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Abstract. A loop is automorphic if all its inner mappings are automorphisms. We

construct a large family of automorphic loops as follows. Let R be a commutative ring,

V an R-module, E = EndR(V ) the ring of R-endomorphisms of V , and W a subgroup

of (E,+) such that ab = ba for every a, b ∈ W and 1 + a is invertible for every a ∈ W .

Then QR,V (W ) defined on W × V by

(a, u)(b, v) = (a + b, u(1 + b) + v(1− a))

is an automorphic loop.

A special case occurs when R = k < K = V is a field extension and W is a k-

subspace of K such that k1 ∩W = 0, naturally embedded into Endk(K) by a 7→ Ma,

bMa = ba. In this case we denote the automorphic loop QR,V (W ) by Qk<K(W ).

We call the parameters tame if k is a prime field, W generates K as a field over k,

and K is perfect when char(k) = 2. We describe the automorphism groups of tame

automorphic loops Qk<K(W ), and we solve the isomorphism problem for tame auto-

morphic loops Qk<K(W ). A special case solves a problem about automorphic loops of

order p3 posed by Jedlička, Kinyon and Vojtěchovský.

We conclude the paper with a construction of an infinite 2-generated abelian-by-

cyclic automorphic loop of prime exponent.
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Vojtěchovský.
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1. Introduction

A groupoid Q is a quasigroup if for all x ∈ Q the translations Lx : Q → Q,

Rx : Q→ Q defined by yLx = xy, yRx = yx are bijections of Q. A quasigroup Q

is a loop if there is 1 ∈ Q such that 1x = x1 = x for every x ∈ Q.

Let Q be a loop. The multiplication group of Q is the permutation group

Mlt(Q) = 〈Lx, Rx : x ∈ Q〉, and the inner mapping group of Q is the subgroup

Inn(Q) = {ϕ ∈ Mlt(Q) : 1ϕ = 1}.
A loop Q is said to be automorphic if Inn(Q) ≤ Aut(Q), that is, if every

inner mapping of Q is an automorphism of Q. Since, by a result of Bruck [1],

Inn(Q) is generated by the bijections

Tx = RxL
−1
x , Lx,y = LxLyL

−1
yx , Rx,y = RxRyR

−1
xy ,

a loop Q is automorphic if and only Tx, Lx,y, Rx,y are homomorphisms of Q for

every x, y ∈ Q. In fact, by [7, Theorem 7.1], a loop Q is automorphic if and only

if every Tx and Rx,y are automorphisms of Q. The variety of automorphic loops

properly contains the variety of groups.

See [1] or [12] for an introduction to loop theory. The first paper on automor-

phic loops is [2]. It was shown in [2] that automorphic loops are power-associative,

that is, every element of an automorphic loop generates an associative subloop.

Many structural results on automorphic loops were obtained in [9], where an

extensive list of references can be found.

1.1. The general construction. In this paper we study the following construc-

tion.

Construction 1.1. Let R be a commutative ring, V an R-module and

E = EndR(V ) the ring of R-endomorphisms of V . Let W be a subgroup of

(E,+) such that

(A1) ab = ba for every a, b ∈W , and

(A2) 1 + a is invertible for every a ∈W ,

where 1 ∈ E is the identity endomorphism on V .

Define QR,V (W ) on W × V by

(a, u)(b, v) = (a+ b, u(1 + b) + v(1− a)). (1.1)

We show in Theorem 2.2 that QR,V (W ) is always an automorphic loop.

Two special cases of this construction appeared in the literature. First, in [6],

the authors proved that commutative automorphic loops of odd prime power order
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are centrally nilpotent, and constructed a family of (noncommutative) automor-

phic loops of order p3 with trivial center by using the following construction.

Construction 1.2. Let k be a field and M2(k) the vector space of 2 × 2

matrices over k equipped with the determinant norm. Let I be the identity

matrix, and let A ∈M2(k) be such that kI⊕kA is an anisotropic plane in M2(k),

that is, det(aI + bA) 6= 0 for every (a, b) 6= (0, 0). Define Qk(A) on k× (k× k) by

(a, u)(b, v) = (a+ b, u(I + bA) + v(I − aA)).

We will show in Section 4 that the loops Qk(A) are a special case of the con-

struction QR,V (W ) and hence automorphic. If k = Fp then Qk(A) has order p3,

exponent p and trivial center, by [6, Proposition 5.6].

Second, in [10], Nagy used a construction of automorphic loops based on Lie

rings (cf. [8] and [9]) and arrived at the following.

Construction 1.3. Let V , W be vector spaces over F2, and let β : W →
End(V ) be a linear map such that aβbβ = bβaβ for every a, b ∈ W , and 1 + aβ

is invertible for every a ∈ W . Define a loop (W × V, ∗) by (a, u) ∗ (b, v) = (a +

b, u(1 + bβ) + v(1 + aβ)).

When β is injective, Construction 1.3 is a special case of our Construction 1.1,

and when β is not injective, it is a slight variation. By [10, Proposition 3.2],

(W × V, ∗) is an automorphic loop of exponent 2 and, moreover, if β is injective

and at least one aβ is invertible then (W × V, ∗) has trivial center.

1.2. The field extension construction. Most of this paper is devoted to the

following special case of Construction 1.1.

Construction 1.4. Let R = k < K = V be a field extension, and let W be

a k-subspace of V such that k1 ∩W = 0. Embed W into Endk(K) via a 7→ Ma,

bMa = ba. Denote by Qk<K(W ) the loop QR,V (W ) of Construction 1.1.

