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Discrete generalized Wirtinger’s inequalities

By LÁSZLÓ LOSONCZI (Debrecen)

Abstract. Let n, k be fixed natural numbers 1 ≤ k ≤ n. We study the following

generalized weighted discrete inequalities of Wirtinger type:

α
(i)
±

n∑
j=0

pj |xj |2 ≤
∑
j

(i)rj |xj ± xj+k|2 ≤ β(i)
±

n∑
j=0

pj |xj |2

where x0, x1, . . . , xn are arbitrary complex numbers, p0, p1, . . . , pn and r−k, . . . , r0,

r1, . . . , rn, . . . , rn+k are given positive weights, α
(i)
± , β

(i)
± are constants and either the

+ or the − sign has to be taken. i = 1, 2, 3, 4 indicates the type of the summation, for

example

∑
j

(2)rj |xj ± xj+k|2 =

n∑
j=0

rj |xj ± xj+k|2 with xn+1 = · · · = xn+k = 0.

Our aim is to find the best constants α
(i)
± , β

(i)
± .

The weighted versions with positive sign, shift k = 1 and i = 2, 3 were studied by

G. V. Milovanović and I. Z̆. Milovanović [9], the unweighted versions were studied

by the author [6].
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1. Introduction

A version of Wirtinger’s inequality (see e.g. [5], p. 184–187) states that if

x, x′ ∈ L2[0, π], x(0) = x(π) = 0, then∫ π

0

x2(t) dt <

∫ π

0

x′2(t) dt

unless x(t) = A sin t.

Fan, Taussky and Todd [4] studied discrete analogs of Wirtinger’s inequal-

ity. They found the best constants β in the inequalities

∑
j

(xj − xj+1)2 ≥ β
n∑
j=0

x2j (1)

where x0, x1, . . . xn are arbitrary real numbers and the summation on the left

hand side goes from 0 to n − 1, or from 0 to n with xn+1 = 0, or from −1 to

n with x−1 = xn = 0. They also considered inequalities similar to (1) where

on the left side the first differences xj − xj+1 are replaced by second differences

xj − 2xj+1 + xj+2.

Redheffer [11] gave elementary proofs for some of the inequalities (1).

G. V. Milovanović and I. Z̆. Milovanović [9] considered the weighted

versions of (1) and their reverse inequalities by determining the best constants α,

β in

α

n∑
j=0

pjx
2
j ≤

∑
j

rj(xj − xj+1)2 ≤ β
n∑
j=0

pjx
2
j

where x0, x1, . . . xn are arbitrary real numbers p0, p1, . . . pn; r−1, r0, r1, . . . rn are

given sequences of positive numbers and the sum in the middle term varies ac-

cording to the boundary conditions for the sequence (xj).

The author [6] determined the best constants α
(i)
± , β

(i)
± in

α
(i)
±

n∑
j=0

|xj |2 ≤
∑
j

(i)|xj ± xj+k|2 ≤ β(i)
±

n∑
j=0

|xj |2 (2)

where n, k are fixed natural numbers with 1 ≤ k ≤ n, x0, x1, . . . , xn are ar-

bitrary complex numbers and the summation
∑
j
(i) involves four possibilities

(i = 1, . . . 4). Some related results can be found in [7].

In the above papers the best constants were the smallest and largest eigenval-

ues of suitable multi diagonal matrices. Concerning this see Rutherford [12],
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[13]. Alzer [1] gave short elementary proofs for some of the Fan–Taussky–Todd

inequalities and their converses.

Lunter [8] used discrete Fourier transform technique to prove some inequal-

ities of Fan–Taussky–Todd involving second differences and also obtained some

generalizations.

The aim of this paper is to extend the results concerning (2) to the weighted

case.

