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On a result of Shallit and Pethő

By JAROSÃLAW GRYTCZUK (Zielona Góra)

In this paper, by using matrix methods we give a general form of some
results given by Shallit [2], [3] and Pethő [1].

1. Introduction

Let B(u,∞) =
∞∑

u=0

1

u2k , u ≥ 3, u ∈ Z then it is well-known that

B(u,∞) is a transcendental number (see [5], p. 35). In 1979 Shallit [2]

proved that if B(u, v) =
v∑

u=0

1

u2k , u ≥ 3, u ∈ Z then B(u, 0) = [0; u],

B(u, 1) = [0; u − 1, u + 1] and if B[u, v] = [a0; a1, . . . , an] = pn/qn then
B[u, v + 1) = [a0; a1, a2, . . . , an−1, an + 1, an − 1, an−1, . . . , a1] for v ≥ 2.

Moreover in 1982 he examined [3] the numbers of the form: S(u,∞) =
∞∑

k=0

u−c(k), where {c(k)}∞k=0 is a sequence of positive integers such that

c(v + 1) ≥ 2c(v) for all v ≥ v′, where v′ is a non-negative integer. From
this result follows some continued fraction expansion for the Liouville tran-

scendental numbers L(m) =
∞∑

k=0

m−(k+1)!, m ≥ 2, m ∈ Z.

In 1982 Pethő [1] considered the series:
∞∑

i=1

di

Qi
, where d1 = 1, di = ±1

for i = 1, 2, 3, . . . , and Qi = ai−1Q
k
i−1, k ≥ 2 for i = 2, 3, . . . and a1≥2,

Q1 = 1. For Ck(a, u) =
u∑

i=0

di

Qi
he proved a general theorem (see [1],

Thm p. 235) concerning continued fraction expansion. From this theorem
follows in the case k = 2 a result of Kmošek reported by Schinzel in 1979
at the Oberwolfach meeting: “Diophantische Approximationen”. In 1986
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Trung Wu [4] applying matrix methods gave new proofs of the results
given by Shallit.

In the present paper by application of matrix methods we give a gen-
eral form of the results given by Shallit and Pethő. Namely we prove
the following

Theorem. Let S(∞) =
∞∑

i=0

mi

ni
< ∞, where 〈mi, ni〉 ∈ Z2 and let

S(u) =
u∑

i=0

mi

ni
= Mu

Nu
. If S(u) = [A0; A1, . . . An] = pn/qn and Mu = pn,

Nu = qn = nu, nu+1 = sn2
u, mu+1 = (−1)u for some s ≥ 1, then

S(u + 1) = [A0, A1, . . . , An, s− 1, An−1 + 1, An−1, . . . , A1],(1)
if An = 1, s 6= 1,

S(u + 1) = [A0, A1, . . . , An + 1, . . . , A1],(2)
if An = 1, s = 1,

S(u + 1) = [A0, A1, . . . , An−2, An−1An−1 + 2, An−2, . . . , A1],(3)
if An = s = 1,

S(u + 1) = [A0, A1, . . . , An, s− 1, 1, An−1, . . . , A1],(4)
if An 6= 1, s 6= 1 .

2. Basic lemmas

Lemma 1. Let M2(K) denote the set of all 2 × 2 matrices with ele-

ments in K. Then for Ai ∈ M2(K)

(5) (A1 ·A2 · . . . ·Ar)T = AT
r ·AT

r−1 · . . . ·AT
1

where AT denotes the transpose to A.

Lemma 2. If pn/qn = [a0; a1, . . . , an] then [an; an−1, . . . , a1]=qn/qn−1.

Proof. We use the following well-known identity:

(6)
[

pn pn−1

qn qn−1

]
=

[
a0 1
1 0

]
·
[

a1 1
1 0

]
· . . . ·

[
an−1 1

1 0

]
·
[

an 1
1 0

]
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where pn/qn = [a0; a1, . . . , an]. Since

[
a0 1
1 0

]−1

=
[

0 1
1 −a0

]
and(7)

[
0 1
1 −a0

]
·
[

pn pn−1

qn qn−1

]
=

[
qn qn−1

pn − a0qn pn−1 − a0qn−1

]
,(8)

by (6), (7) and (8) we obtain

(9)
[

qn qn−1

pn − a0qn pn−1 − a0qn−1

]
=

[
a1 1
1 0

]
· . . . ·

[
an 1
1 0

]
.