Assuming the situation of Construction 1.4, the condition (A1) of Construc-

tion 1.1 is obviously satisfied because the multiplication in K is commutative and

associative. Moreover, k1 ∩ W = 0 is equivalent to 1 + a 6= 0 for all a ∈ W ,

which is equivalent to (A2). Construction 1.1 therefore applies and Qk<K(W ) is

an automorphic loop.

For the purposes of this paper, we call the parameters k, K, W of Construc-

tion 1.4 tame if k is a prime field, W generates K as a field over k, and K is

perfect when char(k) = 2.

In Corollary 3.3 we solve the isomorphism problem for tame automorphic

loops Qk<K(W ), given a fixed extension k < K, and in Theorem 3.5 we describe
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the automorphism groups of tame automorphic loops Qk<K(W ). In particular,

we solve the isomorphism problem when k is a finite prime field and K is a

quadratic extension of k. This answers a problem about automorphic loops of

order p3 posed in [6], and it disproves [6, Conjecture 6.5].

Finally, in Section 5 we use the construction Qk<K(W ) to obtain an infinite

2-generated abelian-by-cyclic automorphic loop of prime exponent.

2. Automorphic loops from module endomorphisms

Throughout this section, assume that R is a commutative ring, V an R-

module, W a subgroup of E = (EndR(V ),+) satisfying (A1) and (A2), and

QR,V (W ) is defined on W × V by (1.1) as in Construction 1.1.

It is easy to see that (0, 0) = (0E , 0V ) is the identity element of QR,V (W ),

and that (a, u) ∈ QR,V (W ) has the two-sided inverse (−a,−u).

Using the notation

Ia = 1 + a and Ja = 1− a,

we can rewrite the multiplication formula (1.1) as

(a, u)(b, v) = (a+ b, uIb + vJa).

A straightforward calculation then shows that the left and right translations

L(a,u), R(a,u) in QR,V (W ) are invertible, with their inverses given by

(a, u) \ (b, v) = (b, v)L−1
(a,u) = (b− a, (v − uIb−a)J−1

a ), (2.1)

(b, v)/(a, u) = (b, v)R−1
(a,u) = (b− a, (v − uJb−a)I−1

a ), (2.2)

respectively. Hence QR,V (W ) is a loop.

The multiplication formula (1.1) yields (a, 0)(b, 0) = (a + b, 0) and (0, u)(0, v) =

(0, u + v), so W × 0 is a subloop of QR,V (W ) isomorphic to the abelian group

(W,+) and 0 × V is a subloop of QR,V (W ) isomorphic to the abelian group

(V,+). Moreover, the mapping QR,V (W ) = W ×V →W defined by (a, u) 7→ a is

a homomorphism with kernel 0×V . Thus 0×V is a normal subloop of QR,V (W ).

We proceed to show that QR,V (W ) is an automorphic loop.

Let CE(W ) = {a ∈ E : ab = ba for every b ∈W}.

Lemma 2.1. For d∈CE(W )∗ and x∈V define f(d,x) :QR,V (W )→QR,V (W )

by

(a, u)f(d,x) = (a, xa+ ud).

Then f(d,x) ∈ Aut(QR,V (W )).
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Proof. We have ((a, u)(b, v))f(d,x) = (a+ b, uIb + vJa)f(d,x) = (a+ b, x(a+

b) + (uIb + vJa)d), where the second coordinate is equal to xa+ xb+ ud+ ubd+

vd − vad. On the other hand, (a, u)f(d,x) · (b, v)f(d,x) = (a, xa + ud)(b, xb +

vd) = (a+ b, (xa+ ud)Ib + (xb+ vd)Ja), where the second coordinate is equal to

xa+ xab+ ud+ udb+ xb− xba+ vd− vda. Note that ab = ba because a, b ∈W ,

and ad = da, bd = db because d ∈ CE(W ). The mapping f(d,x) is therefore an

endomorphism of QR,V (W ).

Suppose that (a, u)f(d,x) = (b, v)f(d,x). Then (a, xa+ud) = (b, xb+vd) implies

a = b and ud = vd. Since d is invertible, we have u = v, proving that f(d,x) is

one-to-one.

Given (b, v) ∈ QR,V (W ), we have (a, u)f(d,x) = (b, v) if and only if (a, xa +

ud) = (b, v). We can therefore take a = b and u = (v − xa)d−1 to see that f(d,x)

is onto. �

Theorem 2.2. The loops QR,V (W ) obtained by Construction 1.1 are auto-

morphic.

Proof. We have already shown that Q = QR,V (W ) is a loop. In view of

[7, Theorem 7.1], it suffices to show that for every (a, u), (b, v) ∈ Q the inner

mappings T(a,u), L(a,u),(b,v) are automorphisms of Q. Using (2.1), we have

(b, v)T(a,u) = (b, v)R(a,u)L
−1
(a,u) = (b+ a, vIa + uJb)L

−1
(a,u)

= (b, (vIa + uJb − uIb)J−1
a ) = (b, u(Jb − Ib)J−1

a + vIaJ
−1
a )

= (b,−2ubJ−1
a + vIaJ

−1
a ) = (b, (−2uJ−1

a )b+ v(IaJ
−1
a )),

where we have also used bJ−1
a = J−1

a b. Thus T(a,u) = f(d,x) with d = IaJ
−1
a

and x = −2uJ−1
a ∈ V . Note that d ∈ CE(W )∗ by (A1), (A2). By Lemma 2.1,

T(a,u) ∈ Aut(Q).

