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Incomplete poly-Bernoulli numbers associated with
incomplete Stirling numbers

By TAKAO KOMATSU (Wuhan), KÁLMÁN LIPTAI (Eger) and ISTVÁN MEZŐ (Nanjing)

Abstract. By using the associated and restricted Stirling numbers of the second

kind, we give some generalizations of the poly-Bernoulli numbers. We also study their

analytic and combinatorial properties. As an application, at the end of the paper we

present a new infinite series representation of the Riemann zeta function via the Lam-

bert W .

1. Introduction

Let µ ≥ 1 be an integer in the whole text. Our goal is to generalize the

following relation for the poly-Bernoulli numbers B
(µ)
n ([Kan, Theorem 1]):

B(µ)
n =

n∑
k=0

(−1)n−k
k!

(k + 1)µ

{n
k

}
(n ≥ 0, µ ≥ 1) ,

where
{
n
k

}
are the Stirling numbers of the second kind, determined by{n

k

}
=

1

k!

k∑
j=0

(−1)i
(
k

j

)
(k − j)n
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(see e.g., [Jor]). When µ = 1, B
(1)
n are the classical Bernoulli numbers, defined

by the generating function

x

1− e−x
=

∞∑
n=0

B(1)
n

xn

n!
. (1)

Notice that the classical Bernoulli numbers Bn are also defined by the generating

function
x

ex − 1
=

∞∑
n=0

Bn
xn

n!
,

satisfying B
(1)
n = Bn (n 6= 1) with B

(1)
1 = 1/2 = −B1.

The generating function of the poly-Bernoulli numbers B
(µ)
n is given by

Liµ
(
1− e−x

)
1− e−x

=

∞∑
n=0

B(µ)
n

xn

n!
, (2)

where

Liµ(z) =

∞∑
m=1

zm

mµ

is the µ-th polylogarithm function ([Kan, (1)]). The generating function of the

poly-Bernoulli numbers can also be written in terms of iterated integrals ([Kan,

(2)]):

ex · 1

ex − 1

∫ x

0

1

ex − 1

∫ x

0

. . .
1

ex − 1

∫ x

0︸ ︷︷ ︸
µ−1

x

ex − 1
dxdx . . . dx︸ ︷︷ ︸

µ−1

=

∞∑
n=0

B(µ)
n

xn

n!
. (3)

Several generalizations of the poly-Bernoulli numbers have been considered

([BayHam1], [BayHam2], [CopCan], [Jol], [Sas]). However, most kinds of gen-

eralizations are based upon the generating functions of (1) and/or (2). On the

contrary, our generalizations are based upon the explicit formula in terms of the

Stirling numbers. In [KomMezSza], a similar approach is used to generalize the

Cauchy numbers cn, defined by x/ log(1 + x) =
∑∞
n=0 cnx

n/n!. In this paper,

by using the associated and restricted Stirling numbers of the second kind, we

give substantial generalizations of the poly-Bernoulli numbers. One of the main

results is to generalize the formula in (2) as

∞∑
n=0

B
(µ)
n,≤m

tn

n!
=

Liµ
(
1− Em(−t)

)
1− Em(−t)
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and
∞∑
n=0

B
(µ)
n,≥m

tn

n!
=

Liµ
(
Em−1(−t)− e−t

)
Em−1(−t)− e−t

,

where Em(t) =
∑m
k=0

tk

k! . See Theorem 1 below.

2. Incomplete Stirling numbers of the second kind

In place of the classical Stirling numbers of the second kind
{
n
k

}
we substitute

the restricted Stirling numbers and the associated Stirling numbers{n
k

}
≤m

and
{n
k

}
≥m

,

respectively. Some combinatorial and modular properties of these numbers can

be found in [Mez], and other properties can be found in the cited papers of [Mez].

The generating functions of these numbers are given by

mk∑
n=k

{n
k

}
≤m

xn

n!
=

1

k!
(Em(x)− 1)k (4)

and
∞∑

n=mk

{n
k

}
≥m

xn

n!
=

1

k!

