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Strong 2-commutativity preserving maps on prime rings

By XIAOFEI QI (Taiyuan)

Abstract. Let R be a unital prime ring and k¥ > 1 a positive integer. A map
f + R = R is called preserving strong k-commutativity if [f(z), f(¥)]x = [z,y]x =
[z, y]k—1,y] for all z,y € R. In this paper, it is shown that, if R contains a nontrivial
idempotent, charR # 2 and f is surjective, then f is strong 2-commutativity preserving
if and only if f(z) = Bz + p(z) for all z € R, where S is in the extended centroid of R
with 3% = 1 and p is a central valued map. Based on this, a characterization of general
strong 2-commutativity preserving maps on factor von Neumann algebras is obtained.

1. Introduction

Let R be a ring with the center Z(R). Then R is a Lie ring under the Lie
product [a,b] = ab—ba. Recall that a map f : R — R preserves commutativity if
[f(a), f(b)] = 0 whenever [a,b] = 0 for a, b € R; preserves strong commutativity if
[f(a), f(b)] = [a,b] for all a,b € R. Obviously, a strong commutativity preserving
map must be commutativity preserving; but the inverse is not true.

The problem of characterizing commutativity preserving maps had been stud-
ied intensively on various rings and algebras (for example, see [2], [5], [16], [19]
and the references therein). For strong commutativity preserving maps (SCPM),
BRESAR and MIERS in [4] proved that every additive SCPM f on a semiprime
ring R has the form f(a) = Aa + p(a), where A € C, the extended centroid of R,
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A2 =1and p: R — C is an additive map. Let £ be a noncentral Lie ideal of a
prime ring R. LIN and Liu in [13] proved that every additive SCPM f : L — R
is of the form f(a) = Aa+ p(a), where A € C with A2 =1 and p: £ — Z(R) is an
additive map, unless char R = 2 and R satisfies the standard identity of degree 4.
Q1 and Hou [18] discussed general SCPM on prime rings. It was shown in [18]
that, if R is a unital prime ring with a nontrivial idempotent, then a surjective
map f : R — R is a SCPM if and only if f(a) = aa + p(a) for all a € R,
where o € {1,—1} and p: R — Z(R) is an arbitrary map. Recently, LEE and
WONG in [12] generalized above results. Assume that R is a prime ring with £
a noncentral Lie ideal of R. They proved that, if f : £ — R is a map satisfying
[f (), f(y)] — [z,y] € C for all z,y € L, then f(a) = aa + p(a) for all a € L,
where o € {1,—1} and u : £ — C is a map, unless char R = 2 and R satisfies
the standard identity of degree 4. For other results about SCPMs, see [1], [7], [8],
[14], [15], [20] and the references therein.

For any elements a,b € R, define [a, b]g = a, [a,b]1 = ab—ba, and inductively
[a,b]r, = [[a,b]k—1,b], where k > 1 is a positive integer. Thus, we can introduce
the concept of strong k-commutativity preserving maps. A map f: R — R is
said to preserve strong k-commutativity if [f(a), f(b)]x = [a,b]x for all a,b € R.
Obviously, strong k-commutativity preserving maps are usual SCPMs if k=1. A
natural problem is how to characterize strong k-commutativity preserving maps
for £ > 1. The purpose of the present paper is to consider the problem of char-
acterizing strong 2-commutativity preserving maps on prime rings.

Let R be a ring with center Z(R). We say that R is prime if for any a,b € R,
aRb = {0} implies either « = 0 or b = 0; or equivalently, if for any two left (or
right) ideals A and B of R, AB = {0} implies A = {0} or B = {0}. Denote by
Q = Q(R) the maximal right ring of quotients. If R is prime, then the center
C of Q is a field, which is called the extended centroid of R. Moreover, Z(R) C C.
For more details about prime rings, see [3].

The following is our main result in this paper.

Theorem 1.1. Let R be a unital prime ring containing a nontrivial idem-
potent. Assume that f : R — R is a surjective map and the characteristic of R
is not 2. Then f is strong 2-commutativity preserving if and only if there exist a
map g1 : R — Z(R) and an element 3 € C with 8% = 1 such that f(z) = Bz +pu(z)
for allx € R.

Remark 1.1. From Theorem 1.1, we see that a strong 2-commutativity pre-
serving map may not be a strong commutativity preserving map, and vice versa.

Recall that a von Neumann algebra M is a subalgebra of some B(H), the
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algebra of all bounded linear operators acting on a complex Hilbert space H,
which satisfies the double commutant property: M” = M, where M' ={T : T €
B(H) and TA = AT VA € M} and M" = {M’}). M is called a factor if its
center, Z(M) = M N M, is trivial (i.e., Z(M) = CI).