Furthermore,

(c, w)L(a,u),(b,v) = ((b, v) · (a, u)(c, w))L−1
(b,v)(a,u)

= ((b, v)(a+ c, uIc + wJa))L−1
(b+a,vIa+uJb)

= (b+ a+ c, vIa+c + uIcJb + wJaJb)L
−1
(b+a,vIa+uJb)

= (c, (vIa+c + uIcJb + wJaJb − vIaIc − uJbIc)J−1
b+a)

= (c, v(Ia+c − IaIc)J−1
b+a + wJaJbJ

−1
b+a)

= (c,−vacJ−1
b+a + wJaJbJ

−1
b+a) = (c, (−vaJ−1

b+a)c+ w(JaJbJ
−1
b+a)).

Thus L(a,u),(b,v) = f(d,x) with d = JaJbJ
−1
b+a ∈ CE(W )∗ and x = −vaJ−1

b+a ∈ V .

By Lemma 2.1, L(a,u),(b,v) ∈ Aut(Q). �
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For a loop Q, the associator subloop Asc(Q) is the smallest normal subloop

of Q such that Q/Asc(Q) is a group. Given x, y, z ∈ Q, the associator [x, y, z] is

the unique element of Q such that (xy)z = [x, y, z](x(yz)), so

[x, y, z] = ((xy)z)/(x(yz)) = ((xy)z)R−1
x(yz).

It is easy to see that Asc(Q) is the smallest normal subloop of Q containing all

associators.

Lemma 2.3. Let Q = QR,V (W ). Then

[(a, u), (b, v), (c, w)] = (0, (ubc− wab)I−1
a+b+c)

for every (a, u), (b, v), (c, w) ∈ Q. In particular, Asc(Q) ≤ 0× V .

Proof. The associator [(a, u), (b, v), (c, w)] is equal to

((a, u)(b, v) · (c, w))R−1
(a,u)·(b,v)(c,w)

= (a+ b+ c, (uIb + vJa)Ic + wJa+b)R
−1
(a+b+c,uIb+c+(vIc+wJb)Ja)

= (0, (uIbIc + vJaIc + wJa+b − uIb+c − vIcJa − wJbJa)I−1
a+b+c)

= (0, (ubc− wab)I−1
a+b+c).

Since 0× V is a normal subloop of Q, we are done. �

Corollary 2.4. Let Q = QR,V (W ).

(i) Q is a group if and only if W 2 = {ab : a, b ∈W} = 0.

(ii) If VW 2 = V then Asc(Q) = 0× V .

Proof. (i) It is clear that Q is a group if and only if Asc(Q) = 0. Suppose

that Q is a group. Taking w = 0 and a = −(b + c) in Lemma 2.3, we get

[(a, u), (b, v), (c, w)] = (0, ubc), so W 2 = 0. Conversely, if W 2 = 0 then the formula

of Lemma 2.3 shows that every associator vanishes.

(ii) As above, with w = 0 and a = −(b + c) we get [(a, u), (b, v), (c, w)] =

(0, ubc). Since VW 2 = V , we conclude that 0×V ≤ Asc(Q). The other inclusion

follows from Lemma 2.3. �

3. Automorphic loops from field extensions

Throughout this section we will assume that R = k < K = V is a field

extension, k embeds into K via λ 7→ λ1, and W is a k-subspace of K such that
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k1 ∩W = 0, where we identify a ∈ W with Ma : K → K, b 7→ ba. We write

MW = {Ma : a ∈W}.
We have already pointed out in the introduction that (A1), (A2) are then

satisfied, giving rise to the automorphic loop Qk<K(W ) of Construction 1.4. Note

that the multiplication formula (1.1) on W ×K makes sense as written even with

addition and multiplication from K.

Corollary 3.1. Let Q = Qk<K(W ) with W 6= 0. Then Asc(Q) = 0×K.

Proof. Let 0 6= a ∈W and note that Ma is a bijection of V . Thus VW 2 ⊇
VMaMa = V , and we are done by Corollary 2.4. �

3.1. Isomorphisms. We proceed to investigate isomorphisms between loops

Qk<K(W ) for a fixed field extension k < K.

Let W0, W1 be two k-subspaces of K satisfying k1∩W0 = 0 = k1∩W1. Let

S(W0,W1) = {A : A is an additive bijection K → K and A−1MW0
A = MW1

}.

Any A ∈ S(W0,W1) induces the map Ā : W0 →W1 defined by

A−1MaA = MaĀ, a ∈W0,

in fact an additive bijection W0 → W1. Indeed: Ā is onto W1 by definition; if

a, b ∈ W0 are such that A−1MaA = A−1MbA then Ma = Mb and a = 1Ma =

1Mb = b, so Ā is one-to-one; and M(a+b)Ā = A−1Ma+bA = A−1(Ma + Mb)A =

A−1MaA+A−1MbA = MaĀ +MbĀ, so (a+ b)Ā = aĀ+ bĀ.