(
ex − Em−1(x)

)k
(5)

respectively, where

Em(t) =

m∑
k=0

tk

k!

is the mth partial sum of the exponential function sum. These give the number

of the k-partitions of an n-element set, such that each block contains at most or

at least m elements, respectively. Since the generating function of
{
n
k

}
is given

by
∞∑
n=k

{n
k

} xn
n!

=
(ex − 1)k

k!

(see e.g., [Jor]), by E∞(x) = ex and E0(x) = 1, we have{n
k

}
≤∞

=
{n
k

}
≥1

=
{n
k

}
.

These give the number of the k-partitions of an n-element set, such that each block

contains at most or at least m elements, respectively. Notice that these numbers
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where m = 2 have been considered by several authors (e.g., [Com], [How], [Rio],

[Zha]).

It is well-known that the Stirling numbers of the second kind satisfy the

recurrence relation: {
n+ 1

k

}
= k

{n
k

}
+

{
n

k − 1

}
(6)

for k > 0, with the initial conditions{
0

0

}
= 1 and

{n
0

}
=

{
0

n

}
= 0

for n > 0. The restricted and associated Stirling numbers of the second kind

satisfy the similar relations. It is easy to see the initial conditions{
0

0

}
≤m

= 1 and
{n

0

}
≤m

=

{
0

n

}
≤m

= 0 ,{
0

0

}
≥m

= 1 and
{n

0

}
≥m

=

{
0

n

}
≥m

= 0

for n > 0.

Proposition 1. For k > 0 we have{
n+ 1

k

}
≤m

=

m−1∑
i=0

(
n

i

){
n− i
k − 1

}
≤m

(7)

= k
{n
k

}
≤m

+

{
n

k − 1

}
≤m
−
(
n

m

){
n−m
k − 1

}
≤m

, (8){
n+ 1

k

}
≥m

=

n∑
i=m−1

(
n

i

){
n− i
k − 1

}
≥m

(9)

= k
{n
k

}
≥m

+

(
n

m− 1

){
n−m+ 1

k − 1

}
≥m

. (10)

Remark. The fourth relation (10) appeared in a different form in [How]. Since

n−k+1∑
i=1

(
n

i

){
n− i
k − 1

}
= k

{n
k

}
,

the relation (7) and the relation (9) are both reduced to the relation (6), if m ≥
n − k + 2 and if m = 1, respectively. It is trivial to see that the relations (8)

and (10) are also reduced to the original relation (6), if m > n and if m = 1,

respectively.
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Proof of Proposition 1. The combinatorial proofs of the previous theo-

rem are given as follows. We shall give combinatorial proofs. First, identity (7).

To construct a partition with k blocks on n+ 1 element we can do the following.

The last element in its block can have i elements by side, where i = 0, 1, . . . ,m−1.

We have to choose these i elements from n. This can be done in
(
n
i

)
ways. The

rest of the elements go into k − 1 blocks in
{
n−i
k−1

}
≤m

ways. Summing over the

possible values of i we are done.

The proof of (8). The above construction can be described in another way:

the last element we put into a singleton and the other n elements must form a

partition with k − 1 blocks:
{

n
k−1

}
≤m

possibilities. Or we put this element into

one existing block after constructing a partition of n elements into k blocks. This

offers us k
{
n
k

}
≤m possibilities, but we must subtract the possibilities when we

exceed the block size limit m. This happens if we put the last element into a block

of m elements. There are
(
n
m

){
n−m
k−1

}
≤m

such partitions in total. The proof is

done.

The proof of (9) and (10) is similar. �

Note that the classical Stirling numbers of the second kind
{
n
k

}
satisfy the

identities: {n
1

}
=
{n
n

}
= 1,

{
n

n− 1

}
=

(
n

2

)
,{

n

n− 2

}
=

3n− 5

4

(
n

3

)
,

{
n

n− 3

}
=

(
n

4

)(
n− 2

2

)
,{n

2

}
= 2n−1 − 1,

{n
3

}
=

3n−1

2
− 2n−1 +

1

2
,{n

4

}
=

4n−1

6
− 3n−1

2
+ 2n−2 − 1

6
.