It is well-known that every factor von Neumann algebra must be prime. So,
as an application of Theorem 1.1 to the factor von Neumann algebra case, the
following corollary is immediate.

Corollary 1.2. Let A be a factor von Neumann algebra. Assume that
®: A — A is a surjective map. Then ® is strong 2-commutativity preserving if
and only if there exist a scalar o € {1,6%,6%} and a functional g : A — C
such that ®(A) = aA+ g(A)I for all A € A.

2. Proof of Theorem 1.1

In this section, we will give the proof of Theorem 1.1.

Lemma 2.1 ([3, Theorem A.7]). Let A be a prime ring, and let
A;, B;,C;,D; € Qp(A) be such that > | A; XB; = Z;n:1 C;XD; for all Xe A.
If Ay, ..., A, are linearly independent over C, then each B; is a C-linear combina-
tion of Dy, ..., Dy,. Similarly, if By, ..., B, are linearly independent over C, then
each A; is a C-linear combination of C1,...,Cy,. In particular, if AXB = BXA
for all X € A, then A and B are C-linearly dependent.

Lemma 2.2. Let R be a prime ring. Then Z(R)2 = {z € R : [z,z]s = 0 for
allz e R} = Z(R).

PRrOOF. This is a direct consequence of [10, Theorem 1] (also see [15, Theo-
rem 2]). O

Lemma 2.3. Let R be a prime ring of characteristic not 2 and s € R. If
xs% + s?z = 2sxs holds for all z € R, then s € Z(R).

PROOF. Since ws? + s?z = 2sxs, we have [s,[s,z]] = 0 for all z € R. It is
easily seen that s € Z(R) by the primeness of R and char R # 2. O

Lemma 2.4. Assume that R is a unital prime ring with a nontrivial idem-
potent e. Then eRe is also a prime ring with Z(eRe) C Ce.

PROOF. For any elements exe, eye € eRe, if exzeReye = {0}, by using the
primeness of R, we have either exze = 0 or eye = 0. So eRe is prime. Now, taking
any eze € Z(eRe); then ezexe = exeze holds for all x € R. By Lemma 2.1, there
exists some A € C such that eze = Ae, which implies Z(eRe) C Ce. O
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Now we are at a position to our proof of Theorem 1.1.

PROOF OF THEOREM 1.1. The “if” part of the theorem is obvious. In the
sequel, we always assume that f : R — R is a surjective strong 2-commutativity
preserving map. We will check the “only if” part by several steps.

Step 1. f(Z(R)) = Z(R).

Take any z € Z(R). Then for any z € R, we have [f(2), f(z)]2 = [z,z]2 = 0.
By the surjectivity of f and Lemma 2.2, f(z) € Z(R). On the other hand, if
f(z) = 2, then [z,y]e = [f(x), f(¥)]2 = [z f(y)]2 = 0 for all y € R. Hence
z € Z(R) by Lemma 2.2, that is, Z(R) C f(Z(R)), completing the proof of the
step.

Let e € R be a nontrivial idempotent. Write e; = e and e =1 —e. Then R
can be decomposed into R = Ry1 + Ri2 + Ra1 + Rag, where R;; = e;Re;

(i,7 € {1,2}).

Step 2. For any © € R, we have [z, e1]s = e1zes + eaxe; € Ria + Ras.

Obvious by a simple and direct calculation.

Step 3. There exist two elements A\, € C with A # 0 such that f(e;) =
Aeq + pl.

For any © € R, it is easily checked that [z,e1] = [z,e1]3. Then [z,e1]s =
[z.e1]s = [[[z,ex]a,e1],e1], and so [f(x), flen)]2 = [[[f(2), f(er)]2,en)sen]. Tt

follows from the surjectivity of f that
[z, f(e1)]2 = [[[$7f(€1)]2,61],€1] = [[z, f(e1)]2,e1]2 for all z € R.
By Step 2, we have [[z, f(e1)]2,€1]2 € R12 + Ra1, and so
[z, f(e1)]2 € Riz2 + Ra1. (1)

Write f(e1) = s11 + $12 + S21 + S22. We will first show the following claim.
Claim. S12 = S21 = 0.
On the contrary, assume that so; # 0. Taking = x171; then
ea[z11, f(e1)]aea = 2821211812 = 0 by equation (1). Since the characteristic of R
is not 2, we have ss1ejxe;sio = 0 for all x € R. It follows from the primeness
of R that s15 = 0.
Taking x = x12; then