Proposition 3.2. For i ∈ {0, 1}, let Qi = Qk<K(Wi) with Wi 6= 0. Suppose

that K is perfect if char(k) = 2. Then there is a one-to-one correspondence

between the set Iso(Q0, Q1) of all isomorphisms Q0 → Q1 and the set S(W0,W1)×
K. The correspondence is given by

Φ : Iso(Q0, Q1)→ S(W0,W1)×K, fΦ = (A, c),

where (A, c) are defined by

(0, u)f = (0, uA) and (a, 0)f = (aĀ, c · aĀ),

and by the converse map

Ψ : S(W0,W1)×K → Iso(Q0, Q1), (A, c)Ψ = f,

where f is defined by

(a, u)f = (aĀ, c · aĀ+ uA). (3.1)
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Proof. Given A ∈ S(W0,W1) and c ∈ K, let f : Q0 → Q1 be defined

by (3.1). It is not difficult to see that f is a bijection. We claim that f is a

homomorphism. Indeed, Ā is additive, we have

(a, u)f · (b, v)f = (aĀ, c · aĀ+ uA)(bĀ, c · bĀ+ vA)

= (aĀ+ bĀ, (c · aĀ+ uA)IbĀ + (c · bĀ+ vA)JaĀ)

and

((a, u)(b, v))f = (a+ b, uIb + vJa)f = ((a+ b)Ā, c · (a+ b)Ā+ (uIb + vJa)A),

so it remains to show AIbĀ = IbA and AJaĀ = JaA for every a, b ∈ W0. This

follows from A−1MaA = MaĀ, and we conclude that Ψ is well-defined.

Conversely, let f :Q0→Q1 be an isomorphism. Corollary 3.1 gives Asc(Q0)=

0×K = Asc(Q1), and so (0×K)f = 0×K. Hence there is a bijection A : K → K

such that (0, u)f = (0, uA) for every u ∈ K. Then (0, uA+vA) = (0, uA)(0, vA) =

(0, u)f(0, v)f = ((0, u)(0, v))f = (0, u + v)f = (0, (u + v)A) shows that A is

additive.

Let B : W0 → W1, C : W0 → K be such that (a, 0)f = (aB, aC) for every

a ∈ W0. Note that (0, 0)f = (0, 0) implies 0B = 0 = 0C. Because (a, u) =

(a, 0)(0, uJ−1
a ), we must have

(a, u)f = (a, 0)f · (0, uJ−1
a )f = (aB, aC)(0, uJ−1

a A)

= (aB, aC + uJ−1
a AJaB). (3.2)

This proves that B is onto W1. Since

((a+ b)B, (a+ b)C) = (a+ b, 0)f = ((a, 0)(b, 0))f = (a, 0)f · (b, 0)f

= (aB, aC)(bB, bC) = (aB + bB, aCIbB + bCJaB),

B is additive. To show that B is one-to-one, suppose that aB = bB. Then (a −
b)B = 0 by additivity, and a = b follows from the fact that (0,K)f = (0,K).

We also deduce from the above equality that

(a+ b)C = aC + aC · bB + bC − bC · aB. (3.3)

Using (3.3) and (a + b)C = (b + a)C, we obtain 2(aC · bB) = 2(bC · aB). If

char(k) 6= 2, we deduce

aC · bB = bC · aB. (3.4)
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If char(k) = 2, we can use (3.3) repeatedly to get

bC = ((a+ b) + a)C = (a+ b)C + aC + (a+ b)C · aB + aC · (a+ b)B

= (aC + bC + aC · bB + bC · aB) + aC

+ (aC + bC + aC · bB + bC · aB) · aB + aC · aB + aC · bB
= bC + aC · bB · aB + bC · aB · aB.

Hence aC · bB ·aB = bC ·aB ·aB. When a 6= 0, we can cancel aB 6= 0 and deduce

(3.4). When a = 0, (3.4) holds thanks to 0B = 0 = 0C.

Therefore, in either characteristic, we can fix an arbitrary 0 6= b ∈ W0 and

obtain from (3.4) the equality aC = ((bB)−1 · bC) · aB for every a ∈ W0. Hence

aC = c · aB for some (unique) c ∈ K.

We proceed to show that

A−1MaA = MaB (3.5)

for every a ∈W0. By (3.2),

(a, u)f · (b, v)f = (aB, aC + uJ−1
a AJaB)(bB, bC + vJ−1

b AJbB)

= (aB + bB, (aC + uJ−1
a AJaB)IbB + (bC + vJ−1

b AJbB)JaB)

is equal to

((a, u)(b, v))f = (a+b, uIb+vJa)f = ((a+b)B, (a+b)C+(uIb+vJa)J−1
a+bAJ(a+b)B).

Thus

(a+b)C+(uIb+vJa)J−1
a+bAJ(a+b)B = (aC+uJ−1

a AJaB)IbB+(bC+vJ−1
b AJbB)JaB .

Since (a+ b)C = aCIbB + bCJaB by (3.3), the last equality simplifies to

(uIb + vJa)J−1
a+bAJ(a+b)B = uJ−1

a AJaBIbB + vJ−1
b AJbBJaB .

With v = 0 we obtain the equality of maps K → K

IbJ
−1
a+bAJ(a+b)B = J−1

a AJaBIbB . (3.6)

Similarly, with u = 0 we deduce another equality of maps K → K, namely

JaJ
−1
a+bAJ(a+b)B = J−1

b AJbBJaB . (3.7)

Using both (3.6) and (3.7), we see that

I−1
b J−1

a AJaBIbB = J−1
a+bAJ(a+b)B = J−1

a J−1
b AJbBJaB ,

and upon commuting certain maps and canceling we get I−1
b AIbB = J−1

b AJbB ,

and therefore also JbAIbB = IbAJbB . Upon expanding and canceling like terms,
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we get 2MbA = 2AMbB . If char(k) 6= 2, we deduce MbA = AMbB and (3.5).