By the definition (4) or Proposition 1 (7), we list several basic properties

about the restricted Stirling numbers of the second kind. Some basic properties

about the associated Stirling numbers of the second kind can be found in [Com],

[How], [Mez], [Zha].

Lemma 1. For 0 ≤ n ≤ k − 1 or n ≥ mk + 1, we have{n
k

}
≤m

= 0 . (11)

For k ≤ n ≤ mk, we have{n
k

}
≤m

=
{n
k

}
(k ≤ n ≤ m) , (12)
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n

}
≤m

= 1 (n ≥ 0, m ≥ 1) , (13){
n

n− 1

}
≤m

=

(
n

2

)
(n ≥ 2, m ≥ 2) , (14)

{
n

n− 2

}
≤m

=

{
3n−5

4

(
n
3

)
(n ≥ 4, m ≥ 3);

3
(
n
4

)
(n ≥ 4, m = 2) ,

(15)

{
n

n− 3

}
≤m

=


(
n
4

)(
n−2
2

)
(n ≥ 4, m ≥ 4);

15
(
n
6

)
+ 10

(
n
5

)
(n ≥ 4, m = 3);

15
(
n
6

)
(n ≥ 4, m = 2) ,

(16)

{n
1

}
≤m

= 1 (1 ≤ n ≤ m) , (17){n
2

}
≤m

= 2n−1 − 1 (2 ≤ n ≤ m+ 1) . (18)

Proof. Some of the above special values are trivial. Some of them can be

proven by analyzing the possible block structures.

We take (15) as a concrete example.

Let m = 2, and the number of blocks be k = n − 2. Then for the block

structure we have the only one possibility

. | . | · · · | . |︸ ︷︷ ︸
n−4

. . | . .

That is, there are n−4 singletons and two blocks of length 2. There are 1
2

(
4
2

)(
n
4

)
=

3
(
n
4

)
such partitions: we have to choose those four elements going to the non

singleton blocks in
(
n
4

)
ways. Then we put two of four into the first block and

the other two goes to the other:
(
4
2

)
= 6 cases. Finally, we have to divide by two

because the order of the blocks does not matter. The last case of (15) follows.

If m = 3 then we have one more possible distribution of blocks sizes apart

from the above:

. | . | · · · | . |︸ ︷︷ ︸
n−5

. . .

Into the last block we have
(
n
3

)
possible option to put 3 elements. So if m = 3

and k = n− 2 then we have
(
n
3

)
+ 3
(
n
4

)
= 3n−5

4

(
n
3

)
cases in total.

The rest of the cases can be treated similarly. �
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3. Incomplete poly-Bernoulli numbers

3.1. Generating function and its integral representation. By using two

types of incomplete Stirling numbers, define restricted poly-Bernoulli numbers

B
(µ)
n,≤m and associated poly-Bernoulli numbers B

(µ)
n,≥m by

B
(µ)
n,≤m =

n∑
k=0

(−1)n−k
k!

(k + 1)µ

{n
k

}
≤m

(n ≥ 0), (19)

and

B
(µ)
n,≥m =

n∑
k=0

(−1)n−k
k!

(k + 1)µ

{n
k

}
≥m

(n ≥ 0) , (20)

respectively. These numbers can be considered as generalizations of the usual

poly-Bernoulli numbers B
(µ)
n , since

B
(µ)
n,≤∞ = B

(µ)
n,≥1 = B(µ)

n .

We call these numbers as incomplete poly-Bernoulli numbers.

One can deduce that these numbers have the generating functions.

Theorem 1. We have

∞∑
n=0

B
(µ)
n,≤m

tn

n!
=

Liµ
(
1− Em(−t)

)
1− Em(−t)

(21)

and
∞∑
n=0

B
(µ)
n,≥m

tn

n!
=

Liµ
(
Em−1(−t)− e−t

)
Em−1(−t)− e−t

. (22)

Remark. In the first formula m→∞ gives back the poly-Bernoulli numbers

(2) since E∞(−t) = e−t and Li1(z) = − log(1 − z), while in the second we must

take m = 1 since E0(−t) = 1.