2. Weighted Wirtinger’s inequality with special weights

Let n, k be fixed natural numbers 1 ≤ k ≤ n. We study the following

generalized weighted discrete inequalities of Wirtinger type:

α
(i)
±

n∑
j=0

pj |xj |2 ≤
∑
j

(i)rj |xj ± xj+k|2 ≤ β(i)
±

n∑
j=0

pj |xj |2 (3)

where x0,x1, . . . , xn are arbitrary complex numbers, p0,p1, . . . , pn and r−k, . . . , r0,

r1, . . . , rn, . . . , rn+k are given positive weights, α
(i)
± , β

(i)
± are constants and either

the + or the − sign has to be taken.

The upper index i = 1, 2, 3, 4 of the summation sign indicates the type of the

summation

∑
j

(1)rj |xj ± xj+k|2 =

n−k∑
j=0

rj |xj ± xj+k|2,

∑
j

(2)rj |xj ± xj+k|2 =

n∑
j=0

rj |xj ± xj+k|2 with xn+1 = · · · = xn+k = 0,

∑
j

(3)rj |xj ± xj+k|2 =

n∑
j=−k

rj |xj ± xj+k|2 with x−k = · · · = x−1 = 0

= xn+1 = · · · = xn+k,∑
j

(4)rj |xj ± xj+k|2 =

n−k∑
j=−k

rj |xj ± xj+k|2 with x−k = · · · = x−1 = 0.

It is easy to see that apart from the notation of the variables the cases i = 2 and

i = 4 are the same. Thus we shall consider only the cases i = 1, 2, 3. Our aim

is to find the best constants α
(i)
± , β

(i)
± . They depend on n, k and the weights. In

this section we consider the dependence of the best constants on n, k, thus, if

needed, we use the notation α
(i)
± (n, k), β

(i)
± (n, k).
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For instance consider the unweighted inequality with n = 10, k = 3, i = 3

implying that x−3 = x−2 = x−1 = 0 = x11 = x12 = x13 and − sign

α
(3)
− (10, 3)

10∑
j=0

|xj |2 ≤ |x0|2 + |x1|2 + |x2|2 + |x0 − x3|2 + |x1 − x4|2 + |x2 − x5|2

+ |x3 − x6|2 + |x4 − x7|2 + |x5 − x8|2 + |x6 − x9|2 + |x7 − x10|2

+ |x8|2 + |x9|2 + |x10|2 ≤ β(3)
− (10, 3)

10∑
j=0

|xj |2

With division 10 + 1 = 3q + r, 0 ≤ r < 3 we get q = 3, r = 2. Let

x0 = u0, x3 = u1, x6 = u2, x9 = u3

x1 = u4, x4 = u5, x7 = u6, x10 = u7

x2 = u8, x5 = u9, x8 = u10. (4)

With these new variables our inequality can be written as

α
(3)
− (10, 3)(|u0|2 + |u1|2 + |u2|2 + |u3|2 + |u4|2 + |u5|2 + |u6|2 + |u7|2

+ |u8|2 + |u9|2 + |u10|2)

≤ |u0|2 + |u0 − u1|2 + |u1 − u2|2 + |u2 − u3|2 + |u3|2 + |u4|2 + |u4 − u5|2

+ |u5 − u6|2 + |u6 − u7|2 + |u7|2 + |u8|2 + |u8 − u9|2 + |u9 − u10|2 + |u10|2

≤ β(3)
− (10, 3)(|u0|2 + |u1|2 + |u2|2 + |u3|2 + |u4|2 + |u5|2 + |u6|2 + |u7|2

+ |u8|2 + |u9|2 + |u10|2).

