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Multivalued F -contractive mappings with a graph
and some fixed point results

By ÖZLEM ACAR (Kirikkale) and ISHAK ALTUN (Kirikkale)

Abstract. The main goal of this paper is to introduce a new type contraction, that

is, multivalued F -G-contraction, on a metric space with a graph. In terms of this new

contraction, we establish some fixed point results. At the end, we give an illustrative

example, which shows the importance of graph on the contractive condition.

1. Introduction

Combining fixed point theory and graph theory, Echenique [12] gave a proof

of Tarski fixed point theorem by using graphs. In 2006, Espinola and Kirk [13]

applied fixed point results in graph theory. Recently, two fundamental results

have appeared for fixed point theory with a graph. The first result was given by

J. Jachymski [14] for single valued mappings and subsequently Beg, Butt and

Radojević [6] extended Jachymski’s result for set valued mappings. After then,

in [23] Sultana and Vetrivel proved a fixed point theorem for Mizoguchi–

Takahashi contraction and in [22] Sistani and Kazemipour gave some theorems

for α-ϕ-contractions in these directions. One can consult to papers [9] and [11] for

more details. In this paper, we prove some fixed point theorems for multivalued

mappings on a metric space involving a graph using F -G-contractions.
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2. Preliminaries

2.1. Graph theory. Let X be a nonempty set and ∆ denotes the diagonal of

Cartesian product X ×X. A graph on X is an object G = (V (G), E(G)), where

V (G) is vertex set, whose elements are called vertices and E(G) is edge set. We

assume that G has no parallel edges and ∆ ⊂ E(G).

If x and y are vertices of G, then a path in G from x to y of length k ∈ N is

a finite sequence {xn}n∈{0,1,2,...,k} of vertices such that

x0 = x, xk = y and (xi−1, xi) ∈ E(G) for i ∈ {1, 2, . . . , k} .

Notice that a graph G is connected if there is a path between any two vertices and

it is weakly connected if G̃ is connected, where G̃ denotes the undirected graph

obtained from G by ignoring the direction of edges.

Denote by G−1the graph obtained from G by reversing the direction of edges.

Thus

E(G−1) = {(x, y) ∈ X ×X : (y, x) ∈ E(G)} .

Since it is more convenient to treat G̃ as a directed graph for which the set of its

edges is symmetric, under this convention, we have that

E(G̃) = E(G) ∪ E(G−1).

We call (V ′, E′) a subgraph of G if V ′ ⊆ V (G) and E′ ⊆ E(G) and for any edge

(x, y) ∈ E′, x, y ∈ V ′.
If G is symmetric and x is a vertex in G, then the subgraph Gx consisting of

all edges and vertices which are contained in some path beginning at x is called

the component of G containing x. In this case V (Gx) = [x]G, where [x]G is the

equivalence class of the following relation R defined on V (G) by the rule:

yRz if there is path in G from y to z.

We can find more information about graph theory in [15].

Definition 2.1. Let (X, d) be a metric space, G = (V (G), E(G)) be a graph

such that V (G) = X and let T : X → CB(X). Then T is said to be graph-

preserving if

(x, y) ∈ E(G)⇒ (u, v) ∈ E(G) for all u ∈ Tx and v ∈ Ty.
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2.2. Pompeiu–Hausdorff metric and some known results. Let (X, d) be

a metric space. P (X) denotes the family of all nonempty subsets of X, CB(X)

denotes the family of all nonempty, closed and bounded subsets of X and K(X)

denotes the family of all nonempty compact subsets of X. It is clear that, K(X) ⊆
CB(X) ⊆ P (X). For A,B ∈ CB(X), let

H(A,B) = max

{
sup
x∈A

D(x,B), sup
y∈B

D(y,A)

}
,

where D(x,B) = inf{d(x, y) : y ∈ B}. Then H is a metric on CB(X), which is

called Pompeiu–Hausdorff metric induced by d. We can find detailed information

about Pompeiu–Hausdorff metric in [3], [8].

Using Pompeiu–Hausdorff metric, Nadler [18] introduced the concept of

multivalued contraction mapping and show that such mapping has a fixed point

on complete metric space. Then many authors focused on this direction [7], [10],

[17], [20], [21], [24]. In the present paper, we use the recent technique, which was

given by Wardowski [26].

