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Quadratic Lie triple systems admitting symplectic structures

By JIE LIN (Tianjin), ZHIQI CHEN (Tianjin) and LIANGYUN CHEN (Changchun)

Abstract. The aim of this article is to determine quadratic symplectic Lie triple

systems, which are Lie triple systems admitting both quadratic and symplectic struc-

tures, by T ∗-extensions of Lie triple systems.

1. Introduction

The symplectic structures on Lie algebras and quadratic Lie algebras attract

the interest in many fields of mathematic and physics. Recently, the symplectic

structures on quadratic Lie algebras have been studied by Bajo, Benayadi and

Medina in [BBM]. We know that quadratic symplectic Lie algebras are the Lie

algebras of Lie Groups which admit a bi-invariant pseudo-Riemannian metric and

a left-invariant symplectic form. If the symplectic form on the Lie group is viewed

as a solution r of the classical Yang–Baxter equation, then the Poisson–Lie tensor

π = r+−r− and the geometry of the double Lie groups D(r) can be well described

([DM]).

Similar to the case of Lie algebras, we define symplectic structures on Lie

triple systems based on scalar cohomology. Then we study the symplectic struc-

tures on quadratic Lie triple systems by means of T ∗-extensions, which are studied

in [LWD]. It is shown in [LWD] that every nilpotent quadratic Lie triple system

over an algebraically closed field of characteristic 0 is either a T ∗-extension or a

non-degenerate ideal of codimension 1 in a T ∗-extension of some Lie triple system.
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In general, a T ∗-extension of a Lie triple system need not admit a non-degenerate

scalar 2-cocycle, even if the extended system is nilpotent. Thus we need to impose

some additional properties to a Lie triple system a to ensure that a T ∗-extension

T ∗θ a might be furnished with a symplectic structure. This will be done in sec-

tion 3, where we will show that if K is algebraically closed, then every quadratic

symplectic Lie triple system is a T ∗-extension of a Lie triple system which admits

an invertible derivation and we give necessary and sufficient conditions on a to

assure that the extended system admits a skew-symmetric derivation, and hence

a symplectic structure.

2. Preliminaries

Definition 2.1 ([L]). A Lie triple system is a vector space T over a field K
with a trilinear multiplication [a, b, c] satisfying

[a, a, b] = 0,

[a, b, c] + [b, c, a] + [c, a, b] = 0,

[a, b, [c, d, e]] = [[a, b, c], d, e] + [c, [a, b, d], e] + [c, d, [a, b, e]],

for any a, b, c, d, e ∈ T .

Definition 2.2 ([L]). A derivation of a Lie triple system T is a linear trans-

formation D of T into T such that

D([x, y, z]) = [Dx, y, z] + [x,Dy, z] + [x, y,Dz],

for any x, y, z ∈ T . The set Der(T ) of derivations of T is a Lie algebra of lin-

ear transformations, we call it the derivation algebra of T . Further, if ai, bi, i =

1, 2, · · · , n are arbitrary in T , then x 7→
∑
i L(ai, bi)(x) =

∑
i[ai, bi, x] is a deriva-

tion of T . L(T, T ) = {
∑
i L(ai, bi)|ai, bi ∈ T} is a subalgebra of Der(T ), we call it

the inner derivation algebra of T , its element is called an inner derivation of T .

Definition 2.3 ([ZSZ]). A symmetric bilinear form f on a Lie triple system

is said to be right-invariant(resp. left-invariant) if f(R(a, b)x, y) = f(x,R(b, a)y)

(resp. f(L(a, b)x, y) = f(x, L(b, a)y)) for all x, y, a, b ∈ T, where L(a, b)x :=

[a, b, x] and R(a, b)x := [x, a, b]. Furthermore, f is said to be invariant if it is both

right-invariant and left-invariant.
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Definition 2.4. Let T be a Lie triple system over K.

(1) We say that (T,B) is a quadratic Lie triple system if B is a non-degenerate

symmetric invariant bilinear form on T . Here B is called a quadratic structure

on T . A quadratic Lie triple system (T,B) is said to be reducible (or B-reducible)

if it admits an ideal J such that the restriction of B to J × J is non-degenerate.

Otherwise, we will say (T,B) is irreducible.

