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Nullity distributions associated with Chern connection

By NABIL L. YOUSSEF (Giza) and SALAH G. ELGENDI (Benha)

Abstract. The nullity distributions of the two curvature tensors
∗
R and

∗
P of the

Chern connection of a Finsler manifold are investigated. The completeness of the nullity

foliation associated with the nullity distribution NR∗ is proved. Two counterexamples

are given: the first shows that NR∗ does not coincide with the kernel distribution of
∗
R;

the second illustrates that NP∗ is not completely integrable. We give a simple class of

a non-Berwaldian Landsberg spaces with singularities.

1. Introduction

Adopting the pullback approach to Finsler geometry, the nullity distribution

has been investigated, for example, in [1], [2], [14]. In 2011, Bidabad and Refie-

Rad [3] studied a more general distribution called k-nullity distribution. On the

other hand, in 1982, Youssef [12], [13] studied the nullity distributions of the

curvature tensors of Barthel and Berwald connections, adopting the Klein–Grifone

approach to Finsler geometry. Moreover, Youssef et al. [18] studied the nullity

distributions associated to the Cartan connection.

In their paper [17], the present authors investigated the existence and unique-

ness of the Chern connection and studied the properties of its curvature tensors

following the Klein–Grifone approach. In this paper, we investigate the nullity

distributions associated with the Chern connection. We prove the integrability
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and the autoparallel property of the nullity distribution NR∗ of the Chern h-

curvature
∗
R. Moreover, we prove the completeness of the nullity foliation asso-

ciated with NR∗ . We give two interesting counterexamples. The first shows that

the nullity distribution NR∗ does not coincide with the kernel distribution of
∗
R

(NR∗ is a proper sub-distribution of KerR∗). The second shows that NP∗ is not

completely integrable. As a by-product, this allows us to give a simple class of

non-Berwaldian Landsberg spaces with singularities.

2. Notation and Preliminaries

In this section we present a brief account of the basic concepts of Klein–

Grifone’s theory of Finsler manifolds. For details, we refer to references [6], [7],

[8], [13]. We begin with some notational conventions.

Throughout, M is a smooth manifold of finite dimension n. The R-algebra
of smooth real-valued functions on M is denoted by C∞(M); X(M) stands

for the C∞(M)-module of vector fields on M . The tangent bundle of M is

πM :TM −→M , the subbundle of nonzero tangent vectors toM is π : T M −→ M .

The vertical subbundle of TTM is denoted by V (TM). The pull-back of TM over

π is P : π−1(TM) −→ T M . If X ∈ X(M), iX and LX denote the interior product

by X and the Lie derivative with respect to X, respectively. The differential of

f ∈ C∞(M) is df . A vector ℓ-form on M is a skew-symmetric C∞(M)-linear map

L : (X(M))ℓ −→ X(M). Every vector ℓ-form L defines two graded derivations iL
and dL of the Grassman algebra of M such that

iLf = 0, iLdf = df ◦ L (f ∈ C∞(M)),

dL := [iL, d] = iL ◦ d− (−1)ℓ−1diL.

We have the following short exact sequence of vector bundle morphisms:

0 −→ T M ×M TM
γ−→ T (T M)

ρ−→ T M ×M TM −→ 0.

Here ρ := (πT M , π∗), and γ is defined by γ(u, v) := ju(v), where ju is the canonical

isomorphism from TπM (v)M onto Tu(TπM (v)M). Then, J := γ ◦ ρ is a vector 1-

form on TM called the vertical endomorphism. The Liouville vector field on TM

is the vector field defined by C := γ ◦ η, η(u) = (u, u), u ∈ TM .

A differential form ω (resp. a vector form L) on TM is semi-basic if iJXω = 0

(resp. iJXL = 0 and JL = 0), for all X ∈ X(TM). A vector 1-form G on TM
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is called a Grifone connection if it is smooth on T M , continuous on TM and

satisfies JG = J , GJ = −J . The vertical and horizontal projectors v and h

associated with G are defined by v := 1
2 (I −G) and h := 1

2 (I +G).

The almost complex structure determined by G is the vector 1-form F char-

acterized by FJ = h and Fh = −J .

A Grifone connection G induces the direct sum decomposition

TTM = V (TM)⊕H(TM), H(TM) := Im(h).

The subbundle H(TM) is called the G-horizontal subbundle of TTM , the module

of its smooth sections will be denoted by Xh(T M).