We can see that with the new variables inequality (3) is decomposed into the sum

of three inequalities of the same type i = 3 with 4, 4, 3 variables and shift 1. In

these inequalities the best constants are α
(3)
− (3, 1), α

(3)
− (3, 1), α

(3)
− (2, 1) on the left

side and the corresponding beta on the right side. This implies that

α
(3)
− (10, 3) = min{α(3)

− (3, 1), α
(3)
− (2, 1)} = α

(3)
− (3, 1) = α

(3)
−

([
10

3

]
, 1

)
β
(3)
− (10, 3) = max{β(3)

− (3, 1), β
(3)
− (2, 1)} = β

(3)
− (3, 1) = β

(3)
−

([
10

3

]
, 1

)

as clearly α
(i)
± (n, k) is decreasing β

(i)
± (n, k) is increasing in n.
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This method works (essentially with the same proof as above) in the un-

weighted case. Therefore, if pi = ri = 1 for all possible indices then we have for

i = 1, 2, 3

α
(i)
± (n, k) = α

(i)
±

([n
k

]
, 1
)
, β

(i)
± (n, k) = β

(i)
±

([n
k

]
, 1
)
.

In the weighted case this method works only if n+1
k is an integer and the weights

pi, ri satisfy certain proportionality conditions.

Theorem 1. Let n, k be fixed natural numbers with 1 ≤ k ≤ n, let n+1
k = q

be an integer, further pi (i = 0, . . . , q), ri, (i = −1, 0, . . . , q) be arbitrary given

fixed positive weights satisfying the conditions

pj+ik := c(j)pi if j = 0, . . . , k − 1; i = 0, . . . , q − 1

rj+ik := c(j)ri if j = 0, . . . , k − 1; i = −1, 0, . . . , q − 1 (5)

where c(j) (j = 0, . . . , k − 1) are arbitrary positive numbers (i.e. the weights

pj+ik, rj+ik for j = 0, . . . , k − 1 are proportional with the given weights pi, ri,

the numbers c(j) being the proportionality factors). Then for the best constants

in the inequality

α
(i)
± (n, k)

n∑
j=0

pj |xj |2 ≤
∑
j

(i)rj |xj ± xj+k|2 ≤ β(i)
± (n, k)

n∑
j=0

pj |xj |2 (6)

we have

α
(i)
± (n, k) = α

(i)
±

([n
k

]
, 1
)
, β

(i)
± (n, k) = β

(i)
±

([n
k

]
, 1
)

(7)

where α
(i)
±
([
n
k

]
, 1
)
, β

(i)
±
([
n
k

]
, 1
)

are the best constants in the inequality

α
(i)
±

([n
k

]
, 1
) [nk ]∑
j=0

pj |xj |2 ≤
∑
j

(i)rj |xj ± xj+k|2 ≤ β(i)
±

([n
k

]
, 1
) [nk ]∑
j=0

pj |xj |2.

Proof. Introducing new variables us by

uj(q+1)+i := xj+ik if
j = 0, . . . , r − 1; i = 0, . . . , q

j = r, . . . , k − 1; i = 0, . . . , q − 1.

(6) is decomposed into the sum of k inequalities of q =
[
n
k

]
variables with shift 1.

Due to (5) the jth inequality can be obtained as the first one multiplied by c(j).

Therefore (7) holds. �
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3. The general case and its reduction to eigenvalue problem

Let yj =
√
pjxj and

〈y, z〉 =

n∑
j=0

yjzj

be the inner product in the complex unitary n+ 1−space for vectors

y = (y0, . . . , yn)T , z = (z0, . . . , zn)T . Then the middle term of our inequality (3)

changes to

∑
j

(i)

(
rj
pj
|yj |2 ±

rj√
pjpj+k

yj ȳj+k ±
rj√
pjpj+k

ȳjyj+k +
rj
pj+k

|yj+k|2
)

Writing this sum as an inner product 〈M (i)y,y〉 with suitable (n + 1) × (n + 1)

three-diagonal matrices M (i) (i = 1, 2, 3) inequality (3) yields

α
(i)
± ‖y‖2 ≤

〈
M (i)y,y

〉
≤ β(i)

± ‖y‖2. (8)

Assuming n+ 1− 2k ≥ 0 the matrix M (i) is of the form



d
(i)
0 t0

. . .
. . .

d
(i)
k−1

t0 d
(i)
k

t1 d
(i)
k+1

. . .
. . .

