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Local degrees of simplicial mappings

By YU. A. SHASHKIN (Ekaterinburg)

In this paper we give a difference formula for local degrees of a sim-
plicial mapping between pseudomanifolds (Theorem 1). This formula gen-
eralizes combinatorial lemmas of Sperner [8] and Tucker [9], as well as
some results of Fan [4,5].

§1 We begin with recalling the necessary definitions. A finite non more
than n-dimensional simplicial complex Kn is said to be an n-dimensional
simplicial pseudomanifold (or briefly, n-pseudomanifold), if: 1) every sim-
plex (of any dimension) of Kn is a face of at least one n-simplex of Kn,
2) every (n − 1)-simplex of Kn is a face of at most two n-simplices of
Kn, 3) given two n-simplices σn and τn of Kn, there is a finite chain
{σn = σn

1 , σn
2 , . . . , σn

m−1, σ
n
m = τn} of n-simplices, such that the inter-

section of any two neighboring simplices of the chain is their common
(n− 1)-face.

An n-pseudomainfold Kn may or may not have a boundary ∂Kn. By
definition, the boundary ∂Kn of Kn consists of all its (n − 1)-simplices
σn−1 (and their faces) such that σn−1 is a face of exactly one n-simplex of
Kn.

A pseudomanifold Kn is said to have a coherent orientation, if: 1) all
its n-simplices and (n− 1)-simplices are oriented, 2) whenever an (n− 1)-
simplex σn−1 ∈ Kn is a common face of two n-simplices σn

1 and σn
2 , the

orientations of σn
1 and σn

2 induce opposite orientations on σn−1, 3) every
simplex σn−1 ∈ ∂Kn has the orientation induced by that of the unique
simplex σn incident to σn−1. A pseudomanifold is said to be orientable if
it has a coherent orientation.

Let Kn and Mn be two n-pseudomanifolds. A mapping f : Kn →
Mn is called simplicial , if: 1) for every simplex σm ∈ Kn with vertices
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v0, v1, . . . , vm the points f(v0), f(v1), . . . , f(vm) are vertices (not necessar-
ily distinct) of some simplex of Mn, 2) the mapping f is linear on every
simplex σm ∈ Kn.

Let Kn and Mn be simplicial n-pseudomanifolds, each with a fixed
coherent orientation, and f : Kn → Mn a simplicial mapping. Let us call
an n-simplex σn ∈ Kn positive: σn > 0 (resp., negative: σn < 0) if f maps
it onto an n-simplex τn ∈ Mn with preserving (resp., with reversing) of
the orientation. For a fixed n-simplex τn ∈ Mn, the difference between
the numbers of positive and negative n-simplices of Kn that are mapped
onto τn, is said to be the local degree of the mapping f on τn. If these
differences are the same for all n-simplices τn ∈ Mn, their common value
is called the degree deg f of the simplicial mapping f : Kn → Mn.

If the pseudomanifolds Kn and Mn do not have a coherent (or in
general any) orientation, it is natural to speak about degree (or local de-
gree) modulo 2; it assumes the values 0 and 1 and defines the parity of the
number of simplices σn ∈ Kn that are mapped onto a simples τn ∈ Mn.

All statements of this paper in which the notion of degree is used, are
formulated and proved for the oriented case: to preserve their validity in
the non-oriented case, all equalities should be reduced modulo 2.

§2. Let f : Kn → Mn be a simplicial mapping. Let us consider a
finite chain

(1) {τn
1 , τn−1

1 , τn
2 , τn−1

2 , . . . , τn−1
p−1 , τn

p }

of alternately n- and (n − 1)-simplices of Mn, such that every (n − 1)-
simplex is the common face of the two neighboring n-simplices and these
two n-simplices are distinct. We assume in what follows that the simplex
τn−1
i (i = 1, . . . , p−1) in the chain (1) has the orientation induced by that

of the simplex τn
i+1. Let d(τn) denote the local degree of the mapping f

on τn ∈ Mn, and let d(τn−1
i ) denote the local degree of the restriction

f | ∂Kn on τn−1
i (i = 1, . . . , p − 1). Here f | ∂Kn means the mapping

f | ∂Kn : ∂Kn → skeln−1M
n.

