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Killing vector fields on compact Finsler manifolds

By JINLING LI (Beijing), CHUNHUI QIU (Xiamen) and TONGDE ZHONG (Xiamen)

Abstract. In this paper, we obtain the Weitzenbock type formula for Killing vector
fields on a compact Finsler manifold. By using the “Bochner technique”, we prove that
Killing vector fields are parallel or vanish identically under certain curvature condition
and other extra condition. In particular, we discuss Killing vector fields on some compact
special Finsler manifolds. Moreover, we prove that the number of the independent
Killing vector fields in a Minkowskian space is equal to the dimension of a Minkowskian
space.

1. Introduction

BOCHNER [6]-[9] initiated a method, the well-known “Bochner technique”,
which used the Laplace operator and the general maximum principle of Hopf to
deal with the relation between vector or tensor fields and the curvature of man-
ifolds, and got the global properties of manifolds. From then on, the Bochner
technique became a very useful method in geometrical study. Such as, both in
Riemannian and Kahlerian manifolds, the Bochner technique has been discussed
in details in [10], [32], [19]. The Bochner technique is to integrate the Laplacian
of the pointwise square norm of a harmonic form over a compact Riemannian
manifolds, yielding thereby two terms. One is the global square norm of the co-
variant derivatives of the harmonic form. The other involves the curvature tensor.
Under the suitable assumption of the curvature tensor, it can be obtained that
the harmonic form must be zero or parallel. In the papers of BOCHNER [6]-[9], he
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obtained some vanishing theorems for harmonic forms and Killing vector fields.
In the generalized space, the Killing equations were obtained by HOKARI [16],
KNEBELMAN [18] and S06s [30]. Recently, under the initiation of S. S. Chern,
the global differential geometry of real and complex Finsler manifolds has gained
a great development [13]-[26]. S. S. CHERN has pointed out that “complex Finsler
geometry is very important in the research of complex analysis in several complex
variables, since on every complex manifold with or without boundary there exist
a Carathéodory metric and a Kobayashi metric, and under proper condition they
are C'® metrics, and the most important fact is that naturally they are Finsler
metrics, ..., to extend harmonic integral to the case of Finslerian will be a new re-
search region of differential geometry, and we expect the prospects are boundless”
[13], [14]. T. D. ZHONG and C. P. ZHONG [33] and J. X. X140, T. D. ZHONG
and C. H. Qiu [23] discussed the Bochner technique in real Finsler manifolds
and strongly Kéhler—Finsler manifolds, respectively. J. L. L1, C. H. QIiu and
T. D. ZHONG [21] researched an extension of Hodge theorem to the natural
projection of complex horizontal Laplacian on complex Finsler manifolds. In ad-
dition, there appeared some papers about using complex connections of Finsler
geometry to research the theory of integral representation of functions in several
complex variables on complex Finsler manifolds [24]. In this paper, we try to
discuss the Killing vector fields and we can obtain the Weitzenbock type formula
for Killing vector fields on a compact Finsler manifold. By using the “Bochner
technique”, we prove that Killing vector fields are parallel or vanish identically
under certain curvature condition and other extra condition. In particular, we
discuss Killing vector fields on some compact special Finsler manifolds.

2. Preliminaries

Let M be a smooth manifold of dimension n and © : TM — M be the
tangent bundle of M. We denote by M the complement of zero section o(M) in
TM and 7 : M — M is the slit tangent bundle of M. Our geometrical objects
are sections of the pulled-back bundle 7#*T M or its dual 7*T™* M, or their tensor
products, where #*TM := {(v,w) € M x TM | #(v) = 7(w)} is the sub-bundle
of the bundle M x TM.

Let {7~ 1(U), (z,y) = (z,...,2", y',...,4™)} be the local coordinates on
TM induced by the covering of the system of local coordinate neighborhoods
{Uyu= (u',...,u™)} on M, where

' =u' oyt (v) i=v(u) (v € 7 HU)).
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In the above local coordinates, if p € M and v € T, M, then

i 0 ) 0 0
v=1y (U)<8ui>p € T, M; (axi>v’ (8yi>v e T, TM.

And if we denote by X(M) the space of smooth vector fields on M, then

0 0 0

. R —1
5ur CXO) g € X))

Every vector field X on M induces a Finsler vector X = #X on M such
that
X(v) == (v,X(n(v)) forallve M.