. . .

. . . d
(i)
n−k+1 tn−k+1

d
(i)
n−k tn−k

d
(i)
n−k+1

. . .
. . .

tn−k d
(i)
n


where the elements

tj = ± rj√
pjpj+k

(j = 0, . . . , n− k),
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in the side diagonals do not depend on i. The entries m
(i)
jl (j, l = 0, 1, . . . , n) of

M (i) are

m
(i)
jl = {


tl if j = l + k, l = 0, . . . , n− k
0 if 0 < |j − l| 6= k

tj if l = j + k, j = 0, . . . , n− k
d
(i)
j if l = j, j = 0, . . . , n

where the elements in the main diagonal are given by

d
(1)
j =



rj
pj

if j = 0, . . . , k − 1,

rj + rj−k
pj

if j = k, . . . , n− k,

rj−k
pj

if j = n− k + 1, . . . , n,

if n+ 1− k ≥ 0,

d
(1)
j =


rj
pj

if j = 0, . . . , n− k,

0 if j = n− k + 1, . . . , k − 1,
rj−k
pj

if j = k, . . . , n,

if n+ 1− k < 0,

d
(2)
j =


rj
pj

if j = 0, . . . , k − 1,

rj + rj−k
pj

if j = k, . . . , n,

d
(3)
j =

{
rj + rj−k

pj
if j = 0, . . . , n.

Let now A be an Hermitean matrix of order n+1 with eigenvalues λ0 ≤ λ1 ≤ . . . λn
and let z0, z1, . . . , zn be the corresponding eigenvectors.

It is known (see e.g. [2]) that then the inequality

λ0‖y‖2 ≤ 〈Ay,y〉 ≤ λn‖y‖2 (9)

holds for every vector y in the complex unitary n+ 1-space. Equality on the left

side of (9) occurs if and only if y = 0 or y is an eigenvector corresponding to λ0
(if λ0 < λ1, then y is a scalar multiple of z0). Similarly equality occurs on the

right hand side of (9) if and only if y = 0 or y is an eigenvector corresponding

to λn.

Thus the best constants α
(i)
± , β

(i)
± in (3) are the minimal and maximal eigen-

values of M (i).
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4. Eigenvalues and eigenvectors of three-diagonal matrices

The aim of this section is to find the eigenvalues and eigenvectors of three-

diagonal matrices of the form

M(u, t) =



u0 t0
. . .

. . .

uk−1
t0 uk

t1 uk+1
. . .

. . .
. . .

. . .

un−k tn−k
un−k+1

. . .
. . .

tn−k un



.

where t = (t0, . . . , tn−k), u = (u0, . . . , un) and we assumed that n+ 1− 2k ≥ 0.

Let n+ 1 = kq + r (0 ≤ r < k) and rearrange both the rows and columns of

the matrix M(u− λe, t) where e = (1, . . . , 1) in the order of indices

0, k, 2k, . . . , qk; 1, k + 1, 2k + 1, . . . , qk + 1; . . . ;

r − 1, k + r − 1, 2k + r − 1, . . . , qk + r − 1 (10)

r, k+ r, 2k+ r, . . . , (q−1)k+ r; r+ 1, k+ r+ 1, 2k+ r+ 1, . . . , (q−1)k+ r+ 1; . . . ;

k − 1, 2k − 1, 3k − 1, . . . , (q − 1)k + k − 1. (11)

(10) contains r groups of q+ 1 indices while (11) has k− r groups of q indices. If

r = 0, the group (10) is empty and all indices are contained in (11). We used the

same rearrangement to introduce new variables in the proof of Theorem 1. The

rearrangement (10), (11) is not new, it has been applied by the author in [7] and

much earlier by Egerváry and Szász [3].

It is easy to see that the rearranged matrix is of the form

A0(λ)
. . .

Ar−1(λ)

Ar(λ)
. . .

