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On the structure of automorphic Moufang loops

By ALEXANDER GRISHKOV (São Paulo), MARINA RASSKAZOVA (Omsk)
and LIUDMILA SABININA (Cuernavaca)

Abstract. It is known that any automorphic Moufang loop M is an epimorphic

image of a subdirect product of a group and a commutative Moufang loop. We show

that this epimorphism can be chosen minimal for a suitable partial order. We give an

example showing that in general this minimal epimorphism is not uniquely determined

and study properties of the kernels of these minimal epimorphisms.

1. Preliminaries and definitions

A Moufang loop is a universal algebra 〈Q; ·, ()−1, 1〉 such that the identities

(x · y) · (z · x) = (x · (y · z)) · x,

1 · x = x · 1 = x, (y · x) · (x)−1 = (x)−1 · (x · y) = y

hold. In the following we often write xy instead of x · y.

Furthermore, in this note we often say just loop instead of the term Moufang

loop.

The bijection La : Q → Q, Lax = ax is called a left multiplication, anal-

ogously the bijection Ra : Q → Q, Ray = ya is called a right multiplication
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for all a ∈ Q. The mappings La and Ra for all a ∈ Q generate Mlt(Q), the

multiplication group of Q.

The group Inn(Q), the inner mapping group of Q, is the stabilizer of the

neutral element 1, that is

Inn(Q) = {φ ∈ Mlt(Q) | φ(1) = 1}.

A loop Q is called automorphic if Inn(Q) is a subgroup of the group of all

automorphisms of Q. As usual one defines a normal subloop as the kernel of a

loop homomorphism. A subloop of a given loop Q is normal if and only if it

is invariant under the group Inn(Q). In any automorphic loop all characteristic

subloops are normal.

Moufang loops are diassociative, that is the subloop generated by two el-

ements is a group. In a Moufang loop Q we define the commutator subloop

[Q,Q] as the normal closure of the subloop generated by all elements of the

form x−1y−1xy = [x, y], where x, y ∈ Q and the associator subloop (Q,Q,Q)

as the normal closure of the subloop generated by all elements of the form

(x(yz))−1((xy)z) = (x, y, z) for all x, y, z ∈ Q.
We will call ∆(Q) = [Q,Q]∩ (Q,Q,Q) the radical-defect or the radical of the

loop Q.

For a Moufang loop Q the subloop

N(Q) = {x ∈ Q : (x, a, b) = (a, x, b) = (a, b, x) = 1, for all a, b ∈ Q},

is called the nucleus of Q.

The subloop C(Q) = {z ∈ N(Q) | xz = zx for allx ∈ Q} is called the

center of the loop Q. In any Moufang loop the nucleus and the center are normal

subloops. In an automorphic Moufang loop Q the radical-defect ∆(Q) is an

elementary abelian 3-subgroup of the center ([GPS]).

2. Radical-defectless coverings of automorphic Moufang loops

The automorphic Moufang loops form a variety. In [Bruck, Lemma 2.2,

page 113] the fundamental properties of automorphic Moufang loops were deter-

mined. Commutative Moufang loops are examples of automorphic Moufang loops

[Bruck], Groups are examples of automorphic Moufang loops, too. In [GPS] the

finitely generated free automorphic Moufang loops were constructed and it was

shown that their radical-defect is trivial. It is easy to see that it is true without

assuming finite rank.
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Lemma 2.1. A free automorphic Moufang loop has a trivial radical-defect.

Proof. Let F be a free automorphic Moufang loop. Then

i : F ↪→ F/(F, F, F )× F/[F, F ],

is an inclusion. Here F/(F, F, F ) is a free group and F/[F, F ] is a free commutative

loop. (See [GPS] for details.) �

We can show the following theorem.

Theorem 2.2. (i) A Moufang loop with a trivial radical-defect is auto-

morphic. In particular M/∆(M) is automorphic for every Moufang loop

M .

(ii) If M is a free Moufang loop, then M/∆(M) is a free automorphic Moufang

loop.

Proof. (i) If A,B are normal subloops of a loop L, then the kernel of the

homomorphism

ρ : (L→ L/A× L/B), x 7→ (xA, xB)

is A ∩ B. Putting A = [L,L] and B = (L,L,L) gives us the proof of (i) of the

theorem. To prove (ii) see [GPS]. �

Here for every automorphic Moufang loop A we will construct a minimal

radical-defectless covering in the following sense.

Let us fix an automorphic Moufang loop A and denote by P(A) the category

of all pairs (α,X) where X is an automorphic Moufang loop such that ∆(X) = 1

and α is an epimorphisms α : X → A.

