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Strong 2-commutativity preserving maps on prime rings

By XIAOFEI QI (Taiyuan)

Abstract. Let R be a unital prime ring and k ≥ 1 a positive integer. A map

f : R → R is called preserving strong k-commutativity if [f(x), f(y)]k = [x, y]k =

[[x, y]k−1, y] for all x, y ∈ R. In this paper, it is shown that, if R contains a nontrivial

idempotent, charR 6= 2 and f is surjective, then f is strong 2-commutativity preserving

if and only if f(x) = βx+ µ(x) for all x ∈ R, where β is in the extended centroid of R
with β3 = 1 and µ is a central valued map. Based on this, a characterization of general

strong 2-commutativity preserving maps on factor von Neumann algebras is obtained.

1. Introduction

Let R be a ring with the center Z(R). Then R is a Lie ring under the Lie

product [a, b] = ab− ba. Recall that a map f : R → R preserves commutativity if

[f(a), f(b)] = 0 whenever [a, b] = 0 for a, b ∈ R; preserves strong commutativity if

[f(a), f(b)] = [a, b] for all a, b ∈ R. Obviously, a strong commutativity preserving

map must be commutativity preserving; but the inverse is not true.

The problem of characterizing commutativity preserving maps had been stud-

ied intensively on various rings and algebras (for example, see [2], [5], [16], [19]

and the references therein). For strong commutativity preserving maps (SCPM),

Brešar and Miers in [4] proved that every additive SCPM f on a semiprime

ring R has the form f(a) = λa+ µ(a), where λ ∈ C, the extended centroid of R,
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λ2 = 1 and µ : R → C is an additive map. Let L be a noncentral Lie ideal of a

prime ring R. Lin and Liu in [13] proved that every additive SCPM f : L → R
is of the form f(a) = λa+µ(a), where λ ∈ C with λ2 = 1 and µ : L → Z(R) is an

additive map, unless charR = 2 and R satisfies the standard identity of degree 4.

Qi and Hou [18] discussed general SCPM on prime rings. It was shown in [18]

that, if R is a unital prime ring with a nontrivial idempotent, then a surjective

map f : R → R is a SCPM if and only if f(a) = αa + µ(a) for all a ∈ R,

where α ∈ {1,−1} and µ : R → Z(R) is an arbitrary map. Recently, Lee and

Wong in [12] generalized above results. Assume that R is a prime ring with L
a noncentral Lie ideal of R. They proved that, if f : L → R is a map satisfying

[f(x), f(y)] − [x, y] ∈ C for all x, y ∈ L, then f(a) = αa + µ(a) for all a ∈ L,

where α ∈ {1,−1} and µ : L → C is a map, unless charR = 2 and R satisfies

the standard identity of degree 4. For other results about SCPMs, see [1], [7], [8],

[14], [15], [20] and the references therein.

For any elements a, b ∈ R, define [a, b]0 = a, [a, b]1 = ab−ba, and inductively

[a, b]k = [[a, b]k−1, b], where k ≥ 1 is a positive integer. Thus, we can introduce

the concept of strong k-commutativity preserving maps. A map f : R → R is

said to preserve strong k-commutativity if [f(a), f(b)]k = [a, b]k for all a, b ∈ R.

Obviously, strong k-commutativity preserving maps are usual SCPMs if k= 1. A

natural problem is how to characterize strong k-commutativity preserving maps

for k > 1. The purpose of the present paper is to consider the problem of char-

acterizing strong 2-commutativity preserving maps on prime rings.

Let R be a ring with center Z(R). We say that R is prime if for any a, b ∈ R,

aRb = {0} implies either a = 0 or b = 0; or equivalently, if for any two left (or

right) ideals A and B of R, AB = {0} implies A = {0} or B = {0}. Denote by

Q = Qmr(R) the maximal right ring of quotients. If R is prime, then the center

C of Q is a field, which is called the extended centroid of R. Moreover, Z(R) ⊆ C.
For more details about prime rings, see [3].

The following is our main result in this paper.

