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Continuum-wise expansive homoclinic classes
for generic diffeomorphisms

By MANSEOB LEE (Daejeon)

Abstract. Let f : M → M be a diffeomorphism on a closed smooth n(n ≥ 2)-

dimensional Riemannian manifold M . For C1 generic f , if a homoclinic class Hf (p) is

continuum-wise expansive then it is hyperbolic. Moreover, we show that if a diffeomor-

phism f : M → M exhibiting a homoclinic tangency associated to a hyperbolic periodic

point p, there is g C1 close to f such that g is not continuum-wise expansive.

1. Introduction

Let M be a closed smooth n(n ≥ 2)-dimensional Riemannian manifold with-

out boundary, and let f : M → M be a diffeomorphism. Denote Diff(M) the

space of diffeomorphisms of M with the C1 topology. Let d be the distance on M

induced from the Riemannian metric ∥ · ∥ on the tangent bundle TM . For any

closed f -invariant set Λ ⊂ M , we say that Λ is expansive for f if there is e > 0

such that for any x, y ∈ Λ if d(fn(x), fn(y)) ≤ e for all n ∈ Z then x = y.

If Λ = M then f is expansive. Roughly speaking, a system is expansive if two

points stay near for future and past iterates then they must be equal. This notion

was introduced by Utz [21]. In a dynamical system, the notion of expansiveness

is a very useful tool to investigate of the stability theory. For instance, Mañé

[12] proved that a diffeomorphism f belongs to the C1-interior of the set of all

expansive diffeomorphisms if and only if it is quasi-Anosov. We say that f is

quasi-Anosov if for any v ∈ TM \ {0}, the set {∥Dfn(v)∥ : n ∈ Z} is unbounded.
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For expansivity, Kato [7] introduced the generalized concept of expansivity which

is called continuum-wise expansive. A set Λ is nondegenerate if the set Λ is not

reduced to one point. We say that Λ ⊂ M is a subcontinuum if it is a compact

connected nondegenerate subset Λ of M . A diffeomorphism f on M is said to be

continuum-wise expansive if there is a constant e > 0 such that for any nonde-

generate subcontinuum A there is an integer n = n(A) such that diam fn(A) ≥ e,

where diamA = sup{d(x, y) : x, y ∈ A} for any subset A of M . Such the constant

e is called a continuum-wise expansive constant for f . Note that every expansive

homeomorphism is continuum-wise expansive, but its converse is not true (see

[6]). In fact, we consider that if for a unit S2, f : S2 → S2 is a diffeomorphism,

then it is well-known that f does not admit an expansive diffeomorphism, but

it admits a continuum-wise expansive diffeomorphisms. Note that by Mañé’s re-

sult, a robustly expansive diffeomorphism is a quasi-Anosov diffeomorphism. For

continuum-wise expansiveness, Sakai [18] proved that if a diffeomorphism f be-

longs to the C1-interior of the set of all continuum-wise expansive diffeomorphisms

then it is quasi-Anosov. Thus we know that a robustly expansive diffeomorphism

is a robustly continuum-wise expansive diffeomorphism.

2. Statement of the main results

A point x ∈ M is non-wandering point of f if a neighborhood U of x there

is n > 0 such that fn(U) ∩ U ̸= ∅. Denote by Ω(f) the set of all non-wandering

points of f . We say that Λ is hyperbolic for f if the tangent bundle TΛM has a

Df -invariant splitting Es ⊕ Eu and there exist constants C > 0 and 0 < λ < 1

such that

∥Dxf
n|Es

x
∥ ≤ Cλn and ∥Dxf

−n|Eu
x
∥ ≤ Cλn

for all x ∈ Λ and n ≥ 0. If Λ = M then f is Anosov.

We say that f satisfies Axiom A if its periodic points are dense in the set of

non-wandering points Ω(f), and f is hyperbolic on Ω(f).