Suppose that char(k) = 2. Then (3.6) with a = b yields IbA = I−1
b AIbBIbB , so

I2
bA = AI2

bB . Since M2
b = Mb2 and I2

b = Ib2 , we get Ib2A = AI(bB)2 , Mb2A =

AM(bB)2 and A−1Mb2A = M(bB)2 . Since K is perfect (this is the only time we

use this assumption), the last equality shows that every A−1MdA is of the form

Me, so, in particular, A−1MbA = Me for some e. Then M2
e = (A−1MbA)2 =

A−1M2
bA = M2

bB , and evaluating this equality at 1 yields e2 = (bB)2 and e = bB.

We have again established (3.5).

Since A : K → K is an additive bijection, (3.5) holds and Im(B) = W1,

it follows that A ∈ S(W0,W1) and B = Ā : W0 → W1. We therefore have

(a, 0)f = (aĀ, c · aĀ), and Φ is well-defined by (A, c) = fΦ.

It remains to show that Φ and Ψ are mutual inverses. If f ∈ Iso(Q0, Q1)

and fΦ = (A, c), then (3.5) yields J−1
a AJaB = A. This means that (3.2) can

be rewritten as (3.1), and thus fΦΨ = f . Conversely, suppose that (A, c) ∈
S(W0,W1)×K and let f = (A, c)Ψ and (D, d) = fΦ = (A, c)ΨΦ. Then (0, u)f =

(0, uA) by (3.1) and (0, u)f = (0, uD) by definition of Φ, so A = D. Finally,

(a, 0)f = (aĀ, c · aĀ) by (3.1) and (a, 0)f = (aD̄, d · aD̄) = (aĀ, d · aĀ) by

definition of Ψ, so c = d. �

3.2. Isomorphisms and automorphisms in the tame case. For the rest of

this section suppose that the triple k, K, Wi is tame, that is, k is a prime field,

〈Wi〉k = K, and K is perfect if char(k) = 2. In particular, Wi 6= 0. Let GLk(K)

be the group of all k-linear transformations of K, and let Aut(K) be the group

of all field automorphisms of K.

Since k is prime, any additive bijection K→K is k-linear, and so S(W0,W1)=

{A ∈ GLk(K) : A−1MW0
A = MW1

}. We have shown that A ∈ S(W0,W1) gives

rise to an additive bijection Ā : W0 → W1. This map extends uniquely into

a field automorphism Ā of K such that A−1MaA = MaĀ for every a ∈ K.

To see this, first note that A ∈ GLk(K) implies A−1MabA = A−1MaMbA =

A−1MaAA
−1MbA, A−1Ma+bA = A−1(Ma + Mb)A = A−1MaA + A−1MbA and

A−1MλA = Mλ for every a, b ∈ K and λ ∈ k. If Ā is already defined on a, b,

let (a + b)Ā = aĀ + bĀ, (ab)Ā = aĀ · bĀ, and (λa)Ā = λ · aĀ, where λ ∈ k.

This procedure defines Ā well. For instance, if ab = c + d, we have aĀ · bĀ =

1MaĀ·bĀ = 1MaĀMbĀ = 1A−1MaAA
−1MbA = 1A−1MabA = 1A−1Mc+dA =

1(A−1McA+A−1MdA) = 1(McĀ +MdĀ) = cĀ+ dĀ, and so on.

Here is a solution to the isomorphism problem for a fixed extension k < K:

Corollary 3.3. For i ∈ {0, 1}, let k, K, Wi be a tame triple and Qi =
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Qk<K(Wi). Then Q0 is isomorphic to Q1 if and only if there is ϕ ∈ Aut(K) such

that W0ϕ = W1.

Proof. Suppose that f : Q0 → Q1 is an isomorphism. By Proposition 3.2,

f induces a map A ∈ S(W0,W1), which gives rise to Ā : W0 →W1, which extends

into Ā ∈ Aut(K) such that W0Ā = W1.

Conversely, suppose that ϕ ∈ Aut(K) satisfies W0ϕ = W1. Then for every

a ∈W0 and b ∈ K we have bϕ−1Maϕ = ((bϕ−1)·a)ϕ = bϕ−1ϕ·aϕ = b·aϕ = bMaϕ,

so ϕ ∈ S(W0,W1). The set S(W0,W1) × K is therefore nonempty, and we are

done by Proposition 3.2. �

We proceed to describe the automorphism groups of tame loops Qk<K(W ).

Let S(W ) = S(W,W ) = {A ∈ GLk(K) : A−1MWA = MW }.

Lemma 3.4. Suppose that k, K, W is a tame triple. Then the mapping

S(W ) → Aut(K), A 7→ Ā is a homomorphism with kernel N(W ) = MK∗ and

image I(W ) = {C ∈ Aut(K) : WC = W}. Moreover, S(W ) = I(W )N(W ) is iso-

morphic to the semidirect product I(W )nK∗ with multiplication (A, c)(B, d) =

(A, cB̄ · d).

