E-05 .183E-05 .654E-06
10−7 .1915E-06 .965E-07 .484E-07 .243E-07 .122E-07
10−8 .1917E-07 .965E-08 .484E-08 .242E-08 .121E-08
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