Ak−1(λ)


(12)
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where for 0 ≤ s ≤ r − 1 the matrices As(λ) are (q + 1) × (q + 1) three-diagonal
matrices of the form

us−λ ts 0 0 . . . 0 0 0

ts uk+s−λ tk+s 0 . . . 0 0 0

0 tk+s u2k+s−λ t2k+s . . . 0 0 0

0 0 t2k+s u3k+s−λ . . . 0 0 0
...

...
...

...
. . .

...
...

...

0 0 0 0 . . . t(q−2)k+s u(q−1)k+s−λ t(q−1)k+s

0 0 0 0 . . . 0 t(q−1)k+s uqk+s−λ


while for r ≤ s ≤ k − 1 As(λ) are q × q three-diagonal matrices of similar form

(in the above formula q has to be replaced by q − 1).

From (12) it follows that the determinant D(λ,u, t) of the matrix M(u −
λe, t) can be obtained as

D(λ,u, t) =

k−1∏
s=0

detAs(λ).

For s = 0, . . . , r− 1; j = 0, . . . , q and s = r, . . . , k − 1; j = 0, . . . , q − 1 define

the sequence of polynomials Ps,j byPs,0(λ) = 1, Ps,1(λ) = us − λ,

Ps,j+1(λ) = (ujk+s − λ)Ps,j(λ)− t2(j−1)k+sPs,j−1(λ) (j = 1, 2, . . . , q).
(13)

We claim that detAs(λ) = Ps,q+1(λ) if 0 ≤ s ≤ r − 1,

detAs(λ) = Ps,q(λ) if r ≤ s ≤ k − 1.
(14)

Denote namely the left upper j× j (1 ≤ j ≤ q+ 1) subdeterminant of the matrix

As(λ) by Ps,j(λ). Then Ps,1(λ) = us − λ. Expanding Ps,2(λ) by the last column

we can see that the recursive formula in the second line of (13) holds for j = 1,

if we set Ps,0(λ) = 1.

Expanding the left upper j × j subdeterminant by its last column we can

easily prove the recursive formula in the second line of (13) by induction. Thus

(14) is justified.

Theorem 2. The eigenvalues of the matrix M(u, t) are the zeros of the

polynomials

P0,q+1, P1,q+1, . . . , Pr−1,q+1; Pr,q, Pr+1,q, . . . , Pk−1,q.
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Proof. Our statement follows from (14). �

To formulate the next result we introduce the notations

I0 = {(0, q + 1), (1, q + 1), . . . , (r − 1, q + 1)} ,

I1 = {(r, q), (r + 1, q), . . . , (k − 1, q)} ,

I = I0 ∪ I1.

It is clear that I is exactly the set of indices of the polynomials in Theorem 2.

Theorem 3. Suppose that t0t1 · · · tn−k 6= 0 and the eigenvalue λ of M(u, t)

is such that

Ps,j(λ) = 0 for (s, j) ∈ J(λ),

Ps,j(λ) 6= 0 for (s, j) ∈ I − J(λ)

for some non-empty subset J(λ) of I. Then the components of the eigenvectors

y = (y0, . . . , yn)T corresponding to λ are given by

yjk+s =



Ps,j(λ)Cs for j = 0, . . . , q if (s, q + 1) ∈ J(λ) ∩ I0,

0 for j = 0, . . . , q if (s, q + 1) ∈ (I − J(λ)) ∩ I0,

Ps,j(λ)Cs for j = 0, . . . , q − 1 if (s, q) ∈ J(λ) ∩ I1,

0 for j = 0, . . . , q − 1 if (s, q) ∈ (I − J(λ)) ∩ I1,

(15)

where Cs are arbitrary constants.