Theorem 1.1. Let R be a unital prime ring containing a nontrivial idem-

potent. Assume that f : R → R is a surjective map and the characteristic of R
is not 2. Then f is strong 2-commutativity preserving if and only if there exist a

map µ : R → Z(R) and an element β ∈ C with β3 = 1 such that f(x) = βx+µ(x)

for all x ∈ R.

Remark 1.1. From Theorem 1.1, we see that a strong 2-commutativity pre-

serving map may not be a strong commutativity preserving map, and vice versa.

Recall that a von Neumann algebra M is a subalgebra of some B(H), the
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algebra of all bounded linear operators acting on a complex Hilbert space H,

which satisfies the double commutant property: M′′ =M, whereM′ = {T : T ∈
B(H) and TA = AT ∀A ∈ M} and M′′ = {M′}′. M is called a factor if its

center, Z(M) =M∩M′, is trivial (i.e., Z(M) = CI).

It is well-known that every factor von Neumann algebra must be prime. So,

as an application of Theorem 1.1 to the factor von Neumann algebra case, the

following corollary is immediate.

Corollary 1.2. Let A be a factor von Neumann algebra. Assume that

Φ : A → A is a surjective map. Then Φ is strong 2-commutativity preserving if

and only if there exist a scalar α ∈ {1, e 2πi
3 , e

4πi
3 } and a functional g : A → C

such that Φ(A) = αA+ g(A)I for all A ∈ A.

2. Proof of Theorem 1.1

In this section, we will give the proof of Theorem 1.1.

Lemma 2.1 ([3, Theorem A.7]). Let A be a prime ring, and let

Ai, Bi, Cj , Dj ∈ Qml(A) be such that
∑n

i=1AiXBi =
∑m

j=1 CjXDj for all X∈A.
If A1, . . . , An are linearly independent over C, then each Bi is a C-linear combina-

tion of D1, . . . , Dm. Similarly, if B1, . . . , Bn are linearly independent over C, then
each Ai is a C-linear combination of C1, . . . , Cm. In particular, if AXB = BXA

for all X ∈ A, then A and B are C-linearly dependent.

Lemma 2.2. Let R be a prime ring. Then Z(R)2 = {z ∈ R : [z, x]2 = 0 for

all x ∈ R} = Z(R).

Proof. This is a direct consequence of [10, Theorem 1] (also see [15, Theo-

rem 2]). �

Lemma 2.3. Let R be a prime ring of characteristic not 2 and s ∈ R. If

xs2 + s2x = 2sxs holds for all x ∈ R, then s ∈ Z(R).

Proof. Since xs2 + s2x = 2sxs, we have [s, [s, x]] = 0 for all x ∈ R. It is

easily seen that s ∈ Z(R) by the primeness of R and charR 6= 2. �

Lemma 2.4. Assume that R is a unital prime ring with a nontrivial idem-

potent e. Then eRe is also a prime ring with Z(eRe) ⊆ Ce.

Proof. For any elements exe, eye ∈ eRe, if exeReye = {0}, by using the

primeness of R, we have either exe = 0 or eye = 0. So eRe is prime. Now, taking

any eze ∈ Z(eRe); then ezexe = exeze holds for all x ∈ R. By Lemma 2.1, there

exists some λ ∈ C such that eze = λe, which implies Z(eRe) ⊆ Ce. �
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Now we are at a position to our proof of Theorem 1.1.

Proof of Theorem 1.1. The “if” part of the theorem is obvious. In the

sequel, we always assume that f : R → R is a surjective strong 2-commutativity

preserving map. We will check the “only if” part by several steps.

Step 1. f(Z(R)) = Z(R).

Take any z ∈ Z(R). Then for any x ∈ R, we have [f(z), f(x)]2 = [z, x]2 = 0.

By the surjectivity of f and Lemma 2.2, f(z) ∈ Z(R). On the other hand, if

f(x) = z, then [x, y]2 = [f(x), f(y)]2 = [z, f(y)]2 = 0 for all y ∈ R. Hence

x ∈ Z(R) by Lemma 2.2, that is, Z(R) ⊆ f(Z(R)), completing the proof of the

step.