We say that a subset G ⊂ Diff(M) is residual if G contains the intersection

of a countable family of open and dense subsets of Diff(M); in this case G is dense

in Diff(M). A property “P” is said to be (C1) generic if “P” holds for all diffeo-

morphisms which belong to some residual subset of Diff(M). Arbieto [2] proved

that for C1 generic f , if f is expansive then it satisfies both Axiom A and the no-

cycle condition. In [10], Lee proved that for C1-generic f , if f is continuum-wise

expansive then it satisfies both Axiom A and the no-cycle condition.
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If f satisfies Axiom A then the non-wandering set Ω(f) = Λ1∪Λ2∪· · ·∪Λm,

where Λi are compact, disjoint, invariant sets, and each Λi contains dense periodic

orbits. The sets Λ1, . . . ,Λm are called the basic sets. It is well known that if p

is a hyperbolic periodic point of f with period k then the sets W s(p) = {x ∈
M : fkn(x) → p as n → ∞} and Wu(p) = {x ∈ M : f−kn(x) → p as n → ∞}
are C1-injectively immersed submanifolds of M . A point x ∈ W s(p) t Wu(p)

is called a homoclinic point of f associated to p. The closure of the homoclinic

points of f associated to p is called the homoclinic class of f associated to p, and

it is denoted by Hf (p). It is well-known that the basic sets is a homoclinic class

Hf (p). This set like occurs for instance in Smale’s horseshoe. Actually, in [14]

we can see various examples. For homoclinic classes and expansivity, there are

many results published in [6], [8], [9], [10], [11], [14], [15], [19], [20], [23]. Among

that we introduce two results. First, Das, Lee and Lee [6] proved that if the

homoclinic class Hf (p) is C
1-persistently expansive and the chain condition then

it is hyperbolic. Here a homoclinic class Hf (p) satisfy the chain condition if for

any g C1-close to f , the homoclinic class Hg(pg) is the chain component, say,

Cg(pg). Finally, Yang and Gan [23] showed that for C1 generic f , expansive

homoclinic classes are hyperbolic. From the results, we have the following which

is a main result of the paper. It is a general result of [23].

Theorem A. For C1 generic f , if a homoclinic classHf (p) is continuum-wise

expansive then it is hyperbolic.

Let p be a hyperbolic periodic point. We say that f is a homoclinic tangency

if there is a hyperbolic periodic point p whose invariant manifolds W s(p) and

Wu(p) have a non-transverse intersection. Denote by HT the set of all homoclinic

tangency diffeomorphisms. We say that Λ admits a dominated splitting if the

tangent bundle TΛM has a continuous Df -invariant splitting E ⊕ F and there

exist constants C > 0 and 0 < λ < 1 such that

∥Dxf
n|E(x)∥ · ∥Dxf

−n|F (fn(x))∥ ≤ Cλn

for all x ∈ Λ and n ≥ 0. The set Λ is partially hyperbolic if the tangent bundle

TΛM has a dominated splitting Es⊕Ec⊕Eu and there exist C > 0, and 0 < λ < 1

such that Es is contracting, Eu is expanding, and for any vector in Ec is less

expand than vector in Eu and less contracted than vectors in Es. In [5], the

authors proved that for C1 generic f , if f ∈ Diff(M) \ HT then f is partially

hyperbolic, where A is the closure of A.

LetM be a compact smooth 2-dimensional manifold, and let f : M → M be a

diffeomorphism. Pacifico and Vieites [17] proved that if f having a homoclinic
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tangency associated to a hyperbolic periodic point p, then there is a g C1-close

to f such that g is not measure expansive. Here, measure expansive was introduce

by [13]. By Artigue and Carrasco-Olivera [3, Lemma 2.3], we know that

continuum-wise expansive is a more general notion than measure expansive. Thus

the following is a general result of [17, Theorem B].

