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Number of solutions to ax + by = cz

By REESE SCOTT (Somerville) and ROBERT STYER (Villanova)

Abstract. For relatively prime integers a and b both greater than one and odd

integer c, there are at most two solutions in positive integers (x, y, z) to the equation

ax + by = cz. There are an infinite number of (a, b, c) giving exactly two solutions.

1. Introduction

This paper deals with the problem of finding an upper bound on the number

of solutions in positive integers x, y, and z to the equation

ax + by = cz (1.1)

for integers a, b, and c, all greater than 1 with gcd(a, b) = 1. Although there

is much previous work on this problem, realistically low bounds on the number

of solutions to (1.1) have been obtained only for the special case in which one

of x, y, or z is constant; results for this special case are obtained using lower

bounds on linear forms in logarithms (e.g., [6], [1]). For the more general case

in which all of x, y, and z are variable, Mahler [8] used his p-adic analogue of

the method of Thue–Siegel to prove that (1.1) has only finitely many solutions

(x, y, z) (see [7]). Later, Gelfond [3] made Mahler’s result effective. As pointed

out by the anonymous referee of this paper, the existence of a bound on the

number of solutions, independent of a, b, and c, follows from a result of Beukers

and Schlickewei [2]. Hirata-Kohno [4] used [2] to obtain a bound of 236

(the referee believes Hirata-Kohno may have later announced a bound of 200,

apparently unpublished).
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Le [7] dealt with the general case when all of x, y, and z are variable with c

odd:

Theorem A ([7]). If 2 - c then (1.1) has at most 2ω(c)+1 solutions (x, y, z)

where ω(c) is the number of distinct prime factors of c. Moreover, all solutions

(x, y, z) of (1.1) satisfy z < (2ab log(2eab))/π.

We give a brief outline of a proof of Theorem A, which differs somewhat

from Le’s proof, but will allow us to establish some notation for our own variant

of Theorem A. We distinguish four parity classes for x and y:

Class 1: 2 | x and 2 | y. Class 2: 2 - x and 2 | y. Class 3: 2 | x and 2 - y.
Class 4: 2 - x and 2 - y.

For each parity class we define D to be the least integer such that axby

D is a

square for any choice of x and y in the parity class. If (x, y, z) is a solution to

(1.1) with x and y in a given parity class, we say that the solution (x, y, z) is in

that parity class. We then define the integer γ(x, y, z) in Q(
√
−D ):

γ(x, y, z) = ax − by + 2
√
−axby. (1.2)

The norm of γ(x, y, z) is c2z. Let CD = {c1c1, c2c2, . . . , cgcg} be the set of all

factorizations of [c] into two ideals in Q(
√
−D ) such that, for 1 ≤ i ≤ g, no ci is

divisible by a principal ideal with a rational integer generator. g = 2ω(c)−1. For

any (x, y, z), [γ(x, y, z)] must be divisible by exactly one of the ideals c1, c1, c2,

c2, . . . , cg, cg. We say that the solution (x, y, z) to (1.1) is associated with the

ideal factorization ckck when either ck or ck divides [γ(x, y, z)], where ckck ∈ CD.

It is an old result (see Lemma 2 of Section 2) that there is at most one solution

(x, y, z) associated with a given ideal factorization in CD (with one easily handled

exception). Since g = 2ω(c)−1 and there are four parity classes as defined above,

we obtain the result in the first sentence of Theorem A. The result in the second

sentence of Theorem A follows from a result in Hua [5].

In this paper we will show that, for a given (a, b, c), any solution (x, y, z)

must occur in one of at most two parity classes of x and y. We then show that

any solution in a given parity class must be associated with one of at most two

ideal factorizations in CD, regardless of the number of distinct primes dividing c.

We also show that if solutions occur in two parity classes, then any solution in a

given parity class must be associated with the same ideal factorization in CD as

any other solution in the same parity class. With these results we obtain:

Theorem 1. For relatively prime integers a and b both greater than one

and odd integer c, there are at most two solutions in positive integers (x, y, z) to

(1.1); any solution (x, y, z) must satisfy z < ab/2.