Theorem 1. We have the following equality

(2) d(τn
p )− d(τn

1 ) =
p−1∑

i=1

d(τn−1
i ).

Since the left hand side of (2) depends on τn
1 and τn

p only, the right
hand side is independent of the choice of the chain (1) joining the simplices
τn
1 and τn

p .
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Proof. We first consider the case when the chain (1) is of the form

(1a)
{
τn
1 , τn−1, τn

2

}
.

Let σn
1 ∈ Kn be a simplex such that either f(σn

1 ) = τn
1 or f(σn

1 ) = τn
2 and

its face σn−1
1 is mapped by f onto τn−1. It follows immediately from the

definition of a simplicial mapping that in the pseudomanifold Kn there is
either a chain

(3)
{
σn

1 , σn−1
1 , σn

2 , σn−1
2 , . . . , σn−1

m−1, σ
n
m

}
, m ≥ 2,

such that: a) no simplex σn−1
i (i = 1, . . . , m − 1) lies on the boundary

∂Kn, b) all intermediate simplices are mapped onto τn−1:

f(σn−1
1 ) = f(σn

2 ) = · · · = f(σn
m−1) = f(σn−1

m−1) = τn−1,

and c) one of the following three conditions holds:

f(σn
1 ) = τn

1 , f(σn
m) = τn

2 ,(3.1)

f(σn
1 ) = f(σn

m) = τn
1 ,(3.2)

f(σn
1 ) = f(σn

m) = τn
2 ,(3.3)

or a chain

(4) {σn
1 , σn−1

1 , σn
2 , σn−1

2 , . . . , σn
m, σn−1

m }, m ≥ 1,

such that: a) no simplex σn−1
i , i < m, lies on the boundary ∂Kn, b)

the simplex σn−1
m lies on this boundary, c) all simplices except for σn

1 , are
mapped onto τn−1:

f(σn−1
1 ) = f(σn

2 ) = · · · = f(σn
m) = f(σn−1

m ) = τn−1,

and d) one of the following two conditions holds:

f(σn
1 ) = τn

1 ,(4.1)

f(σn
1 ) = τn

2 .(4.2)

It is easy to see that the following implications are valid:
in the chain (3.1): (σn

1 > 0) =⇒ (σn
m > 0),

(σn
1 < 0) =⇒ (σn

m < 0),
in the chain (3.2) or (3.3): (σn

1 > 0) =⇒ (σn
m < 0),

(σn
1 < 0) =⇒ (σn

m > 0),
in the chain (4.1): (σn

1 > 0) =⇒ (σn−1
m < 0),

(σn
1 < 0) =⇒ (σn−1

m > 0),
in the chain (4.2): (σn

1 > 0) =⇒ (σn−1
m > 0),

(σn
1 < 0) =⇒ (σn−1

m < 0)
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(let us recall that in the chain (1a) the orientation of the simplex τn−1 is
induced by that of τn

2 ).
According to these implications, we shall say that the chain of type

(3.1) defines a path joining +τn
1 with +τn

2 or −τn
1 with −τn

2 , the chain of
type (3.2) or (3.3) defines a path joining +τn

1 with −τn
1 or +τn

2 with −τn
2 ,

and so on. Therefore we obtain paths of the following eight types:

from + τn
1 to + τn

2 , from − τn
1 to − τn

2 ,

from + τn
1 to − τn

1 , from + τn
2 to − τn

2 ,

from + τn
1 to − τn−1, from − τn

1 to + τn−1,

from + τn
2 to + τn−1, from − τn

2 to − τn−1.