Proof. With A, B ∈ S(W ) and a ∈ K we have MaAB = (AB)−1Ma(AB) =

B−1A−1MaAB = B−1MaĀB = MaĀB̄ , so AB = ĀB̄. The kernel of this homo-

morphism is equal to N(W ) = {A ∈ S(W ) : MaA = AMa for every a ∈ K}. If

A ∈ N(W ), we can apply the defining equality to 1 and deduce aA = (1A)a, so

A = M1A ∈MK∗ . Conversely, if Mb ∈MK∗ then obviously Mb ∈ N(W ).

For the image, note that Ā satisfies WĀ = W . We have seen above that

Ā ∈ Aut(K). Conversely, if C ∈ Aut(K) satisfies WC = W then C ∈ S(W ), and

C−1MaC = MaC for every a ∈ K because C is multiplicative. Thus C = C̄ ∈
I(W ).

Since I(W ), N(W ) are subsets of S(W ), we have I(W )N(W ) ⊆ S(W ). To

show that S(W ) ⊆ I(W )N(W ), let A ∈ S(W ) and consider D = (Ā)−1A ∈
S(W ). Then D−1MaĀD = A−1ĀMaĀ(Ā)−1A = A−1MaA = MaĀ shows that

D ∈ N(W ). Then A = ĀD is the desired decomposition.

Let A, B ∈ S(W ) = I(W )N(W ) = I(W )MK∗ , where A = ĀMc, B = B̄Md

for some c, d ∈ K∗. Then AB = ĀMcB̄Md = ĀB̄McB̄Md = ABMcB̄·d. �

Theorem 3.5. Let Q = Qk<K(W ), where k is a prime field, k < K is a

field extension, W is a k-subspace of K such that k1 ∩W = 0, and 〈W 〉k = K.

If char(k) = 2, suppose also that K is a perfect field. Then the group Aut(Q) is

isomorphic to the semidirect product S(W )nK with multiplication (A, c)(B, d) =

(AB, cB + d).
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Proof. By Proposition 3.2, there is a one-to-one correspondence between

the sets Aut(Q) and S(W )×K. Suppose that fΦ = (A, c), gΦ = (B, d), so that

(a, u)f = (aĀ, c·aĀ+uA) and (a, u)g = (aB̄, d·aB̄+uB) for every (a, u) ∈W×K.

Then

(a, u)fg = (aĀ, c · aĀ+ uA)g = (aĀB̄, d · aĀB̄ + (c · aĀ+ uA)B).

We want to prove that (fg)Φ = (AB, cB + d), which is equivalent to proving

(a, u)fg = (aAB, (cB + d) · aAB + uAB).

Keeping ĀB̄ = AB of Lemma 3.4 in mind, it remains to show that (c · aĀ)B =

cB · aĀB̄, but this follows from B−1MaĀB = MaĀB̄ . �

A finer structure of Aut(Qk<K(W )) is obtained by combining Theorem 3.5

with Lemma 3.4.

4. Automorphic loops of order p3

The following facts are known about automorphic loops of odd order and

prime power order.

Automorphic loops of odd order are solvable [9, Theorem 6.6]. Every au-

tomorphic loop of prime order p is a group [9, Corollary 4.12]. More generally,

every automorphic loop of order p2 is a group, by [3] or [9, Theorem 6.1]. For

every prime p there are examples of automorphic loops of order p3 that are not

centrally nilpotent [9], and hence certainly not groups.

There is a commutative automorphic loop of order 23 that is not centrally

nilpotent [5]. By [6, Theorem 1.1], every commutative automorphic loop of odd

order pk is centrally nilpotent. For any prime p there are precisely 7 commutative

automorphic loops of order p3 up to isomorphism [4, Theorem 6.4].

We will use a special case of Corollary 3.3 to construct a class of pairwise

non-isomorphic automorphic loops of odd order p3, for p odd.

Suppose that p is odd. The field Fp2 can be represented as {x + y
√
d : x,

y ∈ Fp}, where d ∈ Fp is not a square. Let Fp = k < K = Fp2 , and let

W0 = k
√
d and Wa = k(1 + a

√
d) for 0 6= a ∈ Fp.

We see that every Wa is a 1-dimensional k-subspace of K such that k1∩Wa = 0.

Conversely, if W is a 1-dimensional k-subspace of K such that k1∩W = 0, there

is a + b
√
d in W with a, b ∈ k, b 6= 0. If a = 0 then W = W0. Otherwise
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a−1(a+ b
√
d ) = 1 + a−1b

√
d ∈W , and W = Wa−1b. Hence there is a one-to-one

correspondence between the elements of k and 1-dimensional k-subspaces W of

K satisfying k1 ∩W = 0, given by a 7→Wa.

Theorem 4.1. Let p be a prime and Fp = k < K = Fp2 .

(i) Suppose that p is odd. If a, b ∈ k, then the automorphic loops Qk<K(Wa),

Qk<K(Wb) of order p3 are isomorphic if and only if a = ±b. In particular,

there are (p+ 1)/2 pairwise non-isomorphic automorphic loops of order p3 of

the form Qk<K(W ), where we can take W ∈ {Wa : 0 ≤ a ≤ (p− 1)/2}.
(ii) Suppose that p = 2. Then there is a unique automorphic loop of order p3 of

the form Qk<K(W ) up to isomorphism.

Proof. (i) By Theorem 2.2, the loops Qa=Qk<K(Wa) and Qb=Qk<K(Wb)

are automorphic loops of order p3. By Corollary 3.3, the loops Qa, Qb are isomor-

phic if and only if there is an automorphism ϕ of K such that Waϕ = Wb. Let

σ be the unique nontrivial automorphism of K, given by (a+ b
√
d)σ = a− b

√
d.

