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Topologies and orders on function spaces
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and B. K. PAPADOPOULOS (Xanthi)

Introduction

By Y and Z we denote two fixed topological spaces and by C(Y, Z)
we denote the set of all continuous maps of Y into Z. If τ is a topology
on the set C(Y, Z), then the corresponding topological space is denoted by
Cτ (Y, Z).

Let X be a space and F : X × Y → Z be a continuous map. By
Fx, where x ∈ X, we denote the continuous map of Y into Z, for which
Fx(y) = F (x, y), for every y ∈ Y . By F̂ we denote the map of X into the
set C(Y, Z), for which F̂ (x) = Fx, for every x ∈ X.

Let G be a map of the space X into the set C(Y, Z). By G̃ we denote
the map of the space X×Y into the space Z, for which G̃(x, y) = G(x)(y),

for every (x, y) ∈ X × Y . It is easy to verify that ̂̃
G = G and ˜̂

F = F .
A topology τ on C(Y,Z) is called splitting (respectively, jointly con-

tinuous) (see [1]) if and only if for every space X, the continuity of a map
F : X×Y → Z (respectively, a map G : X → Cτ (Y, Z)) implies that of the
map F̂ : X → Cτ (Y, Z) (respectively, of the map G̃ : X × Y → Z). If this
condition is satisfied for the elements of the family A of spaces, then the
topology is called A–splitting (respectively, A–jointly continuous). (See
[2]). If A = {X}, then instead of “A–splitting” and “A–jointly contin-
uous” we write “X–splitting” and “X–jointly continuous”. The greatest
A–splitting topology, which always exists, is denoted by τ(A).

We recall some notions. (See, for example, [3]). For every space X

with a topology τ we define a preorder “
τ≤” and an equivalence relation

“ τ∼” on X as follows: if x, y ∈ X, then we write x
τ≤ y (respectively, x

τ∼ y)
if and only if x ∈ ClX({y}) (respectively, x ∈ ClX({y}) and y ∈ ClX({x})).
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(By ClX(Q) we denote the closure of the set Q in the space X). It is easy

to see that the preorder “
τ≤” on X is a partial order if and only if X is

a T0–space. Also, the points x and y are τ∼–equivalent if and only if for
every open subset U of X either x, y ∈ U or x, y 6∈ U .

On the set C(Y, Z) we define a preorder “≤” and an equivalence re-
lation “∼” as follows: if g, f ∈ C(Y, Z), then we write g ≤ f (respectively,

g ∼ f) if and only if g(y)
τ≤ f(y) (respectively, g(y) τ∼ f(y)), for every

y ∈ Y , where τ is the topology of the space Z. Obviously, if Z is a T0–
space, then the preorder “≤” on C(Y, Z) is a partial order. Also, g ∼ f if
and only if g ≤ f and f ≤ g.

If X is a set equipped with a preorder “≤”, then we set [y,→)≤ =
{x ∈ X : y ≤ x} and (←, y]≤ = {x ∈ X : x ≤ y}.

Let U ba a quasi-uniformity on the space Z. (See, for example,
[8]). This quasi-uniformity defines on the set C(Y,Z) a quasi-uniformity
Q ≡ Q(U) as follows (see [5]): the set of all subsets of C(Y,Z) of the form

(Y, U) ≡ {(f, g) ∈ C(Y,Z)× C(Y, Z) : (f(y), g(y)) ∈ U, for every y ∈ Y } ,

where U ∈ U , is a basis for the quasi-uniformity Q. We denote by τQ the
topology on C(Y, Z), which is defined by the quasi-uniformity Q and we
say that τQ is generated by the quasi-uniformity U on the space Z.

By S we denote the Sierpinski space, that is, the set {0, 1} equipped
with the topology τ(S) ≡ {∅, {0, 1}, {1}}, and by D the set {0, 1} with
the trivial topology.

In the present paper we study the connections of the natural preorder
“≤” and equivalence relation “∼” on the set C(Y, Z) with the notions of
X–splitting and X–jointly continuous topologies on this set, where X is
either the space S or the space D.

1. Theorem. A topology τ on C(Y,Z) is S–splitting if and only if

from the condition g ≤ f it follows that g
τ≤ f .

Proof. Let τ be an S–splitting topology on C(Y, Z) and let g ≤ f ,

where g, f ∈ C(Y, Z). We prove that g
τ≤ f .