In general, we denote by T := #T the pull-back tensor field of any tensor field T

on M. Local coordinates {U,u = (u!

{821'} and {du'}, respectively, for TM and T*M. So % is the local section of
the pulled-back bundle 7*T'M, and we denote by dut = 7*(du') the local section
of #*T*M. If f is a function on M, we consider its vertical lift f¥ := foxm on
TM.

A function F' : TM — R is called a (positive definite) Finsler metric if the

following conditions are satisfied [22]:

,...,u™)} on M produce the basis sections

(i) F is continuous on T'M and smooth on M:;
(ii) F is positive-homogeneous of degree 1;
(iii) F(v) > 0 for all v # 0;
)

(iv) The fundamental tensor g, defined locally by its components
1 9B,

Gij = ima =1,

is positive definite.

Remark 2.1. In fact, it suffices to assume that g is fibrewise non-degenerate
(see, e.g. [17], [31]).

A manifold M endowed with a Finsler metric is called a Finsler manifold.
Now, we give some notations and preliminary knowledge on Finsler manifolds.
The Cartan tensor is given by

lﬁgij o 1 63E
2 9yF 4 9yidyioyk’

Cijr =
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which is homogeneous of degree —1 and symmetric in all three of its indices. And
we obtain
Cijry' = Cijry’ = Cijkyk =0. (1)
The formal Christoffel symbols 'y; . are given by

1 Ognj | Ogkn  Ogjk
i = 29 (8xk T 0w T ek )

where (¢%7) is the inverse matrix of (g;;). In local coordinates, the equations of
the geodesics can be written in the form

2t dxr
26" (2,== ) =0
d2s + ( " ds ) ’
where L

G' =50y

is homogeneous of degree two in 4*’s. The successive derivatives of G? with respect
to u are denoted by

;. 0G!

and .
=2 ®)
Jjk — oy )

where G} is the Christoffel symbol of the non-linear connection D associated to
the Cartan connection [1] and G %1, is the Berwald curvature tensor of the Berwald
derivative [29], [4]. And for any £ € X (M), we have

~ 0 ok 9]
_ ¢k h k
Dg—f’hdfﬂ ®87 |:6h+G O§:|de' ®W,
where
Gy og U — fr*l(U) — R, pr— G5 (&(p)).
Let T = Tl1 ] aun be an arbitrary smooth local

section of 7T*TM Q- ® 7T*TM®7T*T*M Q- Q@m*T*M. Then the horizontal

P q
covariant derivative T Jplk in the sense of CARTAN [11] is given by
21 ’Ll
i1eip aT]l Jq o aTJl JqG i ta—tliapr iy pia it T
ivdalk T gk Oyl Ty, Ik “gieds-aliprr-da Jsk?
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where the subscript |k denotes the horizontal covariant derivative with respect to
the Cartan connection, and the Cartan connection coefficients F};j are given by

b = 9" Ty, (3)
and och och och
G G G
Urij = Yrij — Cjihaiyk - CkihTw + ijhaiyi’ (4)
so we have
Gi =T}, y" (5)

The curvature tensor R; ni induced by the horizontal part of Cartan connec-
tion is defined by

. (ar;ih ori, aGl> - <5F§-k art, !

k= \ gk oyl OyF orh Ayl 8yh> +Fiﬂ’€r% - Finhr%' (6)
And the third curvature tensor ﬁ;hk induced by the Cartan connection is the
form

N;hk = R;‘hk + C;mRmzkyra (7)
where

Cir=9"Cjn.
From (1) and (7), we have
Eﬁklﬂ = R;’hkyj-

The horizontal covariant derivative T;;;” in the sense of BERWALD [4] is

a (k)
given by
iy i iy i
i1 +0p _ 6lejq o aTJqu Gl +T7;1"'iaf1lia+1"'ipGia 7Ti1m7’lp Gl.
Jida(k)y T Gk ayl k J1+Jq Ik Jijg—1ljg41--dq —Jpk>

where the subscript (k) denotes the horizontal covariant derivative with respect
to the Berwald connection, and the Berwald connection coefficient G;k is given
by (2). The hh-curvature tensor induced by the Berwald connection is given by

i aGi‘h i dG! aGi‘k i aG" i m i m
hk = (8;’“ - Gjhlayk> - ( 5‘x]h - jklayh> + GGl — Grun Gl

where o
- i
G;‘hl == Tyl .