Then Waσ = W−a for every a ∈ k. Therefore Qa is isomorphic to Qb if and only

if a = ±b. The rest follows.

Part (ii) is similar, and follows from Corollary 3.3 by a direct inspection of

subspaces and automorphisms of F4. �

We will now show how to obtain the loops of Construction 1.2 as a special

case of Construction 1.4.

Lemma 4.2. Let k be a field and A∈M2(k) \ kI. Then kI + kA is an an-

isotropic plane if and only if kI + kA is a field with respect to the operations

induced from M2(k).

Proof. Certainly kI + kA is an abelian group. It is well known and easy to

verify directly that every A ∈M2(k) satisfies the characteristic equation

A2 = tr(A)A− det(A)I.

This implies that kI + kA is closed under multiplication, and it is therefore a

subring of M2(k).

If kI + kA is a field then every nonzero element B ∈ kI + kA has an inverse

in kI + kA, so B is an invertible matrix and kI + kA is an anisotropic plane.

Conversely, suppose that kI + kA is an anisotropic plane, so that every nonzero

element B ∈ kI + kA is an invertible matrix. The characteristic equation for B

then implies that B−1 = (det(B)−1)(tr(B)I−B), certainly an element of kI+kA,

so kI + kA is a field. �
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Proposition 4.3. Let k be a field. Let

S = {Qk<K(W ) : k < K is a quadratic field extension,

dimk(W ) = 1, k1 ∩W = 0},

T = {Qk(A) : A ∈M2(k), kI + kA is an anisotropic plane}.

Then, up to isomorphism, the loops of S are precisely the loops of T .

Proof. Let Qk<K(W ) ∈ S. Then there is θ ∈ K such that W = kθ, K =

k(θ), and θ2 = e+fθ for some e, f ∈ k. The multiplication in K is determined by

(a+bθ)(c+dθ) = (ac+bdθ2)+(ad+bc)θ and θ2 = e+fθ. With respect to the basis

{1, θ} of K over k, the multiplication by θ is given by the matrix A = Mθ =
(

0 1
e f

)
.

The multiplication on kI + kA is then determined by (aI + bA)(cI + dA) =

(acI + bdA2) + (ad+ bc)A and A2 = −det(A)I + tr(A)A = eI + fA, so kI + kA

is a field isomorphic to K. By Lemma 4.2, kI + kA is an anisotropic plane, and

the loop Qk(A) is defined.

The multiplication in Qk<K(W ) on W × V = kθ × (k1 + kθ) is given by

(aθ, u)(bθ, v) = (aθ+bθ, u(1+bθ)+v(1−aθ)), while the multiplication in Qk(A) =

Qk(Mθ) on k × (k × k) is given by (a, u)(b, v) = (a + b, u(1 + bθ) + v(1 − aθ)).
This shows that Qk,K(W ) is isomorphic to Qk(A), and S ⊆ T .

Conversely, if Qk(A) ∈ T then the anisotropic plane K = kI + kA is a field

by Lemma 4.2, clearly a quadratic extension of k. Moreover, W = kA is a 1-

dimensional k-subspace of K such that k1 ∩W = 0, so Qk<K(W ) ∈ S. We can

again show that Qk<K(W ) is isomorphic to Qk(A). �

Conjecture 6.5 of [6] stated that there is precisely one isomorphism type of

loops QF2
(A), two isomorphism types of loops QF3

(A), and three isomorphism

types of loops QFp
(A) for p ≥ 5. The conjecture was verified computationally in

[6] for p ≤ 5, using the GAP package LOOPS [11]. Since Fp2 is the unique quadratic

extension of Fp, Theorem 4.1 and Proposition 4.3 now imply that the conjecture

is actually false for every p > 5. (But note that (p + 1)/2 gives the calculated

answer for p = 3 and p = 5, and the case p = 2 is also in agreement.)

The full classification of automorphic loops of order p3 remains open.

5. Infinite examples

We conclude the paper by constructing an infinite 2-generated abelian-by-

cyclic automorphic loop of exponent p for every prime p.
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Lemma 5.1. Let p be an odd prime, k = Fp, K = Fp((t)) the field of formal

Laurent series over Fp, W = Fpt, and Q = Qk<K(W ) the automorphic loop from

Construction 1.4 defined by (1.1) on W×K = Fpt×Fp((t)). Let L = 〈(t, 0), (0, 1)〉
be the subloop of Q generated by (t, 0) and (0, 1). Then L = W × U , where U is

the localization of Fp[t] with respect to {1+a : a ∈W}. Moreover, L is an infinite

nonassociative 2-generated abelian-by-cyclic automorphic loop of exponent p.

Proof. First we observe that W × U is a subloop of Q. Indeed, W × U
is clearly closed under multiplication. Since (1 ± a)−1 ∈ U for every a ∈ W by

definition, the formulas (2.1), (2.2) show that W ×U is closed under left and right

divisions, respectively. To prove that L = W × U , it therefore suffices to show

that W × U ⊆ L.

We claim that 0×Fp[t] ⊆ L, or, equivalently, that (0, tn) ∈ L for every n ≥ 0.