A Grifone connection G is homogeneous if [C,G] = 0. The torsion and

the curvature of G are the vector 2-forms t := 1
2 [J,G] and R := −1

2 [h, h], respec-

tively. Note that in the last three equalities the brackets mean Frölicher–Nijenhuis

bracket [5].

A function E : TM −→ R is called a Finslerian energy function if it is of

class C1 on TM and C∞ on T M ; E(u) > 0 if u ∈ T M and E(0) = 0; C ·E = 2E,

i.e., E is 2+-homogeneous; the fundamental 2-form Ω := ddJE has maximal rank.

A Finsler manifold is a manifold together with a Finslerian energy. If (M,E) is

a Finsler manifold, then

(i) there exists a unique spray S for M such that iSΩ = −dE;

(ii) there exists a unique homogeneous Grifone connection on TM with vanishing

torsion, namely G = [J, S], such that dhE = 0 (‘G is conservative’).

We say that S is the canonical spray and G is the canonical connection or Barthel

connection of (M,E).

If (M,E) is a Finsler manifold, then the map g defined by

g(JX, JY ) := Ω(JX, Y ); X,Y ∈ X(T M),

is a metric tensor on V (TM). It can be extended to a metric tensor g on TTM

by defining

g(X,Y ) := g(JX, JY ) + g(vX, vY ) = Ω(X,FY ). (2.1)

Now we recall three famous covariant derivative operators on a Finsler man-

ifold, called also ‘connections’. They are the Berwald connection
◦
D, the Cartan

connection D and the Chern connection
∗
D, given by

◦
DJXJY = J [JX, Y ],

◦
DhXJY = v[hX, JY ],

◦
DF = 0; (2.2)
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DJXJY=
◦
DJXJY+ C(X,Y ), DhXJY=

◦
DhXJY+ C′(X,Y ), DF=0; (2.3)

∗
DJXJY = J [JX, Y ],

∗
DhXJY = v[hX, JY ] + C′(X,Y ),

∗
DF = 0, (2.4)

(X,Y ∈ X(T M)). In the formulas (2.3) and (2.4) C is the Cartan tensor, C′ is the

Landsberg tensor of (M,E). For their definition, see [7], p. 329. The tensors C
and C′ are symmetric, semi-basic and for arbitrary semispray S on TM , we have

C(X,S) = C′(X,S) = 0. (2.5)

Let
∗
R and

∗
P be the h-curvature and the hv-curvature of

∗
D, respectively.

We list some important identities from [17], which will be needed in the sequel.

Below X, Y , Z, W are vector fields, S is the canonical spray on T M .

[hX, hY ] = h(
∗
DhXY −

∗
DhY X)−R(X,Y ); (2.6)

∗
R(X,Y )Z = R(X,Y )Z − C(FR(X,Y ), Z), (2.7)

where R is the h-curvature of D;

∗
P (X,Y )Z =

◦
P (X,Y )Z − (

∗
DJY C′)(X,Z), (2.8)

where
◦
P is the hv-curvature of

◦
D;

∗
R(X,Y )S = R(X,Y ); (2.9)

∗
P (X,Y )S =

∗
P (S, Y )X = C′(X,Y ),

∗
P (X,S)Z = 0; (2.10)

SX,Y,Z{
∗
R(X,Y )Z} = 0; (2.11)

SX,Y,Z{(
∗
DhXR)(Y, Z)} = SX,Y,Z{C′(FR(X,Y ), Z)}; (2.12)

SX,Y,Z{(
∗
DhX

∗
R)(Y,Z)} = SX,Y,Z{

∗
P (X,FR(Y, Z))}; (2.13)

(
∗
DhX

∗
P )(Y, Z)− (

∗
DhY

∗
P )(X,Z) + (

∗
DJZ

∗
R)(X,Y ) =

∗
P (X,FC′(Y, Z))

−
∗
P (Y,FC′(X,Z)); (2.14)

If R = 0, then
∗
R(X,Y, Z,W ) =

∗
R(Z,W,X, Y ), (2.15)

where
∗
R(X,Y, Z,W ) := g(

∗
R(X,Y )Z, JW ).
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3. Nullity distribution of the Chern h-curvature

In this section, we investigate the nullity distribution of the Chern connection.