Let e ∈ R be a nontrivial idempotent. Write e1 = e and e2 = 1− e. Then R
can be decomposed into R = R11 +R12 +R21 +R22, where Rij = eiRej
(i, j ∈ {1, 2}).

Step 2. For any x ∈ R, we have [x, e1]2 = e1xe2 + e2xe1 ∈ R12 +R21.

Obvious by a simple and direct calculation.

Step 3. There exist two elements λ, µ ∈ C with λ 6= 0 such that f(e1) =

λe1 + µ1.

For any x ∈ R, it is easily checked that [x, e1] = [x, e1]3. Then [x, e1]2 =

[x, e1]4 =
[
[[x, e1]2, e1], e1

]
, and so [f(x), f(e1)]2 =

[
[[f(x), f(e1)]2, e1], e1

]
. It

follows from the surjectivity of f that

[x, f(e1)]2 =
[
[[x, f(e1)]2, e1], e1

]
= [[x, f(e1)]2, e1]2 for all x ∈ R.

By Step 2, we have [[x, f(e1)]2, e1]2 ∈ R12 +R21, and so

[x, f(e1)]2 ∈ R12 +R21. (1)

Write f(e1) = s11 + s12 + s21 + s22. We will first show the following claim.

Claim. s12 = s21 = 0.

On the contrary, assume that s21 6= 0. Taking x = x11; then

e2[x11, f(e1)]2e2 = 2s21x11s12 = 0 by equation (1). Since the characteristic of R
is not 2, we have s21e1xe1s12 = 0 for all x ∈ R. It follows from the primeness

of R that s12 = 0.

Taking x = x12; then

[x12, f(e1)]2 = x12(s21s11 + s22s21)− 2s11x12s21 + (s21s11 + s22s21)x12

−2s21x12s22 + s211x12 +x12s
2
22− 2s11x12s22 + s12s21x12 +x12s21s12 − 2s21x12s21.
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This and equation (1) imply

x12(s21s11 + s22s21) = 2s11x12s21 and (s21s11 + s22s21)x12 = 2s21x12s22,

that is,

e1xe2(s21s11 + s22s21) = 2s11e1xe2s21 = s11e1x(2e2s21) (2)

and

(s21s11 + s22s21)e1xe2 = 2s21e1xe2s22 (3)

for all x ∈ R. By Lemma 2.2, equation (2) implies that e1 and s11 are C-linearly

dependent as 2e2s21 6= 0. If s11 = λe1 for some λ ∈ C, by equation (2) and the

primeness of R, we get s21s11 + s22s21 = 2λe2s21, which, combining equation (3)

and the primeness of R, implies s22 = λe2. Thus we get f(e1) = λ1 + s21.

For any x12∈R12, by the surjectivity of f , there exists some y=
∑2

i,j=1 yij ∈R
such that f(y) = x12. Then

y21 + y12 = [y, e1]2 = [x12, f(e1)]2 = [x12s21 − s21x12, s21] = −2s21x12s21.

It follows that y12 = 0. On the other hand, since

[f(e1), x12]2 = [s21x12 − x12s21, x12] = −2x12s21x12
and

[e1, y]2 = [−y21, y] = −y21y11 + y22y21,

one can obtain x12s21x12 = 0 as [f(e1), x12]2 = [e1, y]2 and charR 6= 2. Then

we have (e1xe2s21)2 = 0 for all x ∈ R. Note that e1Re2s21 is a left ideal of the

ring e1Re1 and e1Re1 is also prime. By the definition of prime rings, we get

e1Re2s21 = {0}. It follows from the primeness of R that s21 = 0, a contradiction.

By a similar argument to the above, one can check that s12 = 0. The claim

holds.

Next, we will consider s11 and s22. Taking x = x11 in equation (1); then, by

Claim and equation (1), one gets

[x11, f(e1)]2 = x11s
2
11 − 2s11x11s11 + s211x11 = 0.

Note that, by Lemma 2.4, R11 is prime and the characteristic of R11 is not 2. It

follows from Lemma 2.3 that s11 ∈ Z(R11), that is, s11e1xe1 = e1xe1s11 holds for

all x ∈ R. Now, by Lemma 2.1, there exists some λ1 ∈ C such that s11 = λ1e1.