Proof. The eigenvectors of M(u, t) corresponding to λ are the solutions

y = (y0, . . . , yn)T of the equation

M(u− λe, t)y = 0. (16)

Rearranging the system (16) in the order of (10), (11) we can see that it decom-

poses to the systems

As(λ)ys = 0 (0 ≤ s ≤ k − 1) (17)

where

ys = (ys, yk+s, . . . , yqk+s)
T if 0 ≤ s ≤ r − 1,

ys = (ys, yk+s, . . . , y(q−1)k+s)
T if r ≤ s ≤ k − 1.
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The detailed form of (17) for 0 ≤ s ≤ r − 1 is

(us − λ)ys + tsyk+s = 0

tsys + (uk+s − λ)yk+s + tk+sy2k+s = 0
...

t(q−2)k+sy(q−2)k+s + (u(q−1)k+s − λ)y(q−1)k+s + t(q−1)k+syqk+s = 0

t(q−1)k+sy(q−1)k+s + (uqk+s − λ)yqk+s = 0.

(18)

From the first and second equation of (18) we get that

yk+s = − 1

ts
[us − λ]ys = − 1

ts
Ps,1(λ)ys,

y2k+s = − 1

tk+s
[(uk+s − λ)yk+s + tsys]

= − 1

tk+s

[
(uk+s − λ)

(
− 1

ts

)
Ps,1(λ)ys + tsPs,0(λ)ys

]
=

(
− 1

ts

)(
− 1

tk+s

)[
(uk+s − λ)Ps,1(λ)− t2sPs,0(λ)

]
ys

=

(
− 1

ts

)(
− 1

tk+s

)
Ps,2(λ)ys.

By induction

yjk+s =

(
− 1

ts

)(
− 1

tk+s

)
. . .

(
− 1

t(j−1)k+s

)
Ps,j(λ)ys

(j = 1, . . . , q; s = 0, . . . , r − 1). (19)

Substituting y(q−1)k+s, yqk+s from (19) into the last equation of (18) and multi-

plying the equation obtained by (−1)qtstk+s . . . t(q−1)k+s we get[
−t2(q−1)k+sPs,q−1(λ) + (uqk+s − λ)Ps,q(λ)

]
ys = 0.

By (13) the expression in the bracket is exactly Ps,q+1(λ) hence

Ps,q+1(λ)ys = 0.

If (s, q+1) ∈ J(λ)∩ I0 then Ps,q+1(λ) = 0 hence ys = C∗s is arbitrary and by (19)

yjk+s =

(
− 1

ts

)(
− 1

tk+s

)
. . .

(
− 1

t(j−1)k+s

)
Ps,j(λ)ys =Ps,j(λ)Cs (j = 0, . . . , q)
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where Cs are new arbitrary constants. If (s, q + 1) ∈ (I − J(λ)) ∩ I0 then

Ps,q+1(λ) 6= 0 hence ys = 0 and

yjk+s =

(
− 1

ts

)(
− 1

tk+s

)
. . .

(
− 1

t(j−1)k+s

)
Ps,j(λ)ys = 0 (j = 0, . . . , q).

We can prove the second part of (15) in a similar way. �

5. The main result

Our main result is the consequence of Theorem 2 and Theorem 3. Corre-

sponding to the entries of our matrix M (i) we have to modify the definitions of

the polynomials Ps,j . Let the numbers tj , d
(i)
j defined at the end of Section 3.

Replacing in the definition (13) Ps,j by P
(i)
s,j and us by d

(i)
s we getP

(i)
s,0(λ) = 1, P

(i)
s,1(λ) = v

(i)
s − λ,

P
(i)
s,j+1(λ) = (v

(i)
jk+s − λ)P

(i)
s,j (λ)− t2(j−1)k+sP

(i)
s,j−1(λ) (j = 1, . . . , q).