Let F : (0,∞) → R be a function. For the sake of completeness, we will

consider the following conditions:

(F1) F is strictly increasing, i.e., for all α, β ∈ (0,∞) such that α < β, F (α) <

F (β),

(F2) for each sequence {an} of positive numbers,

lim
n→∞

an = 0 if and only if lim
n→∞

F (an) = −∞,

(F3) there exists k ∈ (0, 1) such that limα→0+ α
kF (α) = 0.

(F4) F (inf A) = inf F (A) for all A ⊂ (0,∞) with inf A > 0.

We consider by F and F∗ be the set of all functions F satisfying (F1)–(F3)

and (F1)–(F4), respectively. It is clear that F∗ ⊂ F .

Some examples of the functions belonging F∗ are F1(α) = lnα, F2(α) =

α + lnα, F3(α) = − 1√
α

and F4(α) = ln(α2 + α). If we define F5(α) = lnα for

α ≤ 1 and F5(α) = 2α for α > 1, then F5 ∈ F�F∗.

Definition 2.2 ([26]). Let (X, d) be a metric space and T : X → X be a

mapping. Then T is said to be an F -contraction if F ∈ F and there exists τ > 0

such that

∀x, y ∈ X[d(Tx, Ty) > 0⇒ τ + F (d(Tx, Ty)) ≤ F (d(x, y))].
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Also, Wardowski concluded that if F1, F2 ∈ F with F1(α) ≤ F2(α) for all

α > 0 and G = F2 − F1 is nondecreasing, then every F1-contraction T is an

F2-contraction.

He noted that for the mappings F1(α) = lnα and F2(α) = α+ lnα, F1 < F2

and a mapping F2 − F1 is strictly increasing. On the other side, Example 2.5

in [26] shows that the mapping T is not an F1-contraction (Banach contraction),

but still is an F2-contraction.

Thus, the following theorem, which was given by Wardowski, is a proper

generalization of Banach Contraction Principle.

Theorem 2.1 ([26]). Let (X, d) be a complete metric space and let T : X →
X be an F -contraction. Then T has a unique fixed point in X.

Following Wardowski, Mınak et al. [16], and Wardowski and Van Dung

[27] obtained some fixed point results for single valued maps by generalizing The-

orem 2.1. Then considering the Pompeiu–Hausdorff metric H, the multivalued

version of these mentioned results are obtained in [4] and [2]. (see also [5], [19]).

After then, Acar and Altun [1] proved a fixed point theorem for multivalued

F -contraction using δ-distance.

Lemma 2.2. Let (X, d) be a metric space and T : X → P (X) be an upper

semicontinuous mapping such that Tx is closed for all x ∈ X. If xn → x0, yn → y0
and yn ∈ Txn, then y0 ∈ Tx0.

3. Main results

In this section, we start with introducing weakly graph-preserving prop-

erty of a multivalued map on a metric space. We also define multivalued F -

G-contraction, which is a new type contraction, then prove some theorems for

multivalued mappings considering these two new concepts. Actually, there are

lots of theorems which are proved by using graph preserving property (see for

example [25]), but the following property is weaker than this one.

Definition 3.1. Let (X, d) be a metric space, G = (V (G), E(G)) be a graph

such that V (G) = X and let T : X → CB(X). Then we say that T has weakly

graph-preserving property whenever for each x ∈ X and y ∈ Tx with (x, y) ∈
E(G) implies (y, z) ∈ E(G) for all z ∈ Ty.

Remark 3.1. It is clear that every graph preserving map is a weakly graph

preserving. But the converge may not be true. For example, let X = [−1, 1] with



Multivalued F -contractive mappings with a graph. . . 309

the usual metric. Consider a graph given by V (G) = X and E(G) = X ×X \∆.

Define T : X → CB(X) by

Tx =


{−x}, x /∈ {−1, 0}
{0, 1}, x = −1

{1}, x = 0 .

Then it can be seen that T is weakly graph-preserving map but not graph-

preserving.

Definition 3.2. Let (X, d) be a metric space, G be a directed graph on X

and T : X → CB(X) be a mapping. Define a set

TG = {(x, y) ∈ E(G) : H(Tx, Ty) > 0} .

Given F ∈ F we say that T is a multivalued F -G-contraction if there exists τ > 0

such that

τ + F (H(Tx, Ty)) ≤ F (M(x, y)) (3.1)

for x, y ∈ X with (x, y) ∈ TG, where

M(x, y) = max

{
d(x, y), D(x, Tx), D(y, Ty),

1

2
[D(x, Ty) +D(y, Tx)]

}
.