[12, f(e1)]2 = z12(s21511 + S22521) — 2511 &12821 + (S21511 + S22521)T12

2 2
—2591712522 + 871 T12 + T12859 — 2511712522 + $12521T12 + T12521512 — 2521T12521.
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This and equation (1) imply
T12(821511 + S22821) = 2811712821 and  (s21811 + 822521)T12 = 2821712822,
that is,

e1xea(s21511 + S22821) = 2811€1%€2521 = S11€1%(2€2521) (2)

and
(s21511 + S22821)€1Te2 = 2821€1T€2522 (3)

for all z € R. By Lemma 2.2, equation (2) implies that e; and s1; are C-linearly
dependent as 2ess2; # 0. If s11 = Aey for some A € C, by equation (2) and the
primeness of R, we get s21811 + S22821 = 2Aea8921, which, combining equation (3)
and the primeness of R, implies soo = Aea. Thus we get f(e1) = Al + s21.

For any x12€ R12, by the surjectivity of f, there exists some y :Zijzl Yij €R
such that f(y) = x12. Then

Y21 + Y12 = [ya€1]2 = [$12,f(€1)]2 = [=T12821 - 821$127821] = —2521T12521.

It follows that y12 = 0. On the other hand, since

[f(el),ﬂflz]z = [821$12 - $128217$12] = —2212521T12
and
le1, yle = [~y21,y] = —y21y11 + Y2021,
one can obtain x12s21212 = 0 as [f(e1),212]2 = [e1,y]2 and char R # 2. Then

we have (e1ze3521)2 = 0 for all z € R. Note that e;Resss; is a left ideal of the
ring e;Re; and e;Re; is also prime. By the definition of prime rings, we get
e1Reas91 = {0}. It follows from the primeness of R that sa; = 0, a contradiction.
By a similar argument to the above, one can check that s;o = 0. The claim
holds.
Next, we will consider s;; and sg2. Taking & = 217 in equation (1); then, by
Claim and equation (1), one gets

(211, f(e1)]2 = z115%; — 2511711811 + 81211 = 0.

Note that, by Lemma 2.4, R1; is prime and the characteristic of Rq1 is not 2. It
follows from Lemma 2.3 that s1; € Z(Rq1), that is, s11e12e1 = ejxe; s11 holds for
all z € R. Now, by Lemma 2.1, there exists some \; € C such that s;; = A\je;.
A similar argument to that for s;; can obtain sgs = pes for some pu € C. Hence
fler) = Aeg + pes = Aey + pl, where A = Ay — p.
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Finally, we still need to prove that A # 0. On the contrary, if A = 0, then
fler) = pl € C. Since f(e1) € R, it follows that f(e;) € Z(R). By Step 2, one
has e; € Z(R), which is impossible. The proof of the step is completed.

Since R is prime, by [3, Theorem A.6], C is a field. So A € C is invertible. In
the sequel, let o = A1,

Step 4. For any z;; € R;;, there exists some element v;;(x;;) € C such that
flzij) = azxij +vi(a)l, 1 <i#j <2

Here, we only give the proof for x15. The proof for zs; is similar.

For any x12 € Ri2, let f(z12) = s11 + S12 + S21 + $22. Since

T12 = [T12, €1]2 = [f(z12), f(e1)]2 = A (521 + $12),

we get A2s91 = 0 and A%s1p = 212, which implies that so1 = 0 and s19 = A 2219 =

a2m12.

For any y = y11 + y21 + y22 € R, by the surjectivity of f, there exists an
element ¢ = t11 + t12 + to1 + ta2 € R such that f(¢) = y. Since [y, f(x12)]2 =
[f(), f(z12)]2 = [t, 712]2, We have

2 2 2 2
Y11571 T Y21571 — 2511Y11511 — & T12Y21511 — $22Y21511 + O Y11511T12
2 2 4 2 2

+ a7Y21511T12 — QTS11Y11T12 — O T12Y21T12 — Q7 S22Y21%12 + QT Y11212522

+ a2y21x12822 + y228§2 - a2x12y22822 — 522Y22522 — 062511y119312

+ 3?11/11 + a2$11x12y21 + a2311x12y22 - a2x12y21311

4 2 2 2
— QT T12Y21T12 — O T12Y22522 + AT T12522Y21 + AT XT12522Y22

— 822Y21811 — 042822?;213312 — S22Y22822 + 5323/21 + ngyzz = —2x12t21712.
Multiplying by e; from both sides in the above equation gives
2 2
Y11571 — 2811Y11811 + 11911
= a2(:1712y21511 — $11%12Y21 + T12Y21511 — I12522y21) (4)
for all y11 and y91; multiplying by es from both sides in the above equation gives
042(:9218113312 — S$22Y21%12 + Y21T12522 — 822y219612)
= 2522122522 — Y2235 — 532422 (5)

for all yo1 and yao. Particularly, letting y21 = 0 in equations (4)—(5), one obtains