8 Jinling Li, Chunhui Qiu and Tongde Zhong

Let
A;‘k = FC;kv
and )
=Y
F

Note that the relation between the two connections is [25]
ij = F?j + C1kj|hyh = F?j + Ai'cj\hlhv (8)

where the subscript |2 denotes the horizontal covariant derivative with respect to
the Cartan connection.

Let
Aiji = FCijy,
we have
9ijk) = —2Aikpnl", (9)
and
24;55ny" = 0. (10)
So
gij(k)yi =0.

The Riemann curvature tensor Ri naturally arises from the geodesic variation
of geodesics [25], which is defined by

R;ﬂ = R§hkyjyh~
From (3), (4) and (6), we have

o o
oxk  Oxhoyk

G OG"

() —
R, oyt oyk

y" +2GL,G —

Now we set
Rijnk = 9rj Ripges Rignk = rj Ripger Higne = Grj Hipp
and
E D Sk k
Rij = Ry, Rij = Ry, Hij = Hyjy,.
The Ricci curvature is defined by
Ric := R},
and it has the following properties [25]

Ric = Rijy'y’ = Rijy'y) = Hijy'y'.
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3. Weitzenbéck type formula for the Killing vector fields
on compact Finsler manifolds

For any real-valued smooth function f € C*(TM), it is easy to find that
the local form g% f(;)(;) is well defined on the whole tangent bundle M. Now,
let Mx = {p € M| X(p) # 0} for any X € X(M). Therefore, for any f €
C>(Mx) N C°(M), there is an operator defined locally by

v oX on My,
Axf o 197 @ o X on Mx
0 on M\My,

The above operator is well defined on the whole manifold M, locally, we have

Axf=g" K o >V—G?j<af >V}OX on UNMx. (11)

outoud Aul

Here ¢/ o X and G?j o X are smooth functions on U N Mx, so Ax f is an elliptic
operator with smooth coefficients on U N Mx.

Theorem 3.1. Let M be a compact Finsler manifold and £ € X(M). If ¢
satisfies

Aele]* >0

on Mg, then |¢|* = const and
Aglgl* =0

everywhere on M, where |€|? is the square of the length of the vector field ¢ given
by
[€]* = F2(€) = (95 0 ©)€'¢’.

PROOF. Let m be the maximum value of |£[*> on M and V = {p € M |
|€]2(p) = m}. Since M is compact, we have V # @. It is only to prove that
V = M when m is not equal to zero.

Since f = |¢|? is a continuous function on M, V is the closed subset of M.
For any point p € V, that is |£|?(p) = m # 0, there is an open local coordinate
neighborhood U of p such that U C M¢. So A¢f is an elliptic operator on U,
and f has the maximum value at p in U, then using the maximum principle of
Hopf([10]), we have [£]? = |£]?(p) = m in U, that is U C V, so V is an open subset
of M. We obtain that V is a closed and open subset of M, then V = M. O
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Let f = [¢]*> € C*°(M¢), we compute (11) on U N M. Locally, we use the
symbol (%)Y to denote the components of the tensor field £ = 7*¢. And we set

Yij = gijo€=gi;(&); Y =g70&=g"(¢) onUnN M.
So
A£|§|2 = gij(’Yklfkfl)E;)(j) of
= 2’Yij7kl((fk)2’i) © f)((fl)zlj) o)+ 2’Yij’Ykl((§k)2’¢)(j) o 5)51
7 ([vke iy €5 €D)Ty © €+ 297 (v ) 0 E)((E5)Ty 0 €' (12)
Because

0 0 aEm)Y
()l = Ho5 0€+ ( Sy © 5) Gy~ G, (13)

and

_ Ogu_ Ogr OG™
IKLG) = Bgi Oy™ Oy’
from (13), (14) and (9), we have

- gnLlGZ_;‘ - gkaﬁy (14)

o, oG
oud oyJ

(W) () © € = 2(Chim 0 €) ( ° 5) = 2(Agyp 0 E)(I" 0 €).  (15)

From (5), (8) and (10), we have

_ogm N oG™
ol OyI

e 0f = (E™)Y) ok (16)

From (15) and (16), it follows that

(v1)7jy © € = 2(Chim 0 §)E™,j — 2(Apajin 0 £)(I" 0 €),
s0

()3 0 )€ = 0. (17)