There are an infinite number of such (a, b, c) giving exactly two solutions.



Number of solutions to ax + by = cz 133

(The bound on z follows from Theorem 3 of [10]. The infinite family (a, b, c :

x1, y1, z1;x2, y2, z2) = (2, 2m − 1, 2m +1 : 1, 1, 1;m+2, 2, 2) suffices to verify that

there are an infinite number of (a, b, c) giving exactly two solutions.)

The result that there are at most two solutions to (1.1) in the special case in

which either x or y is a fixed constant (usually 1) has been obtained by Bennett

[1] using lower bounds on linear forms in logarithms when gcd(a, b) = 1 and using

elementary methods when gcd(a, b) > 1. Theorem 1 above provides an elementary

proof of Bennett’s result for the case c odd.

2. Proof of Theorem 1

Throughout this proof we assume that c is an odd integer and that a and b

are relatively prime integers greater than 1. We also assume throughout this proof

that (1.1) has solutions (x1, y1, z1), (x2, y2, z2), . . . , (xn, yn, zn) such that there

is no integer greater than 1 dividing all of x1, x2, . . . , xn, and no integer greater

than 1 dividing all of y1, y2, . . . , yn, where n > 1. Note that this assumption

(which may involve redefining a and b) does not affect the number of solutions

(x, y, z), or the value of D corresponding to a given solution, or the value of any

γ(x, y, z). We will prove Theorem 1 by using four lemmas, for the first of which

we need two definitions: let u(m) be the least integer t such that mt ≡ 1 mod c;

let v2(m) be the integer w such that 2w∥m.

Lemma 1. For a given (a, b, c), all solutions (x, y, z) to (1.1) occur in at

most two parity classes of x and y. If (1.1) has solutions in two different parity

classes, we must have one of the following: Class 1 with Class 4; Class 2 with

Class 3; Class 4 with Class 3 (in which case u(a) is odd); or Class 4 with Class 2

(in which case u(b) is odd).

Proof. If (1.1) has solutions in more than one parity class, we can, switching

the roles of a and b if necessary, let (x1, y1, z1) be any solution with x1 odd and

let (x2, y2, z2) be any solution with x2 even. Assume first v2(u(a
x1)) > 1. Then

we must have, noting ax ≡ −by mod c for every solution (x, y, z),

v2(u(a
x1)) = v2(u(b

y1)), v2(u(a
x2)) < v2(u(a

x1)), v2(u(b
y2)) < v2(u(b

y1)).

Note that, for any solution (x, y, z) to (1.1), we cannot have v2(u(b
y)) > v2(u(b

y1))

so y1 must be odd (otherwise 2 | yi for every i, 1 ≤ i ≤ n). So we see that 2 | x−y

for any solution. Thus when v2(u(a
x1)) > 1, only Class 1 and Class 4 are possible.
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Now assume v2(u(a
x1)) = 1 with (ax1)u(a

x1 )/2 ̸≡ −1 mod c. Then v2(u(b
y1))

= 1 with (by1)u(b
y1 )/2 ̸≡ −1 mod c. Note that, for any solution (x, y, z) to (1.1),

v2(u(b
y)) > 1 is impossible, so that y1 must be odd. Then, since u(by) = u(b)

gcd(u(b),y)

for any y, we have

bu(b)/2 ≡ b
y1

gcd(u(b),y1)
u(b)
2 = (by1)u(b

y1 )/2 ̸≡ −1 mod c.

v2(u(a
x2)) = 0 so that v2(u(b

y2)) = 1 with (by2)u(b
y2 )/2 ≡ −1 mod c, so y2 is odd

and

bu(b)/2 ≡ (by2)u(b
y2 )/2 ≡ −1 mod c,

a contradiction. So the case v2(u(a
x1)) = 1 with (ax1)u(a

x1 )/2 ̸≡ −1 mod c is

impossible.