Since the directions of these paths are inessential, we do not distin-
guish between the path from +τn

1 to +τn
2 and the path from +τn

2 to τn
1 ,

and so on. Let αj (j = 1, 2, . . . , 8) denote the number of paths of the
corresponding type in the pseudomanifold Kn. Then we have

d(τn
1 ) = α1 − α2 + α3 − α3 + α5 − α6,

d(τn
2 ) = α1 − α2 + α4 − α4 + α7 − α8,

d(τn−1) = −α5 + α6 + α7 − α8,

and therefore
(5) d(τn

2 )− d(τn
1 ) = d(τn−1).

This proves the equality (2) in the particular case p = 2. We can obtain
the general case by summing equalities of type (5) over all simplices τn−1

i
(i = 1, . . . , p− 1).

Corollary 1. Let f : Kn → Mn be a simplicial mapping such that
f(∂Kn) ⊆ ∂Mn (in particular, let ∂Kn be empty). Then the local degrees
are the same for all simplices τn ∈ Mn. In other words, the mapping f
has the degree deg f .

§3. In what follows (except for Corollary 6) the boundaries ∂Kn and
∂Mn of the pseudomanifolds Kn and Mn are supposed to be (n − 1)-
pseudomanifolds with the orientations induced by the orientations of Kn

and Mn respectively. Moreover, if we have f : Kn → Mn and f(∂Kn) ⊆
∂Mn, then f | ∂Kn is considered as a map ∂Kn → ∂Mn, and deg(f |
∂Kn) is understood in this sense.

Theorem 2. Let the boundaries ∂Kn and ∂Mn be non-empty (n−1)-
pseudomanifolds. Let f : Kn → Mn be a simplicial mapping such that
f(∂Kn) ⊆ ∂Mn. Then there exists the degree deg(f | ∂Kn) and

(6) deg f = deg(f | ∂Kn).
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Proof. The existence of deg(f | ∂Kn) follows from Corollary 1 and
the equality ∂∂Kn = 0. The proof of the equality (6) goes by analogy
with the proof of the equality (2), but instead of the chain (1a) we must
consider the chain consisting of an arbitrary simplex τn−1 ∈ ∂Mn and the
unique simplex τn ∈ Mn incident to τn−1.

Since n-simplices degenerate under the simplicial mapping f : Kn →
∂Kn, we deduce from Theorem 2 the following

Corollary 2. For a simplicial mapping f : Kn → ∂Kn the equality
deg(f | ∂Kn) = 0 holds.

Here we consider f | ∂Kn as a mapping ∂Kn → ∂Kn.
Let Kn = σn be a simplex with some triangulation. Since the degree

of the identical mapping id : ∂σn → ∂σn is equal to 1, we obtain from
Corollary 2 the following

Corollary 3. There is no simplicial retraction of a simplex onto its
boundary.

Let Bn+1 = {x ∈ Rn+1 : ‖x‖ ≤ 1} be the unit ball of the space Rn+1

with some (in particular, polyhedral) norm and Sn = {x ∈ Rn+1 : ‖x‖=1}
the boundary of this ball. A continuous mapping f : Sn → Sn is said
to be odd if f(−x) = −f(x) for every x ∈ Sn. The classic theorem of
Borsuk ([2], Satz 1) states that the degree of every odd mapping is odd.
The simplicial version of this theorem and Corollary 2 imply

Corollary 4. There is no simplicial mapping f : Bn+1 → Sn such
that its restriction f | Sn were odd.

This is just the combinatorical lemma of Tucker [9] expressed in
terms of mappings.

§4. Let us show that Theorem 2 contains the combinatorial lemma
of Sperner in its non-oriented [8] and orienred [3] variants. This lemma
is usually formulated in terms of labels corresponding to vertices of a tri-
angulation of a simplex. We formulate it in terms of simplicial mappings,
this being equivalent to the original form. Let σn be an n-simplex. We
shall denote it by σn

1 or σn
2 according to whether or not it has a non-trivial

triangulation.
Sperner’s lemma. Let f : σn

1 → σn
2 be a simplicial mapping such

that every (n− 1)-face of σn is mapped into itself. Then there is an n-face
of triangulation σn

1 that is mapped onto σn
2 . More precisely, deg f = 1.