We shall present our main result for the mapping T : X → K(X) which

makes sense since K(X) ⊆ CB(X).

Theorem 3.1. Let (X, d) be a complete metric space, G be a directed graph

on X and T : X → K(X) be a multivalued F -G-contraction. Assume that T is

upper semicontinuous and weakly graph-preserving map and the set

XT = {x ∈ X : (x, u) ∈ E(G) for some u ∈ Tx}

is nonempty. Then T has a fixed point.

Proof. Suppose that T has no fixed point. Then for all x ∈X, D(x, Tx) >0.

Let x0 ∈ XT . Then (x0, x1) ∈ E(G) for some x1 ∈ Tx0. So we get

0 < D(x1, Tx1) ≤ H(Tx0, Tx1).

Thus (x0, x1) ∈ TG and so we can use the condition (3.1) for x0 and x1. Then we

have
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F (D(x1, Tx1)) ≤ F (H(Tx0, Tx1)) ≤ F (M(x0, x1))− τ,

= F (max

{
d(x0, x1), D(x0, Tx0), D(x1, Tx1),

1
2 [D(x0, Tx1) +D(x1, Tx0)]

}
)− τ

≤ F (max{d(x0, x1), D(x1, Tx1))− τ, (3.2)

since

M(x0, x1) = max

{
d(x0, x1), D(x0, Tx0), D(x1, Tx1),

1
2 [D(x0, Tx1) +D(x1, Tx0)]

}

= max

{
d(x0, x1), D(x1, Tx1),

1

2
D(x0, Tx1)

}
≤ max

{
d(x0, x1), D(x1, Tx1),

1

2
[d(x0, x1) +D(x1, Tx1)]

}
≤ max {d(x0, x1), D(x1, Tx1),max{d(x0, x1), D(x1, Tx1)}}
= max{d(x0, x1), D(x1, Tx1)}.

Now if d(x0, x1) ≤ D(x1, Tx1), then from (3.2), we have

F (D(x1, Tx1)) ≤ F (D(x1, Tx1))− τ,

which is a contradiction. Thus D(x1, Tx1) < d(x0, x1) and so from (3.2), we have

F (D(x1, Tx1)) ≤ F (d(x0, x1))− τ (3.3)

Since Tx1 is compact, there exists x2 ∈ Tx1 such that d(x1, x2) = D(x1, Tx1).

From (3.3),

F (d(x1, x2)) ≤ F (d(x0, x1))− τ.

Since (x0, x1) ∈ E(G), x1 ∈ Tx0 and x2 ∈ Tx1, using weakly graph-preserving

property we can write (x1, x2) ∈ E(G). Because of 0<D(x2, Tx2)≤H(Tx1, Tx2),

we have (x1, x2) ∈ TG. Then

F (D(x2, Tx2)) ≤ F (H(Tx1, Tx2)) ≤ F (M(x1, x2))− τ. (3.4)

By considering the same way, we can get

M(x1, x2) ≤ max{d(x1, x2), D(x2, Tx2)}.
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Thus from (3.4)

F (D(x2, Tx2)) ≤ F (d(x1, x2))− τ. (3.5)

Since Tx2 is compact, there exists x3 ∈ Tx2 such that d(x2, x3) = D(x2, Tx2).

Therefore we have

F (d(x2, x3)) ≤ F (d(x2, x1))− τ.

By induction, we can find a sequence {xn} in X such that xn+1 ∈ Txn,

(xn, xn+1) ∈ TG and

F (d(xn, xn+1)) ≤ F (d(xn−1, xn))− τ (3.6)

for all n ∈ N. Denote an = d(xn, xn+1) for n ∈ N, then an > 0 and from (3.6),

{an} is decreasing. Therefore there exists δ ≥ 0 such that limn→∞ an = δ. Now

let δ > 0. Using (3.6), the following holds:

F (an) ≤F (an−1)− τ
≤F (an−2)− 2τ

...

≤F (a0)− nτ. (3.7)

From (3.7), we get limn→∞ F (an) = −∞. Thus, from (F2), we have

lim
n→∞

an = 0.

From (F3) there exists k ∈ (0, 1) such that

lim
n→∞

aknF (an) = 0.