From (9) and Lemma 1 we obtain

(10)
[

qn pn − a0qn

qn−1 pn−1 − a0qn−1

]
=

[
an 1
1 0

]T

· . . . ·
[

a1 1
1 0

]T

.

Since
[

a 1
1 0

]T

=
[

a 1
1 0

]
, by (10) it follows that qn/qn−1=[an; an−1, . . . , a1]

and the proof is finished.

Lemma 3. Let pn/qn = [a0; a1, . . . an] and rm/sm = [b0; b1, . . . , bm],
then

pn−1 · sm + pn · rm

qn−1 · sm + qn · rm
= [a0; a1, . . . , an, b0, b1, . . . , bm] .

Proof. From the assumptions we have
[

pn pn−1

qn qn−1

]
=

[
a0 1
1 0

]
·
[

a1 1
1 0

]
· . . . ·

[
an−1 1

1 0

]
·
[

an 1
1 0

]
(11)

[
rm rm−1

sm sm−1

]
=

[
b0 1
1 0

]
·
[

b1 1
1 0

]
· . . . ·

[
bm−1 1

1 0

]
·
[

bm 1
1 0

]
.(12)

Since

(13)
[

pn pn−1

qn qn−1

]
·
[

rm rm−1

sm sm−1

]
=

=
[

pnrm + pn−1sm pnrm−1 + pn−1sm−1

qnrm + qn−1sm qnrm−1 + qn−1sm−1

]
,

by (11), (12) and (13) Lemma 3 follows.
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Lemma 4. (see [1], Lemma, p. 234). Let s ≥ 1 be an integer and
pn/qn = [b0; b1, . . . , bn], then

(14) [b0; b1, . . . , bn, s− 1, 1, bn − 1, bn−1, . . . , b1] =
spnqn + (−1)n

s · q2
n

.

Proof. Let rm/sm = [b0; b1, . . . , bn, s−1, 1, bn−1, bn−1, . . . , b1] then
we have

(15)
[

rm rm−1

sm sm−1

]
=

[
b0 1
1 0

]
· . . . ·

[
bn 1
1 0

]
·
[

s− 1 1
1 0

]
·

·
[

s 1
1 0

]
·
[

bn − 1 1
1 0

]
· . . . ·

[
b1 1
1 0

]
.

Since pn/qn = [b0; b1, . . . , bn],

(16)
[

pn pn−1

qn qn−1

]
=

[
b0 1
1 0

]
· . . . ·

[
bn 1
1 0

]
.

From (15) and (16) we get

(17)
[

rm rm−1

sm sm−1

]
=

[
pn pn−1

qn qn−1

] [
s− 1 1

1 0

] [
1 1
1 0

]
·

·
[

bn − 1 1
1 0

] [
bn−1 1

1 0

]
. . .

[
b1 1
1 0

]
.

Since

(18)
[

1 1
1 0

] [
bn − 1 1

1 0

]
=

[
bn 1

bn−1 1

]
=

[
1 0
1 1

] [
bn 1
1 0

]

and

(19)
[

bn 1
1 0

] [
bn − 1 1

1 0

]
. . .

[
b1 1
1 0

]
=

[
qn pn − b0qn

qn−1 pn−1 − b0qn−1

]
,

by (17), (18) and (19) we obtain

(20)
[

rm rm−1

sm sm−1

]
=

[
pn pn−1

qn qn−1

] [
s− 1 1

1 0

]
·

·
[

1 0
1 −1

] [
qn pn − b0qn

qn−1 pn−1 − b0qn−1

]
.

On the other hand we have

(21)
[

s− 1 1
1 0

] [
1 0
1 −1

]
=

[
s −1
1 0

]
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and

(22)
[

pn pn−1

qn qn−1

] [
s −1
1 0

]
=

[
spn + pn−1 −pn

sqn + qn−1 −qn

]
.

From (20, (21) and (22) we obtain

(23)
[

rm rm−1

sm sm−1

]
=

[
spn + pn−1 −pn

sqn + qn−1 −qn

] [
qn pn − b0qn

qn−1 pn−1 − b0qn−1

]
.