It should be noted that the nullity distributions of the Barthel, Berwald and

Cartan connections have already been studied in [12], [13], [18], respectively.

First, we study the nullity distribution of the h-curvature tensor.

Definition 3.1. Let
∗
R be the h-curvature tensor of the Chern connection.

The nullity space of
∗
R at a point z ∈ TM is the subspace of Hz(TM) defined by

NR∗(z) := {v ∈ Hz(TM) |
∗
Rz(v, w) = 0, for all w ∈ Hz(TM)}.

The dimension of NR∗(z), denoted by µR∗(z), is the nullity index of
∗
R at z. If

the nullity index µR∗ is constant, then the map NR∗ : z 7→ NR∗(z) defines a

distribution NR∗ of rankµR∗ , called the nullity distribution of
∗
R. Any smooth

section in the nullity distribution NR∗ is called a nullity vector field. We denote

by Γ(NR∗) the C∞(TM)-module of the nullity vector fields. We shall assume

that µR∗ ̸= 0 and µR∗ ̸= n.

Let NR∗(x) := π∗(NR∗(z)) if π(z) = x. Then NR∗(x) isomorphic to NR∗(z)

via the isomorphism π∗ �Hz(TM).

Definition 3.2. The kernel of
∗
R at the point z ∈ TM is defined by

KerR∗(z) := {u ∈ Hz(TM) |
∗
Rz(v, w)u = 0, for all v, w ∈ Hz(TM)}.

We have KerR∗(x) = π∗(KerR∗(z)); x = π(z).

Proposition 3.3. The nullity distribution NR∗ has the following properties:

(1) NR∗ ̸= ϕ and KerR∗ ̸= ϕ.

(2) NR∗ ⊆ NR, where NR is the nullity distribution of the curvature R of the

Barthel connection.

(3) NR∗ ⊆ KerR∗ .

(4) If the canonical spray S belongs to Γ(NR∗), then R = 0.

(5) If X ∈ Γ(NR∗), then [C,X] ∈ Γ(NR∗) and, consequently, [C,X] ∈ Γ(NR).

Proof. (2) Let X be a nullity vector field. Using (2.9), we have

X ∈ Γ(NR∗) =⇒
∗
R(X,Y )Z = 0 for all Y, Z ∈ X(TM)

=⇒
∗
R(X,Y )S = 0 for all Y ∈ X(TM)
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=⇒ R(X,Y ) = 0 for all Y ∈ X(TM)

=⇒ X ∈ Γ(NR).

(3) Let Z ∈ Γ(NR∗), then, by (2.11), we have SX,Y,Z{
∗
R(X,Y )Z} = 0. Since

∗
R(Y, Z)X =

∗
R(Z,X)Y = 0, then the result follows.

(4) This is an immediate consequence of (2.9).

(5) Let X ∈ Γ(NR∗). Since
∗
DC

∗
R = 0 [17], we get (

∗
DC

∗
R)(X,Y ) = 0,

which leads to
∗
R(

∗
DCX,Y ) = 0. Using (2.4), we have

∗
R([C,X], Y ) = 0. By the

homogeneity of h, [C, h] = 0, from which [C, hX] = h[C,X]. That is, [C, hX] is

horizontal. Hence, [C,X] ∈ Γ(NR∗). Consequently, by (2), [C,X] ∈ Γ(NR). �

It is important to note that the reverse inclusion in the property (3) of

Proposition 3.3 is not true; that is, KerR∗ ̸⊂ NR∗ . This is shown by the next

example in which the calculations are performed by using [15].

Example 3.4. Let M = {(x1, x2, x3, x4) ∈ R4 | x2 > 0} and

U = {(x1, . . . , x4; y1, . . . , y4)∈R4 ×R4 : y1 ̸= 0, y2 ̸=0} ⊂ TM . Define F on U by

F (x, y) := ((x2)
2
(y1)

4
+ (y2)

4
+ (y3)

4
+ (y4)

4
)1/4.

According to [16], the nullity distribution of the Cartan h-curvature R of

(M,F ) is

NR = {sh3 + th4 ∈ Xh(T M) | s, t ∈ R} (3.1)

and the kernel distribution kerR of R is

kerR =

{
s

(
y1

y2
h1 + h2 +

x2(y1)
4
+ (y2)

4
+ 2(y3)

4
+ 2(y4)

4

y2(y4)
3 h4

)

+t

(
h3 −

(y3)
3

(y4)
3h4

)
∈ Xh(T M) | s, t ∈ R

}
, (3.2)

where hi :=
∂

∂xi −Nm
i

∂
∂ym form a basis of Xh(T M).