A similar argument to that for s11 can obtain s22 = µe2 for some µ ∈ C. Hence

f(e1) = λ1e1 + µe2 = λe1 + µ1, where λ = λ1 − µ.
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Finally, we still need to prove that λ 6= 0. On the contrary, if λ = 0, then

f(e1) = µ1 ∈ C. Since f(e1) ∈ R, it follows that f(e1) ∈ Z(R). By Step 2, one

has e1 ∈ Z(R), which is impossible. The proof of the step is completed.

Since R is prime, by [3, Theorem A.6], C is a field. So λ ∈ C is invertible. In

the sequel, let α = λ−1.

Step 4. For any xij ∈ Rij , there exists some element νij(xij) ∈ C such that

f(xij) = α2xij + νij(xij)1, 1 ≤ i 6= j ≤ 2.

Here, we only give the proof for x12. The proof for x21 is similar.

For any x12 ∈ R12, let f(x12) = s11 + s12 + s21 + s22. Since

x12 = [x12, e1]2 = [f(x12), f(e1)]2 = λ2(s21 + s12),

we get λ2s21 = 0 and λ2s12 = x12, which implies that s21 = 0 and s12 = λ−2x12 =

α2x12.

For any y = y11 + y21 + y22 ∈ R, by the surjectivity of f , there exists an

element t = t11 + t12 + t21 + t22 ∈ R such that f(t) = y. Since [y, f(x12)]2 =

[f(t), f(x12)]2 = [t, x12]2, we have

y11s
2
11 + y21s

2
11 − 2s11y11s11 − α2x12y21s11 − s22y21s11 + α2y11s11x12

+ α2y21s11x12 − α2s11y11x12 − α4x12y21x12 − α2s22y21x12 + α2y11x12s22

+ α2y21x12s22 + y22s
2
22 − α2x12y22s22 − s22y22s22 − α2s11y11x12

+ s211y11 + α2s11x12y21 + α2s11x12y22 − α2x12y21s11

− α4x12y21x12 − α2x12y22s22 + α2x12s22y21 + α2x12s22y22

− s22y21s11 − α2s22y21x12 − s22y22s22 + s222y21 + s222y22 = −2x12t21x12.

Multiplying by e1 from both sides in the above equation gives

y11s
2
11 − 2s11y11s11 + s211y11

= α2(x12y21s11 − s11x12y21 + x12y21s11 − x12s22y21) (4)

for all y11 and y21; multiplying by e2 from both sides in the above equation gives

α2(y21s11x12 − s22y21x12 + y21x12s22 − s22y21x12)

= 2s22y22s22 − y22s222 − s222y22 (5)

for all y21 and y22. Particularly, letting y21 = 0 in equations (4)–(5), one obtains

y11s
2
11 + s211y11 = 2s11y11s11 and 2s22y22s22 = y22s

2
22 + s222y22
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for all y11 and y22. By Lemmas 2.3–2.4, the above two equations imply sii∈Z(Rii);

and furthermore, there exist some ν1, ν2 ∈C such that sii = νiei (i= 1, 2). These

and equations (4)–(5) imply (ν1− ν2)x12y21 = 0 and (ν1− ν2)y21x12 = 0, that is,

x12e2y(ν1−ν2)e1 = 0 and (ν1−ν2)e2ye1x12 = 0 for all y ∈ R. It follows from the

primeness of R that (ν1 − ν2)e1 = 0 and (ν1 − ν2)e2 = 0, and so ν1 = ν2. Now

letting ν12(x12) = ν1 = ν2; then f(x12) = α2x12 + ν12(x12)1, as desired.

Step 5. For any xii ∈ Rii, there exists some element νii(xii) ∈ C such that

f(xii) = eif(xii)ei + νii(xii)ej , 1 ≤ i 6= j ≤ 2.

Still, we only prove the assertion of Step 5 for the case i = 1. The case when

i = 2 is dealt with similarly.