(20)

Theorem 4. Let n, k be fixed natural numbers, 1 ≤ k ≤ n; n + 1 =

kq + r (0 ≤ r < k), p0, . . . , pn and r−k, . . . , r−1, r0, r1, . . . , rn+k be given positive

numbers. The inequalities

α
(i)
±

n∑
j=0

pj |xj |2 ≤
∑
j

(i)rj |xj ± xj+k|2 ≤ β(i)
±

n∑
j=0

pj |xj |2 (21)

for i = 1, 2, 3 with + or − signs hold for every complex (n + 1)-vector x =

(x0, . . . , xn)T . For the best constants α
(i)
± , β

(i)
± we have

α
(i)
+ = α

(i)
− = λmin

β
(i)
+ = β

(i)
− = λmax

where λmin and λmax are the smallest and the largest zeros of the polynomials

P
(i)
0,q+1, P

(i)
1,q+1, . . . , P

(i)
r−1,q+1; P (i)

r,q , P
(i)
r+1,q, . . . , P

(i)
k−1,q. (22)

(defined by (20)). Equality holds on the left hand side of (21) if and only if

x = 〈y(λmin),p〉 ,
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equality holds on the right hand side of (21) if and only if

x = 〈y(λmax),p〉 ,

where p =
(

1√
p1
, . . . , 1√

pn

)
and the components of the vectors y(λmin) and

y(λmax) can be obtained from (15) replacing Ps,j by P
(i)
s,j and λ by λmin and

λmax respectively.

It is remarkable that the best constants do not depend on the sign ± in

the middle of our inequality. This is true since the ± signs appear only in the

components of t but these components are always squared in the definition of P
(i)
s,j .

6. Examples

Using (7) for the unweighted case and some results of Fan–Taussky–Todd [4]

we can get a simpler proof of theorem 4 of the author [6].

Corollary 5. Let n, k be fixed natural numbers, 1 ≤ k ≤ n. The inequalities

α
(i)
± (n, k)

n∑
j=0

|xj |2 ≤
∑
j

(i)|xj ± xj+k|2 ≤ β(i)
± (n, k)

n∑
j=0

|xj |2

for i = 1, 2, 3 and with + or − signs hold for every xj ∈ C (j = 0, . . . , n). The

best constants are given by

α
(1)
± (n, k) = 0, β

(1)
± (n, k) = 4 cos2

π

2
(
[nk ] + 1

) ,
α
(2)
± (n, k) = 4 sin2 π

2
(
2[nk ] + 3

) , β
(2)
± (n, k) = 4 cos2

π

2[nk ] + 3
,

α
(3)
± (n, k) = 4 sin2 π

2
([
n
k

]
+ 2
) , β

(3)
± (n, k) = 4 cos2

π

2
(
[nk ] + 2

) .
Corollary 6. Let n, k be fixed natural numbers, 1 ≤ k ≤ n and n+1

k = q be

an integer. Let ri = i+ 1 (i = 0, . . . , q) and suppose that

rj+ik = c(j)ri if j = 0, . . . , k − 1; i = 0, . . . , q − 1,

where c(j) (j = 0, . . . , k − 1) are arbitrary positive numbers. Then the best

constants α
(i)
± (n, k), β

(i)
± (n, k) in the inequality

α
(i)
± (n, k)

n∑
j=0

|xj |2 ≤
∑
j

(i)rj |xj ± xj+k|2 ≤ β(i)
± (n, k)

n∑
j=0

|xj |2 (23)
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are the minimal and maximal zeros of the the polynomials

L[nk ]+1(λ) +
[nk ]− 1

[nk ] + 1
L[nk ](λ) if i = 1,

L[nk ]+1(λ) if i = 2,

where Ln is the Laguerre polynomial of degree n defined by

Ln(x) =
ex

n!

dn

dxn
(
e−xxn

)
=

n∑
j=0

(−1)j
(

n

n− j

)
xj

j!
.

Proof. Consider first the case i = 2, k = 1 with pj = 1, rj = j + 1,

j = (0, . . . , n). The matrix A0(λ) in (12) (with tj = j + 1, uj = v
(2)
j = 2j + 1

j = (0, . . . , n)) has the form

1− λ ±1 0 . . . 0 0 0

±1 3− λ ±2 . . . 0 0 0

0 ±2 5− λ . . . 0 0 0
...