2 2 2 2
Y11511 + 871¥11 = 2511y11511  and 2522922522 = Y22559 + S30¥Y22
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for all y11 and y9o. By Lemmas 2.3-2.4, the above two equations imply s;;€Z(R;;);
and furthermore, there exist some vy, vo €C such that s; =v;e; (i=1,2). These
and equations (4)—(5) imply (1 — va)x12y21 = 0 and (11 — va)y21212 = 0, that is,
x12e2y(v1 —va)er = 0 and (v —va)eayerxiz = 0 for all y € R. It follows from the
primeness of R that (v3 — v2)e; = 0 and (v — va)eg = 0, and so v = ve. Now
letting v12(w12) = v1 = vo; then f(x12) = w12 + v12(712)1, as desired.

Step 5. For any x;; € Ry, there exists some element v;;(z;;) € C such that
flxi) = eif(xii)es + vii(wii)ej, 1 <i# 5 < 2.

Still, we only prove the assertion of Step 5 for the case i = 1. The case when
i = 2 is dealt with similarly.

Take any z17 € R11 and let f(z11) = s11+ 812+ S21 + S22. For any y12 € R12,
by Step 4, we have [@?y12, f(211)]2 = [f(¥12), f(11)]2 = [y12, T11]2, that is,

2 2
a”(Y12521511 + Y12521512 + Y12522821 + Y12550 — S11Y12521 — S11Y12522
2
— S21Y12521 — S21Y12822 — S11Y12521 — S11Y12522 + S11Y12 + S12521Y12

2
— S21Y12521 — S21Y12522 + S21S11Y12 + 822821y12) = T11Y12-

Multiplying by es and e; from the left and the right in the above equation,
respectively, one gets 2s21y12521 = 0, that is, 2s91e1yease; = 0 for all y € R.
Since R is prime and the characteristic of R is not 2, we get so1 = 0.

For any yo1 € Ro1, by Step 4, we have

[Oézyzlvf(xn)]z = [f(yzl)af(l'n)]z = [y2179311}2 = y21xf1,

and so er[a?yar, f(x11)]2e2 = 0. Note that f(z11) = s11 + S12 + s22. A direct
calculation obtains 2s12y21512 = 0, which implies s12 = 0.

Now, take any y22 € Roo. By the surjectivity of f, there exists some t =
Z?,j:l tij € R such that f(t) = Yoo. Since [y22,811 + 822]2 _ [y22,f(1'11)]2 _
[f(t), f(x11)]2 = [t, z11]2, we have

2 2 2 2 2 2
Y22859 — 2822422522 + S5oY22 = 1127y + L2127 — 2x11t11%11 + 271t + X7 t12.

Multiplying by eo from both sides in the above equation achieves
y223§2 — 2892122522 + S%2y22 = 0 for all o5 € Rao. It follows from Lemmas 2.3-2.4
that sae = v11(211)es for some v11(x11) € C.

Step 6. For any z12 € Ri2 and any zo1 € Rap, there exists an element
t = a*(w12 + w21) + p1e1 + pzea € R with pg, po € C such that f(t) = 212 + x21.
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Take any x12,y12 € R12 and any 21 € Ro1. By the surjectivity of f, there
exists some t = t11 + t12 + to1 + t22 € R such that f(t) = x12 + x21. By Step 4,
we have

[212 + 21, &Py12)o = [f (1), f(y12)]2 = [t, y12)2,

that is, —2ay19221y12 = —2y12t21y12. Since the characteristic of R is not 2, we
have ylz(Oé4I21 — t21)y12 = O7 that iS, 61’!‘(0[41321 — t21)7’€2 =0 for all » € R and
hence for all x € RC (see [6, Theorem?]). In view of [17, Lemma 2], a*zo; = ta;.
Similarly, by using the relation [.1312 + 21, Oé2y21]2 = [f(t), f(ygl)]g = [t, ygl]g
for each yo1, one can show that a*zia = t12.
Now, for any y11 € R11, by Step 5, one has

[T12 + 21,511 + i1 (ya1)ez)e = [f(E), f(y11)]2 = [t y11]2-

Here s17 = e1f(y11)e1. A simple calculation gets

33218%1 + V11(y11)25€12 + Sflxu + V11(yn)25621—21/11(2411):1521311—21/11(y11)8113312
= o'yt + tuyh — 2yntuyn + otyiize + it

Multiplying e; from both sides in the above equation, we have tllyfl —2y11t11y11+

y3t11 = 0 for all y;; € Rqyy. It follows from Lemmas 2.3-2.4 that t1; = pye; for

some 1 € C.