Take any x11 ∈ R11 and let f(x11) = s11+s12+s21+s22. For any y12 ∈ R12,

by Step 4, we have [α2y12, f(x11)]2 = [f(y12), f(x11)]2 = [y12, x11]2, that is,

α2(y12s21s11 + y12s21s12 + y12s22s21 + y12s
2
22 − s11y12s21 − s11y12s22

− s21y12s21 − s21y12s22 − s11y12s21 − s11y12s22 + s211y12 + s12s21y12

− s21y12s21 − s21y12s22 + s21s11y12 + s22s21y12) = x211y12.

Multiplying by e2 and e1 from the left and the right in the above equation,

respectively, one gets 2s21y12s21 = 0, that is, 2s21e1ye2s21 = 0 for all y ∈ R.

Since R is prime and the characteristic of R is not 2, we get s21 = 0.

For any y21 ∈ R21, by Step 4, we have

[α2y21, f(x11)]2 = [f(y21), f(x11)]2 = [y21, x11]2 = y21x
2
11,

and so e1[α2y21, f(x11)]2e2 = 0. Note that f(x11) = s11 + s12 + s22. A direct

calculation obtains 2s12y21s12 = 0, which implies s12 = 0.

Now, take any y22 ∈ R22. By the surjectivity of f , there exists some t =∑2
i,j=1 tij ∈ R such that f(t) = y22. Since [y22, s11 + s22]2 = [y22, f(x11)]2 =

[f(t), f(x11)]2 = [t, x11]2, we have

y22s
2
22 − 2s22y22s22 + s222y22 = t11x

2
11 + t21x

2
11 − 2x11t11x11 + x211t11 + x211t12.

Multiplying by e2 from both sides in the above equation achieves

y22s
2
22−2s22y22s22 +s222y22 = 0 for all y22 ∈ R22. It follows from Lemmas 2.3–2.4

that s22 = ν11(x11)e2 for some ν11(x11) ∈ C.

Step 6. For any x12 ∈ R12 and any x21 ∈ R21, there exists an element

t = α4(x12 + x21) + µ1e1 + µ2e2 ∈ R with µ1, µ2 ∈ C such that f(t) = x12 + x21.
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Take any x12, y12 ∈ R12 and any x21 ∈ R21. By the surjectivity of f , there

exists some t = t11 + t12 + t21 + t22 ∈ R such that f(t) = x12 + x21. By Step 4,

we have

[x12 + x21, α
2y12]2 = [f(t), f(y12)]2 = [t, y12]2,

that is, −2α4y12x21y12 = −2y12t21y12. Since the characteristic of R is not 2, we

have y12(α4x21 − t21)y12 = 0, that is, e1r(α
4x21 − t21)re2 = 0 for all r ∈ R and

hence for all x ∈ RC (see [6, Theorem2]). In view of [17, Lemma 2], α4x21 = t21.

Similarly, by using the relation [x12 +x21, α
2y21]2 = [f(t), f(y21)]2 = [t, y21]2

for each y21, one can show that α4x12 = t12.

Now, for any y11 ∈ R11, by Step 5, one has

[x12 + x21, s11 + ν11(y11)e2]2 = [f(t), f(y11)]2 = [t, y11]2.

Here s11 = e1f(y11)e1. A simple calculation gets

x21s
2
11 + ν11(y11)2x12 + s211x12 + ν11(y11)2x21−2ν11(y11)x21s11−2ν11(y11)s11x12

= α4x21y
2
11 + t11y

2
11 − 2y11t11y11 + α4y211x12 + y211t11.

Multiplying e1 from both sides in the above equation, we have t11y
2
11−2y11t11y11+

y211t11 = 0 for all y11 ∈ R11. It follows from Lemmas 2.3–2.4 that t11 = µ1e1 for

some µ1 ∈ C.
Similarly, by using the relation [f(t), f(y22)]2 = [t, y22]2 for each y22 ∈ R22,

one can check t22 = µ2e2 for some µ2 ∈ C, completing the proof of the step.

Step 7. For any xii ∈ Rii, we have f(xii) = α8xii + νii(xii)1, i = 1, 2.

By Step 5, we only need to prove eif(xii)ei = α8xii + νii(xii)ei for i = 1, 2.