...
...

. . .
...

...
...

0 0 0 . . . ±(2n− 3)− λ ±(n− 1) 0

0 0 0 . . . ±(n− 1) 2n− 1− λ ±n
0 0 0 . . . 0 ±n 2n+ 1− λ.


(24)

�

Lemma 7. For the principal minors P
(2)
0,j (λ) of order j of the matrix (24)

we have

P
(2)
0,j (λ) = j!Lj(λ) (j = 1, . . . , n+ 1). (25)

Proof. If we set P
(2)
0,0 (λ) = 1, we see that P

(2)
0,j (λ) satisfies (13), i.e.P

(2)
0,0 (λ) = 1, P

(2)
0,1 (λ) = 1− λ,

P
(2)
0,j+1(λ) = (2j + 1− λ)P

(2)
0,j (λ)− j2P (2)

0,j−1(λ) (j = 1, 2, . . . , n).

Comparing this with the recurrence relation satisfied by the Laguerre polynomials

Lj (see e.g. [14] p. 101, (5.1.10))L0(λ) = 1, L1(λ) = 1− λ,

(j + 1)Lj+1(λ) = (2j + 1− λ)Lj(λ)− jLj−1(λ) (j = 1, 2, . . . , n),
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we see that multiplying the last equation by j! the recurrence equations for P
(2)
0,j

and j!Lj are identical, hence (25) holds.

In the case i = 1, k = 1 with pj = 1, rj = j + 1, (j = 0, . . . , n) the matrix

A0(λ) in (12) (with tj = j+1, uj = v
(1)
j = 2j+1 (j = 0, . . . , n−1), un = v

(1)
n = n)

is the same as the matrix (24) except that the last element of the main diagonal

changes from 2n+ 1− λ to n− λ. Thus for the principal minors P
(1)
0,j (λ) of order

j of the modified matrix we have

P
(1)
0,j (λ) = j!Lj(λ) (j = 1, . . . , n)

P
(1)
0,n+1(λ) = (n− λ)P

(1)
0,n(λ)− n2P (1)

0,n−1(λ).

From the last equation applying the recursion formula nLn−1 = (2n+ 1−λ)Ln−
(n+ 1)Ln+1 we get

P
(1)
0,n+1(λ) = (n− λ)n!Ln(λ)− n2(n− 1)!Ln−1(λ)

= (n− λ)n!Ln(λ)− n! [(2n+ 1− λ)Ln(λ)− (n+ 1)Ln+1(λ)]

= (n+ 1)!

[
Ln+1(λ) +

n− 1

n+ 1
Ln(λ)

]
Applying this, Lemma 1 and Theorem 1 we get the best constants in (23) if

i = 1, 2, completing the proof of Corollary 2. �

For i = 3 with ri = i+ 1 (i = −1, 0, . . . , q) the positivity requirement of the

weights ri is not satisfied. However for i = 3 formally we get exactly the same

inequality as for i = 2, thus the best constants are the same as for i = 2.

We remark that results related to Corollary 2 were found by G. V. Milo-

vanović and I. Z̆. Milovanović [9], (Corollaries 1 and 3 corresponding to our

cases k = 1 with negative sign, i = 1 and i = 2 respectively).

References

[1] H. Alzer, Converses of two inequalities of K. Fan, O. Taussky, and J. Todd, J. Math.

Anal. Appl. 161 (1991), 141–147.

[2] R. Bellman, Introduction to Matrix Analysis, McGraw-Hill, New York, l960.
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[5] G. H. Hardy, J. E. Littlewood and G. Pólya, Inequalities, Cambridge Univ. Press,
London, 1934.



192 L. Losonczi : Discrete generalized Wirtinger’s inequalities

[6] L. Losonczi, On Some Discrete Quadratic Inequalities, General Inequalities 5 (pp. 73–85,
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