Let F : S × Y → Z be a map for which F (1, y) = f(y) and F (0, y) =
g(y), y ∈ Y . We prove that F is continuous. Let F (1, y) = f(y) and let
U be an open neighbourhood of f(y) in Z. Since f is continuous, the set
f−1(U) is open in Y . The set V = {1}×f−1(U) is an open neighbourhood
of (1, y) in S × Y and F (V ) ⊆ U , which means that F is continuous at
the point (1, y) ∈ S × Y .

Let F (0, y) = g(y) and U be an open neighbourhood of g(y) in Z.
The set V = S× g−1(U) is an open neighbourhood of (0, y) in S×Y . We
prove that F (V ) ⊆ U . Indeed, if (0, y1) ∈ V , then F (0, y1) = g(y1) ∈ U .
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If (1, y) ∈ V , then F (1, y1) = f(y1). Since g ≤ f and g(y1) ∈ U we have
that f(y1) ∈ U . Hence, F (V ) ⊆ U and, therefore, F is continuous.

Since τ is S–splitting the map F̂ : S → Cτ (Y, Z) is continuous. We
have that F̂ (1) = f and F̂ (0) = g. Let W be an open neighbourhood of
g in Cτ (Y, Z). Then, F̂−1(W ) is an open neighbourhood of 0 ∈ S. Since
0 ∈ ClS({1}) we have that 1 ∈ F̂−1(W ), that is, F̂ (1) = f ∈ W . This

means that g ∈ ClCτ (Y,Z)({f}). Hence g
τ≤ f .

Conversely, let τ be a topology on C(Y, Z) such that from the con-

dition g ≤ f it follows that g
τ≤ f . We prove that τ is S–splitting. Let

F : S×Y → Z be a continuous map. Consider the map F̂ : S → Cτ (Y, Z).
Let F̂ (1) = f and F̂ (0) = g. We prove that g ≤ f . Indeed, let y ∈ Y and
let U be an open neighbourhood of g(y) in Z. Since F is continuous, the
set F−1(U) is an open neighbourhood of (0, y) in S × Y . It is easy to see
that every open neighborhood of (0, y) contains the point (1, y). Hence,
(1, y) ∈ F−1(U), that is, f(y) ∈ U . Therefore, g ≤ f . By the assumption,

g
τ≤ f .

Let U be an open subset of Cτ (Y, Z). If f, g ∈ U or f, g 6∈ U , then
F̂−1(U) is open in S. If f ∈ U and g 6∈ U , then F̂−1U = {1} ∈ τ(S). Let

g ∈ U . Since g
τ≤ f we have that f ∈ U and, hence, the set F̂−1(U) is open

in S. Thus, F̂ is continuous and, therefore, the topology τ is S–splitting.

2. Corollary. The discrete topology and, hence, every topology on
C(Y, Z) is S–splitting if and only if the space Z is a T1–space.

Proof. If Z is a T1–space, then by the condition g ≤ f , where

g, f ∈ C(Y,Z), it follows that g = f . Hence, g
τ≤ f , for every topol-

ogy τ on C(Y, Z). Therefore, by Theorem 1, every topology on C(Y, Z) is
S–splitting.

Conversely, suppose that every topology on C(Y, Z) is S–splitting. If
Z is not a T1–space, then there exist points x, y ∈ Z, x 6= y, such that
x ≤ y. Let f, g ∈ C(Y, Z) such that g(Y ) = {x} and f(Y ) = {y}. Then,

g ≤ f and g 6= f . By Theorem 1, g
τ≤ f , for every topology τ on C(Y, Z).

If τ is the discrete topology, then g = f , which is a contradiction. Hence,
Z is a T1–space.

3. Theorem. A topology τ on C(Y, Z) is S–jointly continuous if and

only if from the condition g
τ≤ f it follows that g ≤ f .

Proof. Let τ be an S–jointly continuous topology on C(Y, Z) and

let g
τ≤ f , where g, f ∈ C(Y, Z). We prove that g ≤ f .
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Let G : S → C(Y,Z) be a map for which G(0) = f and G(1) = g. We
prove that G is continuous. Let U be an open subset of C(Y, Z). If g ∈ U ,

then since g
τ≤ f we have that f ∈ U and, hence, the set G−1(U) = S

is open. Also, if g 6∈ U and f 6∈ U , then the set G−1(U) = ∅ is open.
Hence, the map G is continuous. Since τ is S–jointly continuous, the map
G̃ : S × Y → Z is also continuous.