Theorem B. LetM be a compact smooth n(≥ 2)-dimensional manifold, and

let f : M → M be a diffeomorphism. If f has a homoclinic tangency associated

to a hyperbolic periodic point p, then there is a g C1-close to f such that g is not

continuum-wise expansive.

3. Proof of Theorem A

Let p and q be hyperbolic periodic points. We write p ∼ q if W s(p) t
Wu(q) ̸= ∅ and Wu(p) t W s(q) ̸= ∅. We say that p and q are homoclinic related

if p ∼ q.

By Oseledet’s theorem, any f -invariant probability µ, almost every point

admits a splitting of tangent space

TxM = E1
x ⊕ · · · ⊕ Ek

x , k = k(x)

and real numbers χ1(x, v) ≤ χ2(x, v) ≤ · · ·χk(x, v) such that

χ(x, v) = lim
n→∞

1

n
log ∥Dfn(x)vi∥,

for every non-zero vi ∈ Ei
x. These objects are uniquely defined and they vary

measurably with the point x. If µ is ergodic then the Lyapunov exponents χi(x, v)

are constant on orbits. Thus they are constant µ-almost every where if µ is

ergodic.

For a homoclinic class Hf (p), Wang [22] proved the following.

Theorem 3.1. For C1 generic f , a homoclinic class Hf (p) either is hyper-

bolic, or contains periodic orbits with arbitrarily long periods that are homoclin-

ically related to p and have a Lyapunov exponent arbitrarily close to 0.

Let p be a periodic point of f . For any δ ∈ (0, 1), we say that p has a δ-weak

eigenvalue if Dpf
π(p) has an eigenvalue λ such that (1−δ)π(p) < |λ| < (1+δ)π(p).

Remark 3.2. A periodic point p of f is hyperbolic if and only if all the

Lyapunov exponents of p are nonzero. Thus a periodic point q has a Lyapunov

exponent arbitrarily close to 0 means that q has a δ-weak eigenvalue.
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The following notion was introduced by Yang and Gan [23]. For any γ > 0,

a C1 curve ζ is called γ-simply periodic curve of f if (i) ζ is diffeomorphic to [0, 1]

and its two endpoints are hyperbolic periodic points of f , (ii) ζ is periodic with

period π(ζ) and the length of ζ, that is, L(f i(ζ)) < γ for any i ∈ {1, 2, · · · , π(ζ)},
where L(ζ) denotes the length of ζ, and (iii) ζ is normally hyperbolic. For the

γ-simply periodic curve and δ-weak eigenvalue, we have the following which was

proved by Yang and Gan [23, Lemma 2.1].

Lemma 3.3. For C1 generic f , and any hyperbolic periodic point p of f , we

have the following:

(a) for any γ > 0, if for any C1-neighborhood U(f) of f some g ∈ U(f) has a

γ-simply periodic curve ς such that two endpoints of ς are homoclinically

related with pg then f has an 2γ-simply periodic curve ζ such that the two

endpoints of ζ are homoclinically related to p.

(b) for any δ > 0, if for any C1-neighborhood U(f) of f , some g ∈ U(f) has a

periodic q ∼ pg with δ-weak eigenvalue, then f has a periodic point qf ∼ p

with 2δ-weak eigenvalue and every eigenvalue of qf is real.

Lemma 3.4. For C1 generic f ∈ Diff(M), if a homoclinic class Hf (p) is

continuum-wise expansive then a periodic point q contained in Hf (p) with homo-

clinically related to p has no a δ-weak eigenvalue.

Proof. Suppose, by contradiction, that there is a periodic point q ∈ Hf (p)

with homoclinically related to p such that q has a δ-weak eigenvalue. For any

γ > 0, there is g C1 close to f such that g has a γ/2-simply periodic curve

ς such that two endpoints of ς are homoclinically related with pg, where pg is

the continuation of p (see [19, Theorem 2]). By Lemma 3.3, f has an γ-simply

periodic curve ζ such that the two endpoints of ζ are homoclinically related to p.