We will call a pair (φ1, A1) ∈ P(A) minimal if for any (φ2, A2) ∈ P(A) and

any epimorphism ψ : A1 � A2 , such that φ1 = φ2 ◦ ψ, the epimorphism psi is

an isomorphism.

Let F be a free automorphic Moufang loop and φ : F → A be an epimor-

phism. Denote K = kerφ and define S(A) = {I / F | I ⊆ K, ∆(F/I) = 1}. One

has S(A) 6= ∅ since {1} ∈ S(A). Indeed ∆(F ) = 1 by the Lemma 2.1. Let us

consider S(A) as a partially ordered set with the order:

I1 ≤ I2 if and only if I1 ⊆ I2.

For our purpose we use Zorn’s lemma in the following form:

In a partially ordered set (S,≤) there exists a maximal element if every well
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ordered subset of S has an upper bound in S. (see [Halmos, p. 68]).

In order to prove the existence of maximal element in S(A), it is sufficient to

show that the upper bound I = ∪Ii ∈ S(A) where Ii ∈ S(A), Ii ≤ Ii+1 for all i.

Suppose that I 6∈ S(A). This implies that ∆(F/I) 6= 1 since I ⊆ K. There

exists 1̄ 6= d̄ ∈ F̄ = F/I, d̄ ∈ [F̄ , F̄ ], d̄ ∈ (F̄ , F̄ , F̄ ). Therefore there exist x, y ∈
F x, y 6∈ I and there exists k ∈ [F, F ], a ∈ (F, F, F ) such that x = ku1, y = au2,

where u1, u2 ∈ I and x = yu3, where u3 ∈ I. Put k = au4, u4 ∈ I. Since u4 ∈ I
there exists an index n such that u4 ∈ In and this implies that k ∈ In since

∆(F/In) = 1. This forms a contradiction.

We have I ∈ S(A) and therefore by Zorn’s lemma there exists a maximal element

N ∈ S(A).

Theorem 2.3. There exists a minimal pair in P(A).

Proof. By definition of P(A) it is enough to prove that the pair (φN , F/N)

is a minimal object in the category P(A), where φN is induced by the map

φ : F → A. Denote F/N = B. Suppose there exists (ψ,C) ∈ P(A) such that

B
µ
� C

ψ
� A

where the maps µ, ψ are not isomorphisms. This implies the existence of N0 ∈
S(A) such that N $ N0, where F/N0 ' C. We get a contradiction. �

Theorem 2.4. Let (π,A0) be a minimal object of P(A) for some automor-

phic Moufang loop A. Then

(i) ker π ⊆ C(A0),

(ii) ker π ∩ (A0, A0, A0)[A0, A0] ' ∆(A).

Proof. (i) Let I = [ker π, A0] 6= 1. Then I is a normal subloop of A0. Put

B = A0/I. We will show that ∆(B) is trivial. By Dedekind’s modular law (see

[Bruck, Lemma 2.2, p. 65]) one has(
[A0, A0] ∩ (A0, A0, A0)

)
I = [A0, A0] ∩ (A0, A0, A0)I = I

since I ⊆ [A0, A0].

Thus,

∆B = ∆(A0/I) = [A0/I A0/I] ∩ (A0/I, A0/I, A0/I)

=
(
[A0, A0] ∩ (A0, A0, A0)

)
· I/I = 1.
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Because of I ⊂ ker π there exists η : B → A, such that π = η ◦ φ for the natural

homomorphism φ : A0 → B with the kernel I. Hence

(η,B) ∈ P(A) and (π, A0) ≥ (η,B),

but φ is not an isomorphism. This is a contradiction to the fact that (π, A0) is a

minimal pair in P(A). Thus [ker π, A0] = I = 1.

By the analogous arguments the normal subloop J = (ker π, A0, A0) is triv-

ial and ker π ⊆ N(A0). Hence ker π ⊆ C(A0). Thus the condition (i) of the

Theorem 2.4 is proved.

To prove the condition (ii) define a map

τ : ker π ∩ (A0, A0, A0)[A0, A0]→ ∆(A)

in the following way. Let x ∈ ker π, and x = ac−1, where a ∈ (A0, A0, A0),

and c ∈ [A0, A0]. Then put τ(x) = π(a).

Now we will show that this is a correct definition for τ . It is clear that

π(x) = π(a)π(c−1) = 1, hence τ(x) = π(a) = π(c).

π(a) ∈ (A,A,A) since a ∈ (A0, A0, A0) and π(c) ∈ [A,A] since c ∈ [A0, A0].

Hence τ(x) ∈ [A,A] ∩ (A,A,A) = ∆(A).