Let y ∈ Y and let W be an open neighbourhood of g(y) is Z. Then,
G̃−1(W ) is an open subset of S × Y containing the point (0, y). There
exist an open neighbourhood V1 of 0 in S and an open neighbourhood
V2 of y in Y such that V1 × V2 ⊆ G̃−1(W ). Since 1 ∈ V1 we have that
(1, y) ∈ G̃−1(W ), which means that F (1, y) = f(y) ∈ W . Thus, g(y) ∈
ClZ({f(y)}). Hence, g ≤ f .

Conversely, let τ be a topology on C(Y, Z) such that from the condi-

tion g
τ≤ f it follows that g ≤ f . We prove that τ is S–jointly continuous.

Let G : S → C(Y,Z) be a continuous map and let G(1) = f and G(0) = g.

We prove that g
τ≤ f . Indeed, let U be an open neighbourhood of g in

C(Y, Z). Since G is continuous, the set G−1(U) is an open subset of S
containing the point 0. Hence, 1 ∈ G−1(U) and, therefore, G(1) = f ∈ U ,

which means that g
τ≤ f .

Consider the map G̃ : S × Y → Z. Let W be an open subset of Z

and let (1, y) ∈ G̃−1(W ). Then, the set {1} × f−1(W ) is an open subset
of S × Y containing the point (1, y) such that G̃({1} × f−1(W )) ⊆ W .

Let (0, y) ∈ G̃−1(W ). Consider the open set S × g−1(W ) of S × Y .
Obviously, (0, y) ∈ S × g−1(W ). We prove that G̃(S × g−1(W )) ⊆ W .
Let (0, y1) ∈ S × g−1(W ). Then G̃(0, y1) = g(y1) ∈ W . Let (1, y2) ∈
S× g−1(W ). Then, y2 ∈ g−1(W ), that is, g(y2) ∈ W . By the assumption,
f(y2) ∈ W and, hence, G̃(1, y2) = f(y2) ∈ W . Thus, the map G̃ is
continuous. Hence, τ is an S–jointly continuous topology.

4. Corollary. The trivial topology and, hence, every topology on the
set C(Y, Z) is S–jointly continuous if and only if the topology of Z is
trivial.

Proof. Suppose that the topology of Z is trivial. Then, f ≤ g for
every f, g ∈ C(Y, Z). By Theorem 3, it follows that every topology τ on
C(Y, Z) is S–jointly continuous.

Conversely, suppose that every topology on C(Y,Z) is S–jointly con-
tinuous. Let τ be the trivial topology on C(Y, Z). Then, for every

f, g ∈ C(Y,Z) we have g
τ≤ f . If the topology of Z is not trivial, then there

exist points x, y ∈ Z, x 6= y, such that y 6∈ ClZ({x}). Let f, g ∈ C(Y, Z)
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such that f(Y ) = {x} and g(Y ) = {y}. Then g 6≤ f , which by Theorem 3
is a contradiction.

5. Corollary. A topology τ on C(Y,Z) is simultaneously S–splitting

and S–jointly continuous if and only if the preorders “
τ≤” and “≤” coincide.

6. Theorem. The subsets of C(Y, Z) of the form [g,→)≤, g ∈ C(Y,Z),
compose a basis for open sets in the space Cτ({S})(Y,Z).

Proof. Let τ be a topology on C(Y, Z), for which the sets of the
form [g,→)≤, g ∈ C(Y, Z), compose a subbasis for open sets. Obviously,
if f ∈ [g,→)≤, then [f,→)≤ ⊆ [g,→)≤. Hence, if g ∈ U ∈ τ , then

[g,→)≤ ⊆ U . Thus, if g ≤ f , then g
τ≤ f . Hence, by Theorem 1, τ is an

S–splitting topology. Therefore, τ ⊆ τ({S}).
Let U ∈ ({S}) and g ∈ U . By Theorem 1, [g,→)≤ ⊆ U and, hence,

U ∈ τ . This means that τ({S}) ⊆ τ and the sets of the form [g,→)≤, g ∈
C(Y, Z), compose a basis for the topology τ({S}).