By [4], Hf (p) = Cf (p), and so, we know ζ ⊂ Hf (p). Take e ≥ γ. Then we have

diam(fπ(ζ)i(ζ)) ≤ e, for all i ∈ Z. (1)

Note that f is continuum-wise expansive if and only if fn is continuum-wise

expansive n ∈ Z\{0} (see [7, Proposition 2.6]). Since ζ is γ-simply periodic curve,

we know

fπ(ζ)(ζ) = fπ(ζ)i(ζ) = ζ,

for all i ∈ Z. Then (1) should be continuum-wise expansive which is a contradic-

tion since ζ is not one point set. �
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Proof of Theorem A. By Theorem 3.1, we will prove that for C1 generic

f , if a homoclinic class Hf (p) is measure expansive then there is δ > 0 such that

for any q ∼ p, q has no δ-weak eigenvalue. Suppose, by contradiction, that for

any δ > 0, Hf (p) contains a periodic point q ∼ p with δ-weak eigenvalue. Then

by Lemma 3.4, this is a contradiction. Thus for C1 generic f , if a homoclinic

class Hf (p) is measure expansive then there is no periodic point q ∈ Hf (p) with

homoclinically related to p such that q has a δ-weak eigenvalue, and so, a measure

expansive homoclinic class Hf (p) is hyperbolic. �

Let Λ be a closed f -invariant set. We say that Λ is transitive if there is a

point x ∈ Λ such that ω(x) = Λ, where ω(x) is the omega-limit set of x. If Λ = M

then f is transitive. Note that the homoclinic class Hf (p) is a closed, invariant

and transitive. We say that Λ is locally maximal if there is a neighborhood U of

Λ such that Λ =
∩

n∈Z f
n(U).

Corollary 3.5. For C1 generic f , if a transitive diffeomorphism f is contin-

uum-wise expansive then it is Anosov.

Proof. By [1, Theorem 4.10], for C1 generic f , a locally maximal homoclinic

class Hf (p) is a transitive set. Thus C1 generic f , if f is transitive then it is a

homoclinic class Hf (p). By Theorem A, f is Anosov. �

4. Proof of Theorem B

In this section, we prove that for a diffeomorphism f : M → M with a

homoclinic tangency associated to a hyperbolic point p, if there is a g C1-close

to f such that g exhibits a homoclinic tangency then it is not continuum-wise

expansive. To show that we need the following lemma which was proved by

Pacifico and Vieitez [16] and also founded in [17, Lemma 4.2].

Lemma 4.1 ([16, Proposition 2.6]). Let f : M → M be a diffeomorphism

with a homoclinic tangency associated to a hyperbolic periodic point p. Then

there is a g C1-close to f such that g has a small arc J contained in W s(pg, g)∩
Wu(pg, g), where pg is the continuation of p.

Proof of Theorem B. Let f having a homoclinic tangency associated to

a hyperbolic periodic point p, and let U(f) be a C1-neighborhood of f . Suppose

that for any g ∈ U(f), g is continuum-wise expansive. Since f has a homoclinic

tangency associated to a hyperbolic periodic point p, by Lemma 4.1, there is

h ∈ U(f) which has a small arc J contained in W s(ph, h) ∩Wu(ph, h). Clearly,
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it is not an one point set. Put diam(J ) = α. Let e = α/4 be a continuum-wise

expansive constant. Since J ⊂ W s(ph, h) ∩Wu(ph, h), there is N > 0 such that

(i) diamhi(J ) ≤ e/2 for −N ≤ i ≤ N , and (ii) hi(J ) ⊂ W s
e/2(ph, h)∩W

u
e/2(ph, h),

for |i| > N . This means that diamhi(J ) ≤ e for all i ∈ Z. Since J is not an one

point set, this is a contradiction. �
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