Similarly, by using the relation [f(¢), f(ya2)]2 = [t, y22]2 for each Y22 € Rao,
one can check toa = pges for some po € C, completing the proof of the step.

Step 7. For any z;; € Ri;, we have f(z4) = oSz + vig(wi)l, i = 1,2.

By Step 5, we only need to prove e; f(z;;)e; = abwy; + vii(w4)e; for i = 1,2.
Write s;; = e; f(xi;)e;. For any z;; € R;; (1 <i# j <2), by Step 6, we have

[sii +vii(zii)ej, xij+ a2 = [f(Ti), xij + 2] = [xiiva4(xij+$ﬂ)+ﬂiei+ﬂjej]2~
A calculation achieves
ag(miixijxﬁ — 2% %5 + TijTTe) + a4(/tj — i) (T4 + TjiTiq)
= 8iiTijTji + TijTjiSii — 204 (Tii)0ijTji + 205 (Tia)Tjitij — 275i84Tij

Multiplying by e; from both sides in the above equation, one gets zj;(a®z;; +
vii(zii)ei — sii)xi; = 0, that is,

ej'R,ei(OlS$ii + vii(xi)e; — Sii)ei’Rej = {0}.

By using the primeness of R for two times, we achieve a®z; + vii(Zii)e; = Si,
completing the proof.
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Step 8. For any x,y € R, there exists an element z,, € Z(R) depending on
, y such that f(z +y) = f(x) + f(y) + 2oy-
For any z,y,t € R, we have

[f@+y)— f(@) = fy), f@®)2 = [flx+y), fO))2 — [f(@), fF®)]2 = [f(y), f(B)]2
=[z+y,tl — [zt — [y, t]2 = 0.

By the surjectivity of f and Lemma 2.2, the above equation implies f(x 4+ y) —
f(z) = f(y) € Z2(R).

Step 9. a® = 1 and there exist a map g : R — Z(R) such that f(z) =
o’z + p(z) for all x € R, that is, Theorem 1.1 is true.

For any x12 € R12 and 21 € Ra1, by the definition of f and Step 4, we have

al[z12, 221]2 = [0 712, P 221]2 = [f(212), f(221)]2 = [T12, T21]2-
It follows that (a® — 1)[z12, 221]2 = —2(a® — 1)291212791 = 0, which implies that
(OéG — 1)$21£L’12£L'21 =0 forall 15 € ng, To1 € Roi. (6)

If a® — 1 # 0, then % — 1 is invertible as C is a field. So equation (6) yields
T91212%21 = 0 for all z15 € Rq2 and x9; € Ray. First fix x9;. Then the above
equation implies x9; = 0, that is, esze; = 0 for all x € R. Obviously, this is
impossible. Hence of = 1.

Thus, combining Step 4 and Step 7, we have proved that f(z;;) = o?z;; +
wij(z45)1 for all z;; € R;j, where p;;(z;;) € C (4,5 = 1,2). Particularly, f(e1) =
a?e; + pi1(er)l. Also note that, by Step 3, f(e1) = a~le; + ul. So a?e; +
pi11(e1)1=a~te;+pul, which implies (a?—a~1)e;€ Z(R). This forces a?— a~t=0,
and so a® = 1.

Now, for any x = 17 + T12 + 21 + T22 € R, we have

f(@11) + f(z12) + f(@21) + f222) = P11 + par(211)1
+ a?x19 + pr1a(w12)1 4+ aPwa; + pior (21)1 + aPwoe + piga(w22)1
=’z + (p11(211) + p12(12) + po1(221) + poo(w22))1. (7)

On the other hand, by Step 8, there exists z, € Z(R) such that

f(@) = (f(@11) + f(z12) + fz21) + f(222))
= f(z11 + 212 + 221 + 222) — f(@11) — f(z12) — f(r21) — f(222) = 20 (8)
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Define amap p: R — C by p(z) = (p11(z11) +pa2(z12) +p21 (v21) + 22 (w22)) 1+ 24
for each # € R. Then by Eqs.(7)-(8), one has f(z) = o?x + u(x). Since f(z) € R
and o’z € R, it is clear that u(z) € R for all z € R. Hence p in fact maps into
Z(R). Finally, let 3 = a?. Then 8 € C and 32 = af = 1, completing the proof of
Theorem 1.1. O
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