7. Corollary. The set of all subsets of C(Y, Z) of the form {f ∈
C(Y, Z) : g−1(U) ⊆ f−1(U)}, for every U ∈ O(Z)}, g ∈ C(Y, Z), is a
basis for the greatest S–splitting topology on C(Y, Z).

The proof of this corollary follows by the relation [g,→)≤ = {f ∈
C(Y, Z) : g−1(U) ⊆ f−1(U)}, for every U ∈ O(Z)}.

8. Corollary. The greatest S–splitting topology τ({S}) on C(Y, Z)
has the following property: the intersection of any family of open sets is
open, that is, every element f of C(Y,Z) has a smallest open neighbour-
hood in the space Cτ({S})(Y,Z).

9. Theorem. The greatest S–splitting topology is S–jointly continu-
ous.

Proof. Let f, g ∈ C(Y,Z) and g
τ({S})
≤ f . Since [g,→)≤ is an open

neighbourhood of g in Cτ({S})(Y, Z) (see Theorem 6) we have that f ∈
[g,→)≤, that is, g ≤ f . By Theorem 3, τ({S}) is S–jointly continuous.

10. Theorem. In the set of all simultaneously S–splitting and S–
jointly continuous topologies on C(Y, Z) there exists a smallest topol-
ogy denoted by τmin({S}). Moreover, the set C(Y, Z) and the subsets of
C(Y, Z) of the form C(Y, Z) \ (←, g]≤, g ∈ C(Y,Z), compose a subbasis
for this topology.

Proof. Let τ be a topology on the set C(Y, Z), for which the set
C(Y, Z) and the subsets of C(Y, Z) of the form C(Y, Z) \ (←, g]≤, g ∈
C(Y, Z), compose a subbasis. We prove that τ is S–splitting. Indeed, let
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g ≤ f , that is, f ∈ [g,→)≤ and let g ∈ U ∈ τ . If U = C(Y, Z), then f ∈ U .
If U 6= C(Y, Z), then there exist elements g1, . . . , gk ∈ C(Y,Z) such that

g ∈ ⋂{C(Y,Z) \ (←, gi]≤ : i ∈ {1, . . . , k}} ⊆ U .

Hence,
g 6∈ ⋃{(←, gi]≤ : i ∈ {1, . . . , k}} .

Therefore,

[g,→)≤ ⊆ C(Y,Z) \ (
⋃{(←, gi]≤ : i ∈ {1, . . . , k}})

=
⋂{C(Y,Z) \ (←, gi]≤ : i ∈ {1, . . . , k}} ⊆ U .

Therefore, f ∈ U , that is g
τ≤ f . By Theorem 1, τ is S–splitting.

We prove that τ is S–jointly continuous. Let g
τ≤ f . By Theorem 3 it

is sufficient to prove that g ≤ f , that is, f ∈ [g,→)≤. If f 6∈ [g,→)≤, then
the set C(Y, Z) \ (←, f ]≤ is an open neighbourhood of g, which does not

contain the element f . Since g
τ≤ f , this is a contradiction. Hence, g ≤ f .

Now we prove that τ is the smallest S–splitting and S–jointly contin-
uous topology on C(Y,Z), that is τ = τmin({S}). Let τ ′ be an S–splitting
and S–jointly continuous toplogy on C(Y, Z). We prove that τ ⊆ τ ′. Let
g, f ∈ C(Y,Z) and f ∈ C(Y, Z) \ (←, g]≤. It is sufficient to prove that
there exists an element V ∈ τ ′ such that

f ∈ V ⊆ C(Y, Z) \ (←, g]≤ .

We have that f 6∈ (←, g]≤, that is, f 6≤ g. Since τ ′ is S–jointly continuous,

by Theorem 3 it follows that f
τ ′

6≤ g. Therefore, there exists an element
V ∈ τ ′ such that f ∈ V and g 6∈ V . Since τ ′ is S–splitting, by Theorem 1
we have that (←, g]≤ ∩ V = ∅. Hence,

f ∈ V ⊆ C(Y, Z) \ (←, g]≤ .

11. Theorem. The pointwise topology on C(Y, Z) is S–jointly con-
tinuous.

Proof. Let τp be the pointwise topology on C(Y,Z). Then, the sets
of the form

(y, U) = {f ∈ C(Y, Z) : f(y) ∈ U} ,

where y ∈ Y and U is an open subset of Z, compose a subbasis for τp.