Now, by using the NF-package [15], we find that the nullity distribution

NR∗ is

NR∗ = {sh3 + th4 ∈ Xh(T M) | s, t ∈ R}. (3.3)

and the kernel distribution KerR∗ of
∗
R is

KerR∗ =

{
r

(
2y1

y2
h1 + h2

)
+ sh3 + th4 ∈ Xh(T M) | r, s, t ∈ R

}
. (3.4)

Comparing (3.3) and (3.4) we see that KerR∗ can not be a sub-distribution ofNR∗ .
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Theorem 3.5. The nullity distribution NR∗ of the Chern h-curvature and

the nullity distribution NR of the Cartan h-curvature coincide.

Proof. Let X ∈ Γ(NR∗). Then, by (2.7) and Proposition 3.3 (2), X ∈
Γ(NR). Hence NR∗ is a subset of NR. Conversely, let X ∈ Γ(NR). Then, by

(2.7) and by NR ⊂ NR [18], we get X ∈ Γ(NR∗), whence, NR ⊂ NR∗ . �

Remark 3.6. The above example shows that NR∗ ⊂ KerR∗ and the reverse

inclusion is false by (3.3), (3.4). It also shows that although NR∗ = NR (see (3.1)

and (3.3)), KerR∗ ̸= KerR by (3.2), (3.4). In view of the above theorem, the re-

verse inclusion in (2) of Proposition 3.3 is not true either: NR ̸⊂ NR = NR∗ [16].

Definition 3.7. The conullity space of the h-curvature tensor at z, denoted

by NR∗
⊥(z), is the orthogonal complement of NR∗ in Hz(TM), where the orthog-

onality is taken with respect to the metric g defined by (2.1).

Proposition 3.8. For each point z ∈ TM , either µR∗(z) = n or µR∗(z) ≤
n− 2. Consequently, dimKerR∗ > n− 2.

Proof. If µR∗(z) ̸= n, then there is a non-zero horizontal vector v /∈ NR∗(z).

It follows that there is a vector w ∈ Hz(TM) such that
∗
Rz(w, v) ̸= 0 and so

∗
Rz(v, w) ̸= 0. Then v, w /∈ NR∗(z) and hence v, w ∈ NR∗

⊥(z). By the anti-

symmetry of
∗
R, the vectors v and w are independent. Thus, dimNR∗

⊥(z) ≥ 2.

Consequently, µR∗(z) ≤ n− 2. �

Proposition 3.9. If R = 0, then Im(
∗
R) = (JNR∗)⊥. Consequently,

rank(
∗
R) = n− µR∗ .

Proof. For all X ∈ Γ(NR∗) and Y, Z,W ∈ Xh(T M), we have

g(
∗
R(Y, Z)W,JX) =

∗
R(Y, Z,W,X) =

∗
R(W,X, Y, Z) (by (2.15))

= −
∗
R(X,W, Y, Z) = −g(

∗
R(X,W )Y, JZ)

= 0 (since X is a nullity vector field),

as wanted. �

As a direct consequence of Theorem 3.5 and the fact that NR is completely

integrable [18], we have the following result.

Corollary 3.10. Let µR∗ be constant on an open subset U of TM . The

nullity distribution z 7→ NR∗(z) is completely integrable on U .
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According to the Frobenius theorem, there exists a foliation of M by µR∗-

dimensional maximal connected submanifolds as leaves, such that the nullity space

at a point x ∈ M is the tangent space to the leaf at x. We call the foliation induced

by the nullity distribution NR∗ the nullity foliation and denote it again by NR∗ .

So, by Corollary 3.10, we have the following result.

Theorem 3.11. The leaves of the nullity foliations NR∗ and NR are auto-

parallel submanifolds with respect to the Chern connection.

Proof. The fact that NR∗ is auto-parallel with respect to Chern connection

can be proved in a similar manner as the analogous result in [18].

On the other hand, the integrability of the nullity distribution NR of the

curvature of Barthel connection has been proved in [12]. We show that if X,Y ∈
Γ(NR), then

∗
DXY ∈ Γ(NR). By (2.12), we have

SX,Y,Z{(
∗
DXR)(Y, Z)} = SX,Y,Z{C′(Z,FR(X,Y ))}.