Proof of Theorem 1. By the definition of (20) and using (4), we get

∞∑
n=0

B
(µ)
n,≤m

tn

n!
=

∞∑
n=0

n∑
k=0

{n
k

}
≤m

(−1)n−kk!

(k + 1)µ
tn

n!

=

∞∑
k=0

(−1)kk!

(k + 1)µ

∞∑
n=k

{n
k

}
≤m

(−t)n

n!
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=

∞∑
k=0

(−1)kk!

(k + 1)µ
1

k!

(
(−t) +

(−t)2

2!
+ · · ·+ (−t)m

m!

)k

=

∞∑
k=0

(
1− Em(−t)

)k
(k + 1)µ

=
Liµ
(
1− Em(−t)

)
1− Em(−t)

.

Similarly, by the definition of (19) and using (5), we get

∞∑
n=0

B
(µ)
n,≥m

tn

n!
=

∞∑
n=0

n∑
k=0

{n
k

}
≤m

(−1)n−kk!

(k + 1)µ
tn

n!

=

∞∑
k=0

(−1)kk!

(k + 1)µ

∞∑
n=k

{n
k

}
≥m

(−t)n

n!

=

∞∑
k=0

(−1)kk!

(k + 1)µ
1

k!

(
(−t)m

m!
+

(−t)m+1

(m+ 1)!
+ · · ·

)k

=

∞∑
k=0

(
Em−1(−t)− e−t

)k
(k + 1)µ

=
Liµ
(
Em−1(−t)− e−t

)
Em−1(−t)− e−t

. �

For µ ≥ 1, the generating functions can be written in the form of iterated

integrals. We set E−1(−t) = 0 for convenience.

Theorem 2.

1

1− Em(−t)
·
∫ t

0

Em−1(−t)
1− Em(−t)

∫ t

0

. . .
Em−1(−t)

1− Em(−t)

∫ t

0

Em−1(−t)
1− Em(−t)︸ ︷︷ ︸

µ−1

×
(
− log

(
Em(−t)

))
dt . . . dt︸ ︷︷ ︸
µ−1

=

∞∑
n=0

B
(µ)
n,≤m

xn

n!
, (23)

1

Em−1(−t)− e−t
·
∫ t

0

e−t − Em−2(−t)

Em−1(−t) − e−t

∫ t

0

. . .
e−t − Em−2(−t)

Em−1(−t) − e−t

∫ t

0

e−t − Em−2(−t)

Em−1(−t) − e−t︸ ︷︷ ︸
µ−1

×
(
− log

(
1 + e−t − Em−1(−t)

))
dt . . . dt︸ ︷︷ ︸
µ−1

=

∞∑
n=0

B
(µ)
n,≥m

xn

n!
. (24)

Remark. If m → ∞ in (23), by E∞(−t) = e−t, and if m = 1 in (24), by

E0(−t) = 1 and E−1(−t) = 0, both of them are reduced to (3).
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Proof of Theorem 2. Since for µ ≥ 1

d

dt
Liµ
(
1− Em(−t)

)
=

Em−1(−t)
1− Em(−t)

Liµ−1
(
1− Em(−t)

)
,

we have

Liµ
(
1− Em(−t)

)
=

∫ t

0

Em−1(−t)
1− Em(−t)

Liµ−1
(
1− Em(−t)

)
dt

=

∫ t

0

Em−1(−t)
1− Em(−t)

∫ t

0

Em−1(−t)
1− Em(−t)

Liµ−2
(
1− Em(−t)

)
dtdt

=

∫ t

0

Em−1(−t)
1− Em(−t)

∫ t

0

Em−1(−t)
1− Em(−t)

· · ·
∫ t

0

Em−1(−t)
1− Em(−t)

Li1
(
1− Em(−t)

)
dt · · · dt︸ ︷︷ ︸
µ−1

=

∫ t

0

Em−1(−t)
1− Em(−t)

∫ t

0

Em−1(−t)
1− Em(−t)

· · ·
∫ t

0

Em−1(−t)
1− Em(−t)

(
− log

(
Em(−t)

))
dt · · · dt︸ ︷︷ ︸
µ−1

.