Now assume v2(u(a
x1))=1 with (ax1)u(a

x1)/2 ≡−1 mod c. Then v2(u(b
y1))= 0

and we have

v2(u(a
x2)) = 0, v2(u(b

y2)) = 1.

Note that, for any solution (x, y, z) to (1.1), v2(u(b
y)) > 1 is impossible, so y2

must be odd. We see that 2 - x−y for any solution. So when v2(u(a
x1)) = 1 with

(ax1)u(a
x1 )/2 ≡ −1 mod c, only Class 2 and Class 3 are possible.

If v2(u(a
x1)) = 0, then v2((u(b

y1)) = 1 and

v2(u(a
x2)) = 0, v2(u(b

y2)) = 1.

Note that, for any solution (x, y, z) to (1.1), v2(u(b
y)) > 1 is impossible, so both

y1 and y2 must be odd. So when v2(u(a
x1)) = 0, only Class 4 and Class 3 are

possible.

If we were to reverse the roles of a and b in the above proof, taking y1 odd and

y2 even, then, considering each of the possible values of v2(u(b
y1)) and proceeding

as in the preceding paragraphs, we would obtain the same results, except that

when v2(u(b
y1)) = 0 we must have Class 4 with Class 2. �

Lemma 2. In a given parity class of x and y, there is at most one solution

(x, y, z) to (1.1) associated with a given ideal factorization in CD, except when

(a, b, c) = (3, 10, 13) or (10, 3, 13).

Proof. See [9, proof of Theorem 1 and the first paragraph of the proof of

Theorem 2], noting that the only relevant instance of exception (iii) in Theorem 1

of [9] is given by (a, b, c) = (3, 10, 13). �
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Lemma 3. If (1.1) has solutions in more than one parity class, then we must

have one of the following:

au(a)/2 ≡ bu(b)/2 ≡ −1 mod c,

u(a) is odd and bu(b)/2 ≡ −1 mod c, or

au(a)/2 ≡ −1 mod c and u(b) is odd.

Proof. Assume (1.1) has two solutions (x1, y1, z1) and (x2, y2, z2) such that

2 - x1 and 2 | x2. We have ax1 ≡ −by1 mod c and ax2 ≡ −by2 mod c so that

a|x1−x2| ≡ bt mod c for some t such that 0 ≤ t < u(b). Let L = lcm(x1, x1 − x2)

so that L is odd. Then we have

aL ≡ (−by1)L/x1 ≡ (bt)L/|x1−x2| mod c,

so that the congruence bq ≡ −1 mod c has a solution q. This requires bu(b)/2 ≡
−1 mod c.

Similarly, if (1.1) has two solutions (x1, y1, z1) and (x2, y2, z2) such that 2 -
y1−y2, we must have au(a)/2 ≡ −1 mod c. Now Lemma 3 follows from Lemma 1.

�

For the proof of Lemma 4 which follows, we use the following definition: we

say that h1+k1
√
−D ≡ h2+k2

√
−D mod c if h1 ≡ h2 mod c and k1 ≡ k2 mod c.

Lemma 4. All solutions to (1.1) in a given parity class are associated with

one of at most two ideal factorizations in the set CD. If (1.1) has solutions in

more than one parity class, then any two solutions in the same parity class must

be associated with the same ideal factorization in the set CD.

Proof. Let (x1, y1, z1) and (x2, y2, z2) be two solutions in the same parity

class, with x1 the least x occuring in any solution in the parity class and (x2, y2, z2)

any other solution in the parity class. We have

γ(x1, y1, z1) = ax1 − by1 + 2
√
−ax1by1 (2.1)

and

γ(x2, y2, z2) ≡ ax2 − by2 + 2a(x2−x1)/2bd
√
−ax1by1 mod c (2.2)

where d = hu(b) + (y2 − y1)/2, where h is any integer such that d ≥ 0 (we can

take h to be the least such integer greater than or equal to zero so that h = 0

when y2 ≥ y1). We have

ax1ax2−x1 = ax2 ≡ −by2 ≡ −by1b2d mod c. (2.3)

Since ax1 ≡ −by1 mod c, (2.3) gives

ax2−x1 ≡ b2d mod c. (2.4)
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Since a is prime to c, there exists an integer δ such that 0 ≤ δ < c and

a(x2−x1)/2δ ≡ bd mod c. (2.5)

(2.5) with (2.4) gives

δ2 ≡ 1 mod c. (2.6)

Now consider all the solutions (xi, yi, zi) to (1.1), regardless of parity class. axi ≡
−byi mod c for every i, and there is no integer greater than 1 dividing all the xi.