Since X,Y ∈ Γ(NR), SX,Y,Z{(
∗
DXR)(Y, Z)} = 0. Consequently, R(

∗
DXY, Z) = 0

for every vector field Z ∈ X(TM) and
∗
DXY ∈ Γ(NR). �

Due to the torsion-freeness of the Levi–Civita connection in Riemannian

geometry, the two concepts ‘autoparallel submanifold’ and ‘totally geodesic sub-

manifold’ coincide [9]. This is not true in Finsler geometry. However, every

auto-parallel submanifold is totally geodesic [4]. So, we have:

Corollary 3.12. The leaves of the nullity foliations NR and NR∗ are totally

geodesic submanifolds with respect to the Chern connection.

Theorem 3.13. If R = 0, then the two distributions NR∗ and KerR∗ coin-

cide.

Proof. By Proposition 3.3 (3), we always have NR∗ ⊂ KerR∗ . Let X ∈
Γ(KerR∗) and let Y, Z,W be vector fields on TM , then by (2.15), we have

∗
R(Y,Z)X = 0 =⇒ g(

∗
R(Y,Z)X, JW ) = 0

=⇒
∗
R(Y, Z,X,W ) = 0

=⇒
∗
R(X,W, Y, Z) = 0

=⇒ g(
∗
R(X,W )Y, JZ) = 0

=⇒
∗
R(X,W )Y = 0

=⇒ X ∈ Γ(NR∗),
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thus KerR∗ ⊂ NR∗ . �

Theorem 3.14. Let (M,E) be a complete Finsler manifold and U the open

subset of M on which µR∗ takes its minimum. If R vanishes, then every integral

manifold of the nullity foliation NR∗ in U is complete.

Proof. The proof is inspired by [2], taking into account the fact that the

two spaces NR∗(z) and NR∗(x), x = π(z), are isomorphic. Let N be an integral

manifold of the nullity foliation NR∗ in U . To prove that N is complete, it suffices

to show that every geodesic γ : [0, c) → N on N can be extended to a geodesic

γ̃ : [0,∞) → N on N . Suppose that such a geodesic extension γ̃ does not exist.

As N is totally geodesic, by Corollary 3.12, γ is a geodesic on M and thus has

a geodesic extension γ̃ : [0,∞) → M such that γ = γ̃ ∩ N . It follows that

p := γ̃(c) /∈ U . Let p0 := γ(0) = γ̃(0) and set r0 := µR∗(p0), the dimension

of the nullity space NR∗(p0). Since µR∗ is positive and minimal on U , then

µR∗(p) > r0 > 0. Now, consider a basis B = {e1, . . . , er0 , er0+1, . . . , en} for Tp0M

such that {e1, . . . , er0} is a basis for NR∗(p0) and e1 is tangent to γ at p0 = γ(0).

Using the system of differential equations

∗
DFi

dt
= 0, Fi(0) = ei, i = 1, 2, . . . , n,

the basis B can be translated into a parallel frame (F1, . . . , Fr0 , Fr0+1, . . . , Fn)

along γ̃. Then (F1, . . . , Fr0) is a basis for the nullity space at every point γ̃(t)

in U ∩ V for some neighborhood V of γ̃(t) on M . Since µR∗(p) > r0, there is a

vector field Fa along γ̃, for a fixed integer a in the range r0 + 1, . . . , n, such that

for every t ∈ [0, c), we have

Fa(γ(t)) /∈ NR∗(γ(t)), Fa(p) ∈ NR∗(p). (3.5)

Now, let ̂̃γ be the natural lift of γ̃ to T M and {F̂1, . . . , F̂r0 , F̂r0+1, . . . , F̂n}
the basis of Ĥ̃γ(t)TM such that π∗(F̂i) = Fi. Let ϕ

h
ijk be the functions defined by

∗
R(F̂i, F̂j)F̂k = ϕh

ijk

∂

∂yh
. (3.6)

By (2.13), taking into account that R = 0, we have

(
∗
DhX

∗
R)(Y, Z) + (

∗
DhY

∗
R)(Z,X) + (

∗
DhZ

∗
R)(X,Y ) = 0.