Let f
τp≤ g, y ∈ Y and U be an open neighbourhood of f(y) in Z.

Then, f ∈ (y, U). Since f
τp≤ g, we have that g ∈ (y, U), that is, g(y) ∈ U .
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This means that f(y) ∈ ClZ({g(y)}) for every y ∈ Y , that is, f ≤ g. By
Theorem 3, τp is S–jointly continuous.

12. Corollary. The compact-open topology and the Isbell topology
(see, for example, [4]) on C(Y,Z) S–jointly continuous.

13. Corollary. For the compact-open topology and Isbell topology

the preorders “
τ≤” and “≤” in C(Y, Z) coincide.

14. Remark. Propositions 3.6 of [6] and 3.2 of [7] follow immediately
by Corollary 13.

15. Theorem. For every f ∈ C(Y, Z), the intersection of all neigh-
bourhoods of f in the space Cτmin({S})(Y, Z) is the smallest open neigh-
bourhood of f in the space Cτ({S})(Y, Z).

Proof. Let f ∈ U ∈ τmin({S}). We prove that [f,→)≤ ⊆ U . It is
sufficient to suppose that U = C(Y,Z)\(←, g]≤, for some g ∈ C(Y, Z). Let
h ∈ [f,→)≤. Since f ∈ U , we have that f 6∈ (←, g]≤. Hence, h 6∈ (←, g]≤
and, therefore h ∈ U .

For the proof of the theorem, it is sufficient to prove that if h 6∈[f,→)≤,
then there exists an element V of τmin({S}) such that f ∈ V and h 6∈ V .
Obviously, the set V = C(Y,Z) \ (←, h]≤ is the required open set.

16. Theorem. Every topology on the set C(Y,Z), which is gener-
ated by a quasi-uniformity on the space Z is S–splitting and S–jointly
continuous.

Proof. Let U be a quasi-uniformity on the space Z and let τQ be the
corresponding topology on the set C(Y,Z). Since τQ is jointly continuous
(see [5]), this topology is also S–jointly continuous.

We prove that τQ is S–splitting. Let g, f ∈ C(Y, Z) and g ≤ f . Let
H be a neighbourhood of g in the space CτQ(Y, Z). We can suppose that

H ≡ (Y,U)(g) ≡ {h ∈ C(Y, Z) : (g, h) ∈ (Y, U)} ,

where U is an element of U . We prove that f ∈ H, that is, (g, f) ∈ (Y,U)
or (g(y), f(y)) ∈ U , for every y ∈ Y . Let y ∈ Y . Since g ≤ f we have that
g(y) ∈ ClZ({f(y)}), that is, the point f(y) belongs to any neighbourhood
of g(y). Hence, f(y) belongs to the set

U(g(y)) ≡ {z ∈ Z : (g(y)), z) ∈ U} .

Thus, (g(y), f(y)) ∈ U . Therefore, g
τQ≤ f . By Theorem 1, the topology

τQ is S–splitting.
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17. Example. Let Z be a set equipped with a preorder “≤”. By τ(≤)
we denote the topology on Z, for which the sets of the form [z,→)≤, z ∈ Z,
compose a subbasis.

Let Y be a space, for which every continuous map of Y into Z is
constant and let a be a fixed point of Y . Obviously, f ≤ g, where f, g ∈
C(Y, Z), if and only if f(a) ≤ g(a). Identifying every element f of C(Y, Z)
with the element f(a) of Z, every topology on the set Z can be considered
as a topology on C(Y,Z). In particular, on the set C(Y,Z) we can consider
the topology τ(≤). By Theorem 6, the topology τ(≤) on C(Y,Z) is the
greatest S–splitting topology.

Let τmin(≤) be a topology on Z, for which the set Z and the subsets
of Z of the form Z \ (←, z]≤, z ∈ Z, compose a subbasis. By Theorem 10,
it follows that the topology τmin(≤) on C(Y, Z) is the smallest S–splitting
and S–jointly continuous topology on C(Y, Z).

18. Example. Let Z be the set of real numbers with the usual order
“≤”. Then the sets of the form [a,∞), a ∈ Z compose a basis of the
topology τ(≤) and the sets of the form (a,∞), a ∈ Z, compose a ba-
sis of the topology τmin(≤). It is easy to see that τmin(≤) ⊆ τ(≤) and
τmin(≤) 6= τ(≤).