From (23) we obtain rm = qn(spn + pn−1) − pnqn−1 = spnqn + pn−1qn −
pnqn−1 and since pn−1qn − pnqn−1 = (−1)n, we have

(24) rm = spnqn + (−1)n .

Moreover, we have by (23)

(25) sm = qn(sqn + qn−1)− qnqn−1 = sq2
n .

By (24) and (25) it follows that
rm

sm
=

spnqn + (−1)n

s · q2
n

and the proof of

Lemma 4 is complete.

Remark 1. In a simple continued fraction 0 is not allowed to be a
partial quotient except as q0. In many cases, however, it is convenient to
allow this. For such continued fractions the given properties are true and
one can transform them using the following property:

(∗) [a0; a1, . . . , ai, 0, ai+1, . . . , an] = [a0; a1, . . . , ai + ai+1, . . . , an] .

This property (∗) we can deduce by the following matrix identity: Let
pn/qn = [a0; a1, . . . , an], then

(26)
[

pn pn−1

qn qn−1

]
=

[
1 1
0 1

]a0

·
[

1 0
1 1

]a1

· . . . ·
[

1 0
1 1

]an

if n = 2`−1 ,

and

(27)
[

pn−1 pn

qn−1 qn

]
=

[
1 1
0 1

]a0

·
[

1 0
1 1

]a1

· . . . ·
[

1 1
0 1

]an

if n = 2` .



16 JarosÃlaw Grytczuk

Let i and n be odd. As
[

1 1
0 1

]0

= I =
[

1 0
0 1

]
, by (26) we obtain

[
pn pn−1

qn qn−1

]
=

[
1 1
0 1

]a0

·
[

1 0
1 1

]a1

· . . . ·
[

1 0
1 1

]ai

·

·
[

1 1
0 1

]0

·
[

1 0
1 1

]ai+1

· . . . ·
[

1 0
1 1

]an

=

=
[

1 1
0 1

]a0

·
[

1 0
1 1

]a1

· . . . ·
[

1 0
1 1

]ai+ai+1

· . . . ·
[

1 0
1 1

]an

and (∗) follows. In a similar way we obtain (∗) in the other cases.

3. Proof of the Theorem

Let s ≥ 1. Then by Lemma 4 and the assumtion of the Theorem we
have

(28)





[A0; A1, . . . , An, s− 1, An−1 + 1, An−2, . . . , A1] =

=
spnqn + (−1)n

sq2
n

=
pn

qn
+

(−1)n

sq2
n

= S(u) +
mu+1

nu+1
= S(u + 1) .

If s 6= 1, An 6= 1 then by (28) the assertion (4) follows. If An = 1 and
s 6= 1 then by (28) and (∗) we obtain

S(u + 1) = [A0; A1, . . . , An, s− 1, An−1 + 1, An−2, . . . , A1]

and we get the assertion (1) of the Theorem. If s = 1 and An 6= 1 then by
(28) and (∗) we obtain

S(u + 1) = [A0;A1, . . . , An, 0, 1, An − 1, An−1, . . . , A1] =

= [A0; A1, . . . , An + 1, An − 1, An−1, . . . , A1]

and (2) follows.
In a similar way in the case s = An = 1 we obtain

S(u + 1) = [A0;A1, . . . , An, 0, 1, An − 1, An−1, . . . , A1] =

= [A0;A1, . . . , An + 1, An − 1, An−1, . . . , A1] =

= [A0;A1, . . . , An + 1, 0, An−1, . . . , A1] =

= [A0;A1, . . . , An−1, An−1 + 2, An−2, . . . , A1]

and statement (3) of the Theorem is proved.
The proof of the Theorem is complete.
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Remark 2. For the case considered by Pethő, we have from the as-
sumptions of the Theorem s = anQk−2

n , k ≥ 2. In the Theorem given

by Shallit we have s = 1, if B(u, v) =
v∑

k=0

1

u2k and s = ud(v), if s(u, v) =
v∑

k=0

u−c(k), where d(v) = c(v + 1)− 2c(v); v ≥ v′.

I would like to thank the referee for his suggestions for the improve-
ment of the exposition.
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