By the similar calculation of (15), we can obtain

()T © OE) (€] 0 & — () Ty (€)Y (EN) 5y 0 €
3((’)%1)22) (E)v(E)
oy™

og|€my. (18)
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From (17) and (18), we have

Y (a1 iy €Ny 0 € = 277 vimi(GRly 0 )€" ;€7¢L
. m s m k oG K
Since G} is homogeneous of degree 0, we have (G}, 0 £)§" = (Wﬁ‘y Jo&=0.
The above calculation gives the formula

SAE? = T Qa(©F €5 + 97 (€9 (©) (€N O on M.

In the following, we discuss Killing vector fields on Finsler manifold (M, F). A
vector field £ on M is called a Killing vector field on (M, F) if its one-parameter
group (¢¢)ter consists of Finslerian isometries, i.e.,

Fo(pt),=F forallteR,

where (¢¢)« : TM — TM is the derivative of a smooth mapping M — M.
Since M is compact, the vector field £ is complete. It can be easily seen that & is
a Killing vector field on (M, F) if and only if £°F = 0, where £ is a complete lift
of €.

Let £ be a Killing vector field on an n-dimensional Finsler manifold M, it
must satisfy the Killing equations [25]

9in (€M) + 9 (€M7 + gij(k)(fk)v +2Cin(EM) 0y =0,
or
hy\v h\v hy\v ,r __

gin(§")); + gin(€")); +2C45n(E7)y" = 0.
However, we recall that a motion carries a geodesic into a geodesic. We have the
equations [18]

EY iy + Hien" + G (€MTyy" = 0.
Thus the greatest number of linearly independent motions which may be admitted

by a Finsler manifold M of dimensional n is %n(n +1) [18].
On the subset U N M¢, we have

G (€)gua () (€5)Y (€€ = =g (€) Hugn(€)€"€! + 6 (€),

where

de = =9 g G (€M Y on M,
and

$e(€) = — (9”7 0 €)(gr1 0 €)(Giyp 0 (€M), 0 E)E7E". (19)
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Note that ([25])

Hujny' = —Hyujiy' = Rajey’ = Rujry’
and
Hyr = —Higg,
we have
97 (&) Hujn ()" = (Hj,;y'y") 0 & = (Hiny'y") o € = Ricof = Ric(€) on M.
Therefore, we have the following Weitzenbock type formula.

Theorem 3.2. Let M be a compact Finsler manifold. Then for any Killing
vector field £ on M, we have the Weitzenbéck type formula

1 i .
§As|§|2 = g7 (g (§)E" ;€' — Ric(€) + ¢e(€) on M,
where ¢¢(§) is defined by (19).
On the subset M of M, we know that

97 (O)gn(§)E* i€
is a positive definite form in & .j- Therefore, if £ satisfies

Ric(€) <0 on M,
and
¢£(£) 2 0 on MEa

then we have

1 y .
§As|§|2 = g7 ()gr(§)€" ;€' — Ric(€) + ¢¢(€) > 0 on Me.
Consequently, from Theorem 3.1, we get

97 (©)gri(§)E" ;€5 — Ric(€) + ¢¢(€) =0,
or
¢,;=0,  Ric(¢) =0.

Thus, if Ric < 0 on M, then & = 0. So we have

Theorem 3.3. Let M be a compact Finsler manifold, if Ric < 0 on M and
¢¢(§) > 0 on M for any smooth vector field &, then every Killing vector field &
must be parallel, i.e., D¢ = 0, and then Ric(€) = 0.

Thus if Ric < 0 on M and ¢e(§) > 0 on M, for any smooth vector field &,
then there exists no Killing vector field other than zero vector.
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Theorem 3.4. Let M be a compact Finsler manifold, if Ric is negative
on M, then there is no Killing vector field £ satisfied

€l;j =0
other than zero vector.

ProoOF. Note that if a vector satisfies {l;j =0, then ¢¢(§) = 0. From Theo-
rem 3.3, we can conclude Theorem 3.4. O

Remark 3.1. If the Ricci tensor defined by

0% [L Ri

RiCij = M
Ayt oyJ

is negative definite, then Ric < 0 on M. And if M is a Riemannian manifold,

then ¢¢ =0, so Theorem 3.4 contains the similar theorem of BOCHNER [10].