By (3.7), the following holds for all n ∈ N

aknF (an)− aknF (a0) ≤ −aknnτ ≤ 0. (3.8)

Letting n→∞ in (3.8), we obtain that

lim
n→∞

nakn = 0. (3.9)

From (3.9), there exits n1 ∈ N such that nakn ≤ 1 for all n ≥ n1. So we have

an ≤
1

n1/k
. (3.10)
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for all n ≥ n1. In order to show that {xn} is a Cauchy sequence consider m,n ∈
N such that m > n ≥ n1. Using the triangular inequality for the metric and

from (3.10), we have

d(xn, xm) ≤ d(xn, xn+1) + d(xn+1, xn+2) + · · ·+ d(xm−1, xm)

= an + an+1 + · · ·+ am−1

=

m−1∑
i=n

ai ≤
∞∑
i=n

ai ≤
∞∑
i=n

1

i1/k
.

By the convergence of the series
∞∑
i=1

1
i1/k

, we get d(xn, xm) → 0 as n→∞. This

yields that {xn} is a Cauchy sequence in (X, d). Since (X, d) is a complete metric

space, the sequence {xn} converges to some point z ∈ X, that is, limn→∞ xn = z.

Since T is upper semicontinuous, then by Lemma 2.2 we have z ∈ Tz, which is a

contradict to the assumption being T has no fixed point. �

Remark 3.2. By adding the condition (F4) on F , we can consider CB(X)

instead of K(X).

Theorem 3.2. Let (X, d) be a complete metric space, G be a directed graph

on X and T : X → CB(X) be a multivalued F -G-contraction with F ∈ F∗.
Assume that T is upper semicontinuous and weakly graph-preserving map and

the set XT is nonempty. Then T has a fixed point.

Proof. We begin as in the proof of Theorem 3.1. By taking into account

the condition (F4), we get

F (D(x1, Tx1)) = F (inf{d(x1, y) : y ∈ Tx1}) = inf{F (d(x1, y) : y ∈ Tx1)}

and so from (3.3) we have

inf{F (d(x1, y) : y ∈ Tx1)} < F (d(x0, x1))− τ

2
.

Thus there exists x2 ∈ Tx1 such that

F (d(x1, x2)) ≤ F (d(x0, x1))− τ

2
.

The rest of the proof can be completed as in the proof of Theorem 3.1. �

Remark 3.3. If we consider the following condition (3.11) on X instead of

the upper semicontinuity of T , we can get the following result. But we need to

use the continuity of F .



Multivalued F -contractive mappings with a graph. . . 313

Theorem 3.3. Let (X, d) be a complete metric space and G be a directed

graph such that the following property hold:

for any {xn} in X, if xn → x and (xn, xn+1) ∈ E(G),

then there is a subsequence {xnk
} with (xnk

, x) ∈ E(G).
(3.11)

Let T : X → K(X) be a multivalued F -G-contraction (resp. T : X → CB(X) be

a multivalued F -G-contraction with F ∈ F∗). Assume that T is weakly graph-

preserving map and XT is nonempty. If F is continuos, then T has a fixed point.

Proof. Suppose that T has no fixed point. By similar way of proof of

Theorem 3.1 (resp. Theorem 3.2), we can construct a sequence {xn} such that

xn → z for some z ∈ X. By the property (3.11), there exists a subsequence

{xnk
} of {xn} such that (xnk

, z) ∈ E(G) for each k ∈ N. Since limn→∞ xn = z

and D(z, Tz) > 0, then there exists n0 ∈ N such that D(xnk+1, T z) > 0 for all

nk ≥ n0. Therefore for all nk ≥ n0

H(Txnk
, T z) > 0,

thus (xnk
, z) ∈ TG for all nk ≥ n0. From (3.1) and (F1), we have

F (D(xnk+1, T z)) ≤ F (H(Txnk
, T z))− τ

≤ F (M(xnk
, z))− τ

≤ F (max{d(xnk
, z), d(xnk

, xnk+1), D(z, Tz),

1

2
[D(xnk

, T z) + d(z, xnk+1)]})− τ

for all nk ≥ n0. Taking the limit k → ∞ and using the continuity of F, we have

τ + F (D(z, Tz)) ≤ F (D(z, Tz)), which is a contradiction. Thus T has a fixed

point. �

Corollary 3.4. Let (X, d) be a complete metric space, G be a directed graph

on X and T : X → K(X) be a mapping. Assume that there exists F ∈ F and

τ > 0 such that

τ + F (H(Tx, Ty)) ≤ F (d(x, y)) (3.12)

for x, y ∈ X with (x, y) ∈ TG. Suppose that T is upper semicontinuous and weakly

graph-preserving map and the set XT is nonempty. Then T has a fixed point.