Therefore, we obtain (23). Similarly, by

d

dt
Liµ
(
Em−1(−t)− e−t

)
=
e−t − Em−2(−t)
Em−1(−t)− e−t

Liµ−1
(
Em−1(−t)− e−t

)
,

we obtain (24). �

If µ = 1 in Theorem 1 or in Theorem 2, the generating functions of the

restricted Bernoulli numbers B
(1)
n,≤m and associated Bernoulli numbers B

(1)
n,≥m are

given. Both functions below are reduced to the generating function (1) of the

Bernoulli numbers B
(1)
n if m→∞ and m = 1, respectively.

Corollary 1. We have

∞∑
n=0

B
(1)
n,≤m

tn

n!
=

logEm(−t)
Em(−t)− 1

and
∞∑
n=0

B
(1)
n,≥m

tn

n!
=

log
(
1 + e−t − Em−1(−t)

)
e−t − Em−1(−t)

.
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3.2. Basic divisibility for non-positive µ. In this short subsection we deduce

a basic divisibility property for both the restricted and associated poly-Bernoulli

numbers.

It is known [GraKnuPat] that{p
k

}
≡ 0 (mod p) (1 < k < p)

for any prime p. The proof of this basic divisibility is the same for the restricted

and associated Stirling numbers, so we can state that{p
k

}
≤m
≡ 0 (mod p) (k = 0, 1, . . . ),

and {p
k

}
≥m
≡ 0 (mod p) (k ≥ 2).

(Note that
{
p
1

}
≥m = 1.) These immediately lead to the next statement.

Theorem 3. For any µ ≤ 0 we have that

B
(µ)
p,≤m ≡0 (mod p),

B
(µ)
p,≥m ≡2|µ| (mod p)

hold for any prime p.

4. A new series representation for the Riemann zeta function

To present our result, we need to recall the definition of the Lambert W

function. W (a) is the solution of the equation

xex = a,

that is, W (a)eW (a) = a. Since this equation, in general, has infinitely many

solutions, the W function has infinitely many complex branches denoted by Wk(a)

where k ∈ Z. What we prove is the following:

Theorem 4. For any µ ∈ C with <(µ) > 1 we have that

ζ(µ) =

∞∑
n=0

B
(µ)
n,≥2

(Wk(−1))n

n!

for k = 0,−1, where ζ is the Riemann zeta function.
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Proof. Let us recall the generating function of B
(µ)
n,≥m in the particular case

when m = 2:
∞∑
n=0

B
(µ)
n,≥2

(−t)n

n!
=

Liµ(1 + t− et)
1 + t− et

. (25)

By a simple transformation it can be seen that the equation 1 + t − et = 1 is

solvable in terms of the Lambert W function, and that the solution is −Wk(−1)

for any branch k ∈ Z. However, (25) is valid only for t such that |1 + t− et| ≤ 1,

at least when <(µ) > 1. (This comes from the proof of Theorem 1.) Since the

absolute value of −Wk(−1) grows with k, the only two branches which belong

the convergence domain of (25) is k = −1, 0. Hence, substituting one of these in

place of t we have that

∞∑
n=0

B
(µ)
n,≥2

(Wk(−1))n

n!
=

Liµ(1−Wk(−1)− e−Wk(−1))

1−Wk(−1)− e−Wk(−1)
=

Liµ(1)

1
= ζ(µ). �

Note that

W0(−1) = W−1(−1) ≈ −0.318132 + 1.33724i,

so all the terms in the incomplete Bernoulli sum are complex, but the sum itself

always converges to the real number ζ(µ).
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