Remark 3.2. In Theorem 3.3, the Killing vector fields & must be parallel
under certain extra condition, that is, & .; = 0. These equations are quasi-linear
equations, so the greatest number of linearly independent motions which may be
admitted by an n-dimensional Finsler manifold M under certain extra condition
is n.

4. Killing vector fields on some compact special Finsler manifolds

F' is said to be a Berwald metric if F;k is independent of ¥, or G;k is in-
dependent of y, or Afjlhlh = 0 [26], [25]. In a Berwald manifold, we have
(€m )Y = (™).

Theorem 4.1. Let M be a compact Berwald manifold, if Ric < 0 on M,
then for any Killing vector field £, we have

gy =0,
and Ric(§) = 0.
Thus if Ric < 0 on M, then there exists no Killing vector field other than
zero vector.

PrOOF. If M is a Berwald manifold, note that G; & is not depend on the fiber
y, that is, G;kl =0,50 ¢p¢ =0on M and (&m)Y = (fm)z’j). From Theorem 3.3,
it follows that Theorem 4.1 is valid. O
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Let F be a Finsler metric on an n-dimensional manifold M. F' is called an
Einstein metric with Einstein scalar o if

Ric = (n — 1)o F?,

where o is a scalar function on M. In particular, F' is said to be Ricci constant
(resp. Ricci flat) if o = const. (resp. o = 0).

Theorem 4.2. Let M be a compact Finsler manifold with a Finsler metric F.
Support that F is a Finstein metric with non-positive Finstein scalar o and
¢¢(§) > 0 on M¢ for any vector field £ .

(1) If F is not Ricci flat, then there exists no Killing vector field other than zero
vector.
(2) If F is Ricci flat, then every Killing vector field £ must be parallel, i.e.,

D¢ =0.

It was proved recently in [15] that a connected Berwald—Einstein manifold is
either Riemannian or Ricci flat, so we have the following Corollary 4.3.

Corollary 4.3. Suppose that M is a connected compact non-Riemannian
Berwald-FEinstein manifold. Then for any Killing vector field &, we have

(€7 =0.

Corollary 4.4. Let M be a compact Finsler manifold, if the tensors H;hk
and G;hk vanish identically, then for the Killing vector field &

(€ =0.

Remark 4.1. The Finsler manifold is Minkowskian if the tensors H;hk and
Gk vanish identically([5]). Moreover, the tensors Ry, = 0iff Hj,, =0, and
also C}Zlkl’l‘ =01iff G}, = 0.

Take an arbitrary plane P C T,,M and y € P, the flag curvature K(z,y, P)
is defined by ‘ .
Rijny'y"n'n"

K(z,y,P) = . .
@y, P) (9ingik — 9ijgnklyiyhnink’

where 7 is an arbitrary vector in P such that P =span{y,n}.

In a Finsler manifold M, F is said to be of scalar flag curvature if K (x,y, P) =
K is independent of P, F'is said to be of constant flag curvature If K (z,y, P) = o,
where o is constant.
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If M is the Finsler manifold of scalar flag curvature, we have

R, = KF*(8 — F2g;1y*y"),
and then
Ric = (n — 1)K F?,

so we have

Theorem 4.5. Let M be a compact Finsler manifold of scalar flag curvature.
If K < 0 on M, then there is no Killing vector field £ satisfied

I
S;jfo

other than zero vector. Furthermore, if K < 0 on M and ¢e(§) > 0 on M, for
any vector field &, then there exists no Killing vector field other than zero vector.
If K =0, then F is Ricci flat, it has been discussed in Theorem 4.2.

In the Finsler manifold with constant flag curvature K = o, we have
Hik = (TL - 1)0’5]2'167 (20)

and if o < 0, then (H;;) is negative definite, so

Theorem 4.6. Let M be a compact Finsler manifold with negative constant
flag curvature, if ¢¢(§) > 0 on M, for any vector field , then there exists no Killing
vector field other than zero vector.

If the compact manifold with constant flag curvature o = 0 and ¢¢(§) > 0
on My for any vector field &, then for every Killing vector field £ must be parallel,
ie., DE=0.

And if a compact manifold with constant flag curvature o < 0, then there is
no Killing vector field £ satisfied
¢, =0

’,

other than zero vector.
Theorem 4.7. Let M be a compact Berwald Finsler manifold with constant
flag curvature K = o.