Let τ be a topology on the set Z for which the sets of the form Z\[a, b],
where a, b ∈ Z, a ≤ b, compose a subbasis. It is easy to see that τ 6⊆ τ(≤),
that is, the topology τ on C(Y, Z) is not S–splitting.

On the other hand, the topology τ on C(Y, Z) satisfies the following

condition: if f
τ≤ g, then f = g. By Theorem 3 it follows that τ is S–

jointly continuous. Obviously, τmin(≤) 6⊆ τ , which means that on the set
C(Y, Z) there is no smallest S–jointly continuous topology.

19. Example. Let Z = S. Consider the set O(Y ) of all open subsets of
Y , the set K(Y ) of all closed subsets of Y and the set C(Y, S). If we identify
every element U of O(Y ) with the element Y \ U of K(Y ) and with the
element f of C(Y, S), for which f(U) ⊆ {1} and f(Y \U) ⊆ {0}, then for
every topology on one of the above sets we can consider the corresponding
topology on the other sets. In particular, on the sets O(Y ), K(Y ) and
C(Y, S) we can consider the Scott topology (see [3]), the Vietoris topology
(see, for example, [M]), an A–splitting topology, for some family A of
spaces, etc. Also, the preorder “≤”, which is defined on the set C(Y, S),
can be considered on the sets K(Y ) and O(Y ). It is easy to prove that if
K, F ∈ K(Y ), then K ≤ F if and only if F ⊆ K. Thus, by Theorems 6
and 10 we have the following corollaries:
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20. Corollary. The sets of the from

K(F ) ≡ {K ∈ K(Y ) : K ⊆ F} ,

F ∈ K(Y ), compose a basis for the greatest S–splitting topology on K(Y ).

21. Corollary. The set K(Y ) and the sets of the form

Kmin(F ) ≡ {K ∈ K(Y ) : F 6⊆ K} ,

F ∈ K(Y ), compose a subbasis of open sets for the smallest S–splitting
and S–jointly continuous topology on K(Y ).

22. Remark. We observe that the sets of the form

K(Y ) \ K(F ), F ∈ K(Y ) ,

and the sets of the form

K0(F ) ≡ {K ∈ K(Y ) : K ∩ F = ∅} ,

F ∈ K(Y ), compose a subbasis of the Vietoris topology on K(Y ). Since
the element ∅ ∈ K(Y ) belongs to any open set of the greatest S–splitting
topology on K(Y ) while this element is an isolated element of K(Y ) with
Vietoris topology, we have that if Y 6= ∅, then the Vietoris topology is not
S–splitting.

The proofs of the following results concerning the space D are similar
to the corresponding results concerning the space S and we omit them.

23. Theorem. The following are true:
(1) A topology τ on C(Y, Z) is D–splitting if and only if by the relation

f ∼ g, where f, g ∈ C(Y, Z), it follows that f
τ∼ g.

(2) A topology τ on C(Y,Z) is D–jointly continuous if and only if by

the relation f
τ∼ g, where f, g ∈ C(Y, Z), it follows that f ∼ g.

(3) The set whose elements are the equivalence classes of the relation
“∼” on the set C(Y,Z), composes a basis for the greatest D–splitting
topology τ({D}) on C(Y, Z).

(4) The greatest D–splitting topology is D–splitting continuous.
(5) In the set of all simaltaneously D–splitting and D–jointly con-

tinuous topologies on C(Y, Z) there exists a smallest topology denoted by
τmin({D}). Moreover, the set C(Y, Z) and the subsets of C(Y, Z) of the
form C(Y, Z) \ E, where E is an equivalence class of the relation “∼” on
the set C(Y,Z), compose a subbasis for this topology.

(6) Every S–splitting (respectively, S–jointly continuous) topology on
C(Y, Z) is D–splitting (respectively, D–jointly continuous).
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24. Corollary. (1) The discrete topology and, hence, every topology
on the set C(Y, Z) is D–splitting if and only if the space Z is a T0–space.

(2) The trivial topology and, hence, every topology on the set C(Y, Z)
is D–jointly continuous if and only if the topology of Z is trivial.

(3) A topology τ on C(Y,Z) is simaltaneously D–splitting and D–

jointly continuous if and only if the relations “
τ∼” and “∼” coincide.
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