Plugging F̂1, F̂i and F̂j instead of X, Y and Z, where i, j = r0 + 1, . . . , n, we get

(
∗
DF̂1

∗
R)(F̂i, F̂j) + (

∗
DF̂i

∗
R)(F̂j , F̂1) + (

∗
DF̂j

∗
R)(F̂1, F̂i) = 0.
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Since F̂1 ∈ NR∗ and
∗
T (hX, hY ) = R(X,Y ) = 0, the last equality takes the form

∗
DF̂1

∗
R(F̂i, F̂j) +

∗
R(F̂j , [F̂1, F̂i]) +

∗
R(F̂i, [F̂j , F̂1]) = 0.

Applying the above equation on F̂a, we get

∗
DF̂1

∗
R(F̂i, F̂j)F̂a +

∗
R(F̂j , [F̂1, F̂i])F̂a +

∗
R(F̂i, [F̂j , F̂1])F̂a = 0. (3.7)

Since, [F̂1, F̂i] is horizontal, it can be written in the form [F̂1, F̂i] = ξk1iF̂k + ξµ1iF̂µ,

where k = r0 + 1, . . . , n and µ = 1, . . . , r0. Consequently, by (3.6) and (3.7),

noting that F̂µ are null vector fields, we get

(ϕh
ija)

′ + ξk1i ϕ
h
jka − ξk1j ϕ

h
ika = 0 (3.8)

Since Fa is a nullity vector field at p, then for the fixed index a, ϕh
lma(p) = 0,

where l,m = r0 +1, . . . , n. Hence, the differential equations (3.8) with the initial

condition ϕh
lma(p) = 0 imply that the functions ϕh

lma vanish identically. As R = 0,

Theorem 3.13 and (3.6) give rise to

Fa(γ(t)) ∈ NR∗(γ(t)), for all t ∈ [0, c] (3.9)

Now (3.5) and (3.9) lead to a contradiction. Consequently, γ can be extended to

a geodesic γ̃ : [0,∞) −→ N . �

4. Nullity distribution of the Chern hv-curvature

In this section we investigate the nullity distribution of the hv-curvature
∗
P of the Chern connection. We show, by a counterexample, that the nullity

distribution NP∗ is not completely integrable. We find a sufficient condition for

NP∗ to be completely integrable.

Definition 4.1. Let
∗
P be the hv-curvature of the Chern connection. The

nullity space of
∗
P at a point z ∈ TM is a subspace of Hz(TM) defined by

NP∗(z) := {v ∈ Hz(TM) |
∗
P z(v, w) = 0, for all w ∈ Hz(TM)}.

The dimension of NP∗(z), denoted by µP∗(z), is the nullity index of
∗
P at z.
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Proposition 4.2. The nullity distribution of
∗
P satisfies:

(1) NP∗ ̸= ϕ.

(2) If X ∈ Γ(NP∗), then [C,X] ∈ Γ(NP∗).

(3) If X ∈ Γ(NP∗), then C′(X,Y ) = 0, for all Y ∈ Xh(T M).

(4) If µP∗ = n, then NR∗ = NR◦ , where NR◦ is the nullity distribution of the

h-curvature of the Berwald connection [13].

A Finsler manifold is said to be Landsbergian if the Landsberg tensor C′

vanishes or, equivalently, P = 0 [11]. If the nullity index µP∗ takes its maximum,

then by Proposition 4.2 (3), C′ = 0. Consequently, a Finsler manifold (M,E) is

Landsbergian if the nullity index µP∗ achieves its maximum.

Theorem 4.3. A Finsler manifold (M,E) is Landsbergian if and only if the

canonical spray S is a nullity vector field for the distribution NP∗ .

Proof. By (2.10), we have

(M,E) is Landsbergian ⇐⇒ C′ = 0

⇐⇒
∗
P (X,Y )S = 0 for all X,Y ∈ X(TM)

⇐⇒
∗
P (S, Y )X = 0 for all X,Y ∈ X(TM)

⇐⇒ S ∈ Γ(NP∗),

as was to be shown. �

Remark 4.4. The above theorem shows that the canonical spray S does not

belong to the nullity distribution NP∗ except in the Landsbergian case. This is

in contrast to the case of Cartan connection, where the canonical spray always

belongs to the nullity distribution of the Cartan hv-curvature P .

The nullity distribution NP∗ is not completely integrable in general, as is

illustrated by the following example.