First note that for any integer m we have

(0, tm)(t, 0) · (t, 0)−1(0, tm) = (t, tm(1 + t))(−t, tm(1 + t))

= (0, 2(tm − tm+2)). (5.1)

We have (0, t0) = (0, 1) ∈ L by definition. The identity (5.1) with m = 0 then

yields (0, 2(1− t2)) ∈ L, so (0, t2) ∈ L. Since also

(−t, 0) · (0, 1)(t, 0) = (−t, 0)(t, 1 + t) = (0, 1 + 2t+ t2)

belongs to L, we conclude that (0, t) ∈ L. The identity (5.1) can then be used

inductively to show that (0, tn) ∈ L for every n ≥ 0.

We now establish 0×U ⊆ L by proving that (0, (1+a)n) ∈ L for every n ∈ Z
and every a ∈W = Fp. We have already seen this for n ≥ 0. The identity

((a, 0) \ (0, (1− a)m))/(−a, 0) = (−a, (1− a)m−1)/(−a, 0) = (0, (1− a)m−2)

then proves the claim by descending induction on m, starting with m = 1.

Given (a, 0) ∈ W × 0 ⊆ L and (0, u) ∈ 0 × U ⊆ L, we note that (0, u(a(1 −
a)−1)) ∈ L, and thus

(a, 0)(0, u) · (0, u(a(1− a)−1)) = (a, u(1− a))(0, u(a(1− a)−1)) = (a, u)

is also in L, concluding the proof that W × U ⊆ L.

The loop L is certainly infinite and 2-generated, and it is automorphic by

Theorem 2.2. The homomorphism W ×U → Fp, (it, u) 7→ i has the abelian group

(U,+) as its kernel and the cyclic group (Fp,+) as its image, so L is abelian-

by-cyclic. An easy induction yields (a, u)m = (ma,mu) for every (a, u) ∈ Q and

m ≥ 0, proving that L has exponent p. Finally, (t, 0)(t, 0) · (0, 1) = (2t, 1− 2t) 6=
(2t, 1− 2t+ t2) = (t, 0) · (t, 0)(0, 1) shows that L is nonassociative. �
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Lemma 5.2. Let k = F2, K = F2((t)) the field of formal Laurent series over

F2, W = F2t, and Q = Qk<K(W ) the automorphic loop from Construction 1.4

defined by (1.1) on W ×K = F2t×F2((t)). Let L = 〈(t, 0), (0, 1)〉 be the subloop

of Q generated by (t, 0) and (0, 1). Then L = {(it, f(1 + t)i) : f ∈ U, i ∈ {0, 1}},
where U is the localization of F2[t2] with respect to {1 + t2}. Moreover, L is an

infinite nonassociative 2-generated abelian-by-cyclic commutative automorphic

loop of exponent 2.

Proof. In our situation the multiplication formula (1.1) becomes

(a, u)(b, v) = (a+ b, u(1 + b) + v(1 + a)),

so Q is commutative and of exponent 2. Note that (2.1) becomes

(a, u) \ (b, v) = (a+ b, (v + u(1 + a+ b))(1 + a)−1).

Let us first show that S = {(it, f(1+t)i) : f ∈ U, i ∈ {0, 1}} = (0×U)∪(t, 0)(0×U)

is a subloop of Q. Indeed, 0× U ⊆ S is a subloop, and with f , g ∈ U , we have

(t, f(1 + t))(t, g(1 + t)) = (0, f(1 + t)2 + g(1 + t)2) = (0, (f + g)(1 + t2)),

(0, f) \ (t, g(1 + t)) = (t, g(1 + t) + f(1 + t)) = (t, (g + f)(1 + t)),

(t, f(1 + t)) \ (0, g) = (t, (g + f(1 + t)2)(1 + t)−1)

= (t, (g(1 + t2)−1 + f)(1 + t)),

(t, f(1 + t)) \ (t, g(1 + t)) = (0, (g(1 + t) + f(1 + t))(1 + t)−1) = (0, g + f),

always obtaining an element of S.

To prove that S = L, it suffices to show that (0, t2m), (0, t2m(1+t2)−1) ∈ L for

every m ≥ 0, since this implies 0×U ⊆ L and thus S = (0×U)∪(t, 0)(0×U) ⊆ L.

We have (0, 1) ∈ L by definition, (t, 1+t) = (t, 0)(0, 1) ∈ L, (t, (1+t2)−1(1+t)) =

(t, 0) \ (0, 1) ∈ L, and (0, 1 + (1 + t2)−1) = (t, 1 + t) \ (t, (1 + t2)−1(1 + t)) ∈ L, so

also (0, (1 + t2)−1) ∈ L. The inductive step follows upon observing the identity

(t, 0) · (0, u)(t, 0) = (t, 0)(t, u(1 + t)) = (0, u(1 + t2)).

The loop L is certainly infinite, 2-generated, commutative, automorphic and

of exponent 2. It is abelian-by-cyclic because the map L→ F2, (it, f(1 + t)i) 7→ i

is a homomorphism with the abelian group (U,+) as its kernel and the cyclic

group (F2,+) as its image. Finally, (t, 0)(t, 0) · (0, 1) = (0, 1) 6= (0, 1 + t2) =

(t, 0) · (t, 0)(0, 1) shows that L is nonassociative. �
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[6] P. Jedlička, M. Kinyon and P. Vojtěchovský, Nilpotency in automorphic loops of prime

power order, J. Algebra 350 (2012), 64–76.

[7] K. W. Johnson, M. K. Kinyon, G. P. Nagy and P. Vojtěchovský, Searching for small
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