It is easy to see that under the assumptions of the lemma, each (n−1)-
face of σn, as well as each face of any lower dimension, is mapped into
itself. Now the proof goes by multiple application of Theorem 2 with the
transition from faces of lower to faces of higher dimension.

We can deduce from Theorem 2 also the following analogue of Sper-
ner’s lemma.
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Corollary 5 (Fan [6], Lemma 2). Let f : σn
1 → σn

2 be a simplicial
mapping such that f(∂σn

1 ) ⊆ ∂σn
2 . Then, for some integer k, 0 ≤ k ≤ n,

there is a k-face σk of the simplex σn
2 and a k-face τk of its triangulation

σn
1 , such that τk ⊆ σk and f(τk) = σk.

Proof. Let these faces be absent for every k, 0 ≤ k ≤ n − 1. Let
f | ∂σn

1 be the restriction of the mapping f to ∂σn
1 that is homeomorphic

to the (n−1)-dimensional sphere. This restriction maps the boundary ∂σn

into itself without fixed points. Therefore we have deg(f | ∂σn) = (−1)n

([7], p. 136). Then Theorem 2 implies deg f = (−1)n 6= 0, and hence there
is an n-face of triangulation σn

1 that is mapped onto σn
2 .

The next Corollary generalizes Lemma 1 from [1] which is in turn
a generalization of Sperner’s lemma. Here f | Kn−1

i means a mapping
Kn−1

i → ∂Mn and deg(f | Kn−1
i ) should be understood in this sense.

Corollary 6. Let the boundary ∂Mn be an (n − 1)-pseudomanifold,
let the boundary ∂Kn consists of finitely many of non-empty pairwise
disjoint (n− 1)-pseudomanifolds:

∂Kn = Kn−1
1 ∪ · · · ∪Kn−1

p , p ≥ 1,

and suppose that for a simplicial mapping f : Kn→Mn we have f(∂Kn) ⊆
∂Mn. Then there exist deg(f | Kn−1

1 ), . . . , deg(f | Kn−1
p ) and

deg f = deg(f | Kn−1
1 ) + · · ·+ deg(f | Kn−1

p ).

The proof goes by analogy with the proof of Theorem 1. Now one
must consider the chains of type (4.1) only and remark that the set of
these chains is partitioned into non-intersecting classes corresponding to
connected components of the boundary ∂Kn.

§5. Our Theorem 1 generalizes the particular case (when m = n) of
Fan’s Theorem 1 [5], which concerns the oriented variant of the problem
(concerning the non-oriented variant see Theorem 1 in [4]). We shall verify
this only in the simplest case when m = n = 2. In this case, Fan considers
a simplicial mapping of a pseudomanifold K2 into the unit sphere S2 of
the space R3 equipped with the octahedral triangulation. Our chain (1) is
here of the form

c{−e1, e2,−e3}, c{e2,−e3}, c{e1, e2,−e3}, c{e1,−e3},
c{e1,−e2,−e3}, c{e1,−e2}, c{e1,−e2, e3},

where {e1, e2, e3} denotes the system of unit coordinate vectors in the space
R3 and c is the operator of the convex hull. Fan defines the orientation of
the sphere S2 by means of the following convention: a 2-face (or a 1-face)
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of the sphere is oriented in the positive sense if the labels corresponding
to its vertices increase in absolute value. This orientation agrees with the
coherent one on the faces c{−e1, e2,−e3} and c{e1,−e2,−e3}, but they are
opposite on the faces c{e1, e2,−e3} and c{e1,−e2, e3}. This implies the
appearance of the factor (−1)n in formula (5) of Theorem 1 [5]. Now it is
clear that our Theorem 1 generalizes the particular case of Fan’s theorem.
To obtain the proof of his general case (when m > n), one must take finitely
many of our chains (1) and then sum the equalities (2) corresponding to
these chains.

The author would like to thank the referee for helpful remarks.
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