Write sii = eif(xii)ei. For any xij ∈ Rij (1 ≤ i 6= j ≤ 2), by Step 6, we have

[sii +νii(xii)ej , xij +xji]2 = [f(xii), xij +xji]2 = [xii, α
4(xij +xji)+µiei +µjej ]2.

A calculation achieves

α8(xiixijxji − 2xjixiixij + xijxjixii) + α4(µj − µi)(xiixij + xjixii)

= siixijxji + xijxjisii − 2νii(xii)xijxji + 2νii(xii)xjixij − 2xjisiixij .

Multiplying by ej from both sides in the above equation, one gets xji(α
8xii +

νii(xii)ei − sii)xij = 0, that is,

ejRei(α8xii + νii(xii)ei − sii)eiRej = {0}.

By using the primeness of R for two times, we achieve α8xii + νii(xii)ei = sii,

completing the proof.
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Step 8. For any x, y ∈ R, there exists an element zx,y ∈ Z(R) depending on

x, y such that f(x+ y) = f(x) + f(y) + zx,y.

For any x, y, t ∈ R, we have

[f(x+ y)− f(x)− f(y), f(t)]2 = [f(x+ y), f(t)]2 − [f(x), f(t)]2 − [f(y), f(t)]2

= [x+ y, t]2 − [x, t]2 − [y, t]2 = 0.

By the surjectivity of f and Lemma 2.2, the above equation implies f(x + y) −
f(x)− f(y) ∈ Z(R).

Step 9. α3 = 1 and there exist a map µ : R → Z(R) such that f(x) =

α2x+ µ(x) for all x ∈ R, that is, Theorem 1.1 is true.

For any x12 ∈ R12 and x21 ∈ R21, by the definition of f and Step 4, we have

α6[x12, x21]2 = [α2x12, α
2x21]2 = [f(x12), f(x21)]2 = [x12, x21]2.

It follows that (α6 − 1)[x12, x21]2 = −2(α6 − 1)x21x12x21 = 0, which implies that

(α6 − 1)x21x12x21 = 0 for all x12 ∈ R12, x21 ∈ R21. (6)

If α6 − 1 6= 0, then α6 − 1 is invertible as C is a field. So equation (6) yields

x21x12x21 = 0 for all x12 ∈ R12 and x21 ∈ R21. First fix x21. Then the above

equation implies x21 = 0, that is, e2xe1 = 0 for all x ∈ R. Obviously, this is

impossible. Hence α6 = 1.

Thus, combining Step 4 and Step 7, we have proved that f(xij) = α2xij +

µij(xij)1 for all xij ∈ Rij , where µij(xij) ∈ C (i, j = 1, 2). Particularly, f(e1) =

α2e1 + µ11(e1)1. Also note that, by Step 3, f(e1) = α−1e1 + µ1. So α2e1 +

µ11(e1)1=α−1e1+µ1, which implies (α2−α−1)e1∈Z(R). This forces α2−α−1= 0,

and so α3 = 1.

Now, for any x = x11 + x12 + x21 + x22 ∈ R, we have

f(x11) + f(x12) + f(x21) + f(x22) = α2x11 + µ11(x11)1

+ α2x12 + µ12(x12)1 + α2x21 + µ21(x21)1 + α2x22 + µ22(x22)1

= α2x+ (µ11(x11) + µ12(x12) + µ21(x21) + µ22(x22))1. (7)

On the other hand, by Step 8, there exists zx ∈ Z(R) such that

f(x)− (f(x11) + f(x12) + f(x21) + f(x22))

= f(x11 + x12 + x21 + x22)− f(x11)− f(x12)− f(x21)− f(x22) = zx. (8)
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Define a map µ : R → C by µ(x) = (µ11(x11)+µ12(x12)+µ21(x21)+µ22(x22))1+zx
for each x ∈ R. Then by Eqs.(7)-(8), one has f(x) = α2x+µ(x). Since f(x) ∈ R
and α2x ∈ R, it is clear that µ(x) ∈ R for all x ∈ R. Hence µ in fact maps into

Z(R). Finally, let β = α2. Then β ∈ C and β3 = α6 = 1, completing the proof of

Theorem 1.1. �
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