(1) If 0 # 0, then M is Riemannian. So if o < 0, there is no Killing vector field
other than zero vector.

(2) If o =0, then for any Killing vector field £, we have

(€Y =0
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Proor. If M is a Berwald manifold, then H;; is independent of u. If the con-
stant flag curvature K = o # 0, then it follows from (20) that M is Riemannian.
The other part of the theorem is the direct corollary of Theorem 4.1. O

In Finsler geometry, (a, §)-metrics are important classes of Finsler metrics.
Let a = y/a;;(z)y'y? and a 1-form 8 = b;y’ on an n-dimensional manifold M.
An («, 8) metric F' is defined by

where ¢(s) is a C™ positive function on (—bg,by). ¢ satisfies

$(s) = s¢'(s) + (b = 5%)¢"(s) > 0, (|s| <b=]|Blla < bo).

When n > 0 and under certain extra condition, B. L1 and Z. SHEN [20]
have proved that if « is projectively flat and g is parallel with respect to «,
then F' = a¢(s) is a projectively flat Berwald metric with constant flag curvature
K = 0. From Theorem 4.7, if the metric F' is non-Riemannian, then ¢ = 0. So

Theorem 4.8. Let M be a compact manifold with a non-Riemannian (v, 3)-
metric F' = a¢(s), and « is projectively flat and 8 is parallel with respect to «,
then for the Killing vector field £ respect to F', we have

)y, =0

Remark 4.2. For a Riemannian metric, Beltrami Theorem tells us a Rie-
mannian metric is projectively flat iff it is of constant sectional curvature. But
the same theorem is not true for a Finsler metric. Therefore, in the projectively
flat manifold [12], the conditions of Theorem 3.3 are difficult to simplify, but in
Riemannian manifold it is easy [10].

There exist some («, §)-metrics. The Randers metric is an (a, §)-metric,
where ¢(s) = 1+ s, i.e., F = o+ . The Kropina metric is an («, 3)-metric,
where ¢(s) = %, ie., F= “Tj The Matsumoto metric is an (a, §)-metric, where
#(s) = 2=, ie., F = o’

1—s” a—p3"

Lemma 4.9 (see e.g. [3]). Suppose that M is a connected compact bound-
aryless Einstein Randers manifold with Ricci constant o.

(1) If o < 0, then M is Riemannian.
(2) If 0 = 0, then M is Berwald.
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So we have the following corollaries.

Corollary 4.10. If M is a connected compact boundaryless non-Riemannian
Einstein Randers manifold with Ricci constant o, then o = 0, and for any Killing
vector field £, we have

€)) =0.

In [27], X. L. ZHANG and Y. B. SHEN have proved that for a non-Riemannian

Kropina metric F' = %2, if F'is Ricci flat, then F' is Berwald. So

Corollary 4.11. Suppose that M is a compact non-Riemannian Kropina
manifold with Ricci flat metric F, then for any Killing vector field &, we have

€y =0.

Corollary 4.12. Suppose that M is a compact manifold with a conformal
flat Einstein Randers metric (or Kropina metric) F, then for any Killing vector
field &, we have

€)) =0.
PrOOF. In [27], every conformal flat Einstein Randers metric (or Kropina

metric) F must be Minkowskian. Thus it follows from Corollary 4.4 that Corol-
lary 4.12 is valid. O

Corollary 4.13. Let F = aa—jﬁ be a non-Riemannian Einstein Matsumoto
metric on an n-dimensional compact manifold M, n > 3.
(1) Suppose that the length of 8 with respect to « is constant, then for any
Killing vector field £, we have

€y =o.
(2) Suppose that S-curvature vanishes, then for any Killing vector field &, we
have
(o
ProOF. In [28], X. L. ZHANG and Y. B. SHEN have proved that « is Ricci

flat and g is parallel with respect to « in the two cases. So F' is a Ricci flat
Berwald metric. From Corollary 4.3, we can get Corollary 4.13. (]

Remark 4.3. In the above discussion, we obtain that for any Killing vector
field £ on some special Finsler spaces M such as compact Ricci flat Berwald space
and Minkowskian space, we have (§l)z’j) = 0. So the greatest number of linearly
independent motions in the n-dimensional Minkowskian space is n.
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