Suppose that

x = ac−1 = a1c
−1
1 ,where a, a1 ∈ (A0, A0, A0), c, c1 ∈ [A0, A0].

Since the commutator subloop of an automorphic Moufang loop is con-

tained in the nucleus (see [Bruck, Lemma 2.2, p. 113]) , c−1 = a−1 · (a1c−1
1 ) =

(a−1a1) · c−1
1 . Hence a−1a1 = c−1c1 ∈ [A0, A0] ∩ (A0, A0, A0) = ∆(A0) = 1. It

follows that a = a1, c = c1 and thus τ is well defined.

We note that

(∗) ker π ∩ [A0, A0] = 1

(∗∗) ker π ∩ (A0, A0, A0) = 1.

Indeed, if Ic = ker π ∩ [A0, A0], then we have

λ : A0 → A0/Ic and πc : A0/Ic → A

such that

πc ◦ λ = π : A0 → A.

As above by Dedekind’s modular law one has

∆(A0/Ic) = [A0/Ic, A0/Ic] ∩ (A0/Ic, A0/Ic, A0/Ic)
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=
(
[A0, A0] ∩ (A0, A0, A0)

)
· Ic/Ic = 1.

Since (π,A0) is a minimal element of P(A), it follows that λ is an isomorphism.

Hence Ic = kerλ = 1.

Analogously one can prove that

ker π ∩ (A0, A0, A0) = 1.

If x ∈ ker τ, then x = ac−1 and π(a) = π(c) = 1. By (∗) and (∗∗) we get

a = c = 1 and x = 1. Thus τ is monomorphism.

Let y ∈ ∆(A). Then there exist a ∈ (A0, A0, A0) and c ∈ [A0, A0] such that

π(a) = π(c) = y. In this case

x = ac−1 ∈ ker π ∩ [A0, A0](A0, A0, A0)

and τ(x) = y. Hence τ is an isomorphism. The theorem is proved. �

Conjecture 2.5. For every automorphic Moufang loop A there exists a

minimal pair (π,A0) ∈ P(A) such that ker π ⊂ [A0, A0](A0, A0, A0).

The following example shows that, in general, there exists more than one

minimal pair in P(A). In the variety of groups let us consider a group G such

that

G =
〈
a, b, c : [a, b] = c, [a, c] = [b, c] = b3 = c3 = 1, a3 = c

〉
.

Then G is a 3-group of nilpotency class 2 and of order 33. In the variety of

commutative Moufang loops let M be a commutative Moufang loop such that

M =
〈
x, y, z, t : (x, y, z) = x3 = t, y3 = z3 = t3 = 1

〉
.

Then M is a commutative Moufang loop of order 34. Put I =
〈
(a3, t2)

〉
⊂ G×M .

Then I is a normal subgroup of the loop G×M .

A = (G×M)/I is an automorphic Moufang loop with radical-defect ∆(A) ' I.
Consider an epimorphism α : G × M → A. Since I is a normal cyclic

subgroup of order 3, it is easy to see that (α,G×M) is a minimal pair in P(A).

Note that G×M is an automorphic Moufang loop of order 37 and that

ker α ⊂ [G×M,G×M ](G×M,G×M,G×M) = [G,G](M,M,M).

But (α,G×M) is not the unique minimal pair of P(A) with this property.

Indeed, consider the group

H =
〈
u, v, w : [u, v] = w, [u,w] = [v, w] = u3 = v3 = w3 = 1

〉
,

and put J =
〈
(w, t2)

〉
⊂ H ×M. Denote Ã = (H ×M)/J. Note that A and Ã are

isomorphic loops. Indeed, consider the surjective homomorphism

λ : G×M → (H ×M)/J
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defined in the following way:

λ(1,m) = (1,m) for all m ∈M,

λ(a, 1) = (u, x), λ(b, 1) = (v, 1), λ(c, 1) = (w, 1).

Since λ(c, 1) = (w, 1), λ(a3, 1) = (1, t) and (a3, 1) = (c, 1) it easy to see that

λ(a3, t2) = (w, t2) and thus kerλ = I.

Consider the epimorphism β : H×M → A. Therefore (β,H×M) is a minimal

pair of P(A) of order 37, too.

Let us prove that G×M and H×M are not isomorphic. Denote by ξn(Q) =

|{x ∈ Q|xn = 1}| the number of elements, whose order divides n in a loop Q.

Then ξ3(G×M) = 35 and ξ3(H ×M) = 36. Hence the loops G×M and H ×M
are not isomorphic. Here we used the fact that ξn(G ×M) = ξn(G)ξn(M). The

example of an automorphic Moufang loop of the order 36, which has a non-trivial

radical-defect was also considered in [Gagola].
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