So we can construct a linear combination of all the xi to obtain

a ≡ ±bt mod c (2.7)

where t is an integer such that 0 ≤ t < u(b). So (2.5) becomes

±(bt)(x2−x1)/2δ ≡ bd mod c

so that δ ≡ ±br mod c for some 0 ≤ r < u(b). By (2.6), b2r ≡ 1 mod c. This

requires either r = 0 or r = u(b)/2. Recalling (2.4) we see that (2.2) becomes

γ(x2, y2, z2) ≡ b2d(ax1 − by1)± 2b2dbr
√
−ax1by1 mod c. (2.8)

Write γ1 = γ(x1, y1, z1) and write γ2 = γ(x2, y2, z2), unless the ± in (2.8) is minus,

in which case γ2 is the conjugate of γ(x2, y2, z2). Let β = ax1−by1+2br
√
−ax1by1 .

Since gcd(b, c) = 1, (2.8) gives c | ββ. Let ck be the unique ideal such that

ckck ∈ CD and ck | [β]. ck contains both β and c, so by (2.8) it contains γ2, so that

ck | [γ2], so that the solution (x2, y2, z2) is associated with the ideal factorization

ckck. Since either r = 0 or r = u(b)/2 (r = u(b)/2 is possible only when 2 | u(b)),
there are at most two possible values for β one of which must be γ1, so there are

at most two possible choices for ck one of which must be ch where ch | [γ1]. If u(b)
is odd, then r = 0 and β = γ1, so ck = ch. If 2 | u(b) and bu(b)/2 ≡ −1 mod c,

then either β = γ1 (when r = 0) or β = γ1 (when r = u(b)/2), so that ck = ch or

ck = ch. Now Lemma 4 follows from Lemma 3. �

Recalling the parenthetical comments immediately following the statement

of Theorem 1, and noting that, when (a, b, c) = (3, 10, 13), (1.1) has exactly two

solutions (see, e.g., [9], last paragraph of the proof of Theorem 6), we see that

Theorem 1 follows from Lemmas 1, 2, and 4.
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3. Cases with exactly two solutions

We give the following conjecture, which allows c even as well as c odd:

Conjecture. For integers a, b, and c all greater than one with gcd(a, b) = 1,

there is at most one solution in positive integers (x, y, z) to (1.1) except for

the following (a, b, c) or (b, a, c): (5, 2, 3), (7, 2, 3), (3, 2, 11), (3, 2, 35), (3, 2, 259),

(3, 4, 259), (3, 16, 259), (5, 2, 133), (3, 10, 13), (89, 2, 91), (91, 2, 8283), (3, 5, 2),

(3, 13, 2), (3, 13, 4), (3, 13, 16), (3, 13, 2200), and (2n−1, 2, 2n+1) for any positive

integer n ≥ 2.

All (a, b, c) in the above list give exactly two solutions in positive integers

x, y, and z except for (a, b, c) = (3, 5, 2), which has three solutions. A computer

search found no other (a, b, c) with gcd(a, b) = 1 giving more than one solution in

positive integers x, y, z to (1.1) in the ranges a < 2500, b < 10000 with ax < 1030,

by < 1030.

Except for (5, 2, 3), (7, 2, 3), and (2n − 1, 2, 2n + 1), all the (a, b, c) in the list

given in Conjecture 1 can be derived from the first six entries of Conjecture 1.2

of [1] which deals with the case in which one of x or y is constant.
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