Example 4.5. Let U = {(x1, x2, x3; y1, y2, y3) ∈ R3×R3 : y1, y2, y3 ̸= 0, y3 ̸=
4y2} ⊂ TM , where M := R3. Define F on U by

F (x, y) :=
4

√
e−x1x2(y1)

2
(y3)

2
e
− y3

y2 .

By Maple program and NF-package, the adapted horizontal basis vector fields

are given by: h1 = ∂
∂x1 + x2y1

2
∂

∂y1 , h2 = ∂
∂x2 + x1y2

2
∂

∂y2 , h3 = ∂
∂x3 + x1y2

2
∂

∂y3 . Any
∗
P -nullity vector field W must have the form W = sh1 + t(h2 + 2h3), where
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s, t ∈ R. Now, take X,Y ∈ Γ(NP∗) such that X = h1 and Y = h2 + 2h3. Hence,

the bracket [X,Y ] = −y1

2
∂

∂y1 + y2

2
∂

∂y2 + y2

2
∂

∂y3 is vertical and, consequently, NP∗

is not completely integrable.

Theorem 4.6. Let µP∗ be constant on an open subset U of TM . The nullity

distribution NP∗ is completely integrable on U if and only if R(X,Y ) = 0 and

(
∗
DJZ

∗
R)(X,Y ) = 0, for all X,Y ∈ Γ(NP∗).

Proof. Necessity. Let NP∗ be completely integrable. Then, if X,Y ∈Γ(NP∗),

the bracket [hX, hY ] is horizontal, thus, R(X,Y ) = 0. Also, by (2.14) and the

fact that
∗
P ([hX, hY ], Z) = (

∗
DhX

∗
P )(Y,Z) − (

∗
DhY

∗
P )(X,Z) = 0 (by (2.6)), we

have (
∗
DJZ

∗
R)(X,Y ) = 0, for all X,Y ∈ Γ(NP∗), for all Z ∈ X(TM).

Sufficiency. Let R(X,Y ) = 0 and (
∗
DJZ

∗
R)(X,Y ) = 0 for all X,Y ∈ Γ(NP∗).

As 0 = R(X,Y ) = −v[hX, hY ] = −v[X,Y ], the bracket [X,Y ] is horizontal.

Making use of (2.6) and (2.14), we get

(
∗
DhX

∗
P )(Y,Z)− (

∗
DhY

∗
P )(X,Z) = 0 =⇒

∗
P (

∗
DXY −

∗
DY X,Z) = 0

=⇒
∗
P ([X,Y ] +R(X,Y ), Z) = 0

=⇒
∗
P ([X,Y ], Z) = 0

=⇒ [X,Y ] ∈ Γ(NP∗).

Hence NP∗ is completely integrable. �

By the property
∗
P (X,Y )Z =

∗
P (Z, Y )X we have the following result.

Theorem 4.7. The nullity distribution NP∗ and the kernel distribution

KerP∗ coincide.

A Finsler manifold in which the Chern hv-curvature tensor
∗
P vanishes is

called a Berwald space [11]. It is well known that every Berwald space is a

Landsberg space, but it is not known whether the converse is true. In [10],

Shen introduced a class of non-regular Finsler metrics which is Landsbergian and

not Berwaldian. The calculations are not easy, especially, if one wants to study

some concrete examples. Here, by using Maple program together with the results

of [10] and [15], we give a simple class of proper non-regular non Berwaldian

Landsbergian spaces.
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Example 4.8. Let M = R3, U = {(x1, x2, x3; y1, y2, y3) ∈ R3 × R3 : y2 > 0,

y3 > 0} ⊂ TM . Define F on U by

F (x, y) := f(x1)

√
(y1)

2
+ y2y3 + y1

√
y2y3 e

1√
3
arctan

(
2y1√
3y2y3

+ 1√
3

)
.

By Example 4.8, for any positive smooth function f on R, the Landsberg

tensor of (M,F ) vanishes (or equivalently, the hv-curvature P of the Cartan

connection vanishes) and hence the class is Landsbergian. On the other hand,

the hv-curvature
∗
P of the Chern connection does not vanish and hence the class

is not Berwaldian. So we can confirm:

Theorem 4.9. There are non-regular Landsberg spaces which are not Ber-

waldian.

It should finally be noted that the details of Maple calculations throughout

the paper are available at arXiv: 1410.0193v4 [math. DG].

References
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