Corollary 3.5. Let (X, d) be a complete metric space, G be a directed graph

on X and T : X → CB(X) be a mapping. Assume that there exists F ∈ F∗ and

τ > 0 such that

τ + F (H(Tx, Ty)) ≤ F (d(x, y))
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for x, y ∈ X with (x, y) ∈ TG. Suppose that T is upper semicontinuous and

weakly graph-preserving map and the set XT is nonempty. Then T has a fixed

point.

Remark 3.4. As in Remark 3.3, we can say that the condition (3.11) can be

considered instead of the upper semicontinuity of T in Corollary 3.4 and in Corol-

lary 3.5. But in this case we don’t need to continuity of F .

Corollary 3.6. Let (X, d) be a complete metric space, G be a directed graph

such that the (3.11) property hold and T : X → K(X) (resp. T : X → CB(X))

be a mapping. Assume that there exists F ∈ F (resp. F ∈ F∗) and τ > 0

satisfying the inequality (3.12) for x, y ∈ X with (x, y) ∈ TG. If T is weakly

graph-preserving map and XT is nonempty, then T has a fixed point.

Proof. Suppose that T has no fixed point. By similar way of proof of

Theorem 3.1 (resp. Theorem 3.2), we can construct a sequence {xn} such that

xn → z for some z ∈ X. By the property (3.11), there exists a subsequence

{xnk
} of {xn} such that (xnk

, z) ∈ E(G) for each k ∈ N. Since limn→∞ xn = z

and D(z, Tz) > 0, then there exists n0 ∈ N such that D(xnk+1, T z) > 0 for all

nk ≥ n0. Therefore for all nk ≥ n0

H(Txnk
, T z) > 0,

thus (xnk
, z) ∈ TG for all nk ≥ n0. Again, since limn→∞ xn = z and D(z, Tz) > 0,

then there exists n1 ∈ N such that d(xnk
, z) < D(z,Tz)

2 for all nk ≥ n1. From (3.12)

and (F1), we have

F (D(xnk+1, T z)) ≤ F (H(Txnk
, T z))− τ

≤ F (d(xnk
, z))− τ

≤ F (
D(z, Tz)

2
)− τ

for all nk ≥ max{n0, n1}. Therefore from (F1) we have

D(xnk+1, T z) ≤
D(z, Tz)

2

for all nk ≥ max{n0, n1}. Taking the limit k →∞ we get 0 < D(z, Tz) ≤ D(z,Tz)
2 ,

which is a contradiction. Thus T has a fixed point. �

Now we give an example, which shows the importance of graph on the con-

tractive condition.
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Example 3.7. Let

X = {0, 1, 2, 3, . . . } and d(x, y) =

{
0, x = y

x+ y, x 6= y .

Then (X, d) is a complete metric space. Consider a graph given by V (G) = X

and E(G) = X ×X\{(0, 1), (1, 0)}. Define T : X → CB(X) by

Tx =

{
{x}, x = 0, x = 1

{0, 1, 2, . . . , x− 1}, x ≥ 2 .

Then T is upper semicontinuous because τd is discrete topology. Also T is weakly

graph-preserving map. Now, we claim that T is multivalued F -G-contraction

with F (α) = α+ lnα and τ = 1. Note that TG = E(G)\∆. Therefore we have to

consider the following cases for contractive condition.

Case 1. For y = 0 and x > 1, we have

H(Tx, Ty)

M(x, y)
eH(Tx,Ty)−M(x,y) =

x− 1

x
ex−1−x

=
x− 1

x
e−1 < e−1.

Case 2. For y = 1 and x > 1, we have

H(Tx, Ty)

M(x, y)
eH(Tx,Ty)−M(x,y) =

x

x+ 1
ex−x−1

=
x

x+ 1
e−1 < e−1.

Case 3. For x > y > 1, we have

H(Tx, Ty)

M(x, y)
eH(Tx,Ty)−M(x,y) =

x− 1

x+ y
ex−1−x−y

=
x− 1

x+ y
e−1−y < e−1.

Thus all conditions of Theorem 3.1 (or Theorem 3.2) are satisfied. Therefore,

T has a fixed point.

On the other hand, if we don’t consider the graph on X, the contractive

condition is not satisfied. Indeed, let x = 0 and y = 1, then H(Tx, Ty) = 1 and

d(x, y) = 1, so for all F ∈ F and τ > 0 we get

τ + F (H(Tx, Ty)) > F (d(x, y)).
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