(2) We say that (T, ω) is a symplectic Lie triple system if ω is a non-degenerate

skew-symmetric bilinear form on T such that the identity

ω([x, y, z], a)− ω(x, [a, z, y]) + ω(y, [a, z, x])− ω(z, [y, x, a]) = 0

holds for any x, y, z, a ∈ T . The above identity means that ω is a non-degenerate

2-cocycle for the scalar cohomology of T which is defined in [LWD]. Note that in

such case, T must be even-dimensional. Here ω is called a symplectic structure

on T .

(3) We say that (T,B, ω) is a quadratic symplectic Lie triple system if (T,B)

is quadratic and (T, ω) is symplectic.

Definition 2.5. An ideal of a symplectic Lie triple system (T, ω) is called

lagrangian if and only if it coincides with its orthogonal complement with respect

to ω.

Lemma 2.6 ([SM]). Let T be a Lie triple system, D a derivation of T ,

T = Tλ1
(D) + Tλ2

(D) + · · ·+ Tλs
(D) the decomposition of T by D. Then

(1) [Tλi(D), Tλj (D), Tλk
(D)] ⊆ Tλi+λj+λk

(D) ,

(2) Der(T ) contains the semisimple and nilpotent parts (in EndT ) of all its ele-

ments.

Lemma 2.7. Let (T,B) be a quadratic Lie triple system. There is a sym-

plectic structure on T if and only if there is an invertible derivation of T which

is skew-symmetric with respect to B.

Proof. Suppose that D is an invertible derivation of T which is skew-

symmetric with respect to B. Define ω(x, y) := B(Dx, y). Since

ω(x, y) = B(Dx, y) = −B(x,Dy) = −B(Dy, x) = −ω(y, x),

we know that ω is skew-symmetric. Furthermore

ω([x, y, z], a)− ω(x, [a, z, y]) + ω(y, [a, z, x])− ω(z, [y, x, a])
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= B(D[x, y, z], a)−B([Dx, y, z], a) +B([Dy, x, z], a)−B([x, y,Dz], a = 0.

Notice that the first equality follows from the invariant property of the qua-

dratic form of the quadratic Lie triple system. Namely ω is symplectic.

Suppose that ω is a symplectic structure on T . Define D by ω(x, y) =

B(Dx, y) for any x, y ∈ T . Then D is a derivation of T . We have

B(Dx, y) = ω(x, y) = −ω(y, x) = −B(Dy, x) = −B(x,Dy).

That is, D is skew-symmetric with respect to B. Define D′ by ω(D′x, y) = B(x, y)

for any x, y ∈ T . Then

ω(D′Dx, y) = B(Dx, y) = ω(x, y), B(DD′x, y) = ω(D′x, y) = B(x, y).

By the non-degeneracy of ω and B, we get D′D = DD′ =id. Thus D is invertible.

�

Remark 2.8. The skew-symmetric derivation D of (T,B) in the above lemma

is also skew-symmetric with respect to the symplectic form ω. In fact, for any

x, y ∈ T ,

ω(Dx, y) = B(D2x, y) = −B(Dx,Dy) = −ω(x,Dy).

Example 2.9. Let T = R{x1, x2, x3, x4} be the 4-dimensional Lie triple sys-

tem defined by

[x1, x2, x4] = x3.

For any symmetric invariant bilinear form B on T , we have

B(x3, x3) = B(x3, x1) = B(x3, x2) = B(x3, x4) = 0.

So there is no quadratic structure on T . The skew-symmetric bilinear form on T

defined by

ω(x1, x4) = ω(x2, x3) = 1

gives a symplectic structure on T and the linear endomorphism of T defined by

D(x1) = 2x1, D(x2) = −x2, D(x3) = x3, D(x4) = −2x4

is an invertible skew-symmetric derivation of (T, ω).
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Example 2.10. Let T be a Lie triple system and n ∈ N, n > 1. Consider

the non-unitary associative algebra An = tK[t]/tnK[t]. Define the bracket on the

vector space Tn = T ⊗An by

[x⊗ t̄p, y ⊗ t̄q, z ⊗ t̄r] = [x, y, z]T ⊗ ¯tp+q+r,

where x, y, z ∈ T, p, q, r ∈ N/{0}. Then Tn is a nilpotent Lie triple system. The

endomorphism D of Tn defined by D(x ⊗ t̄p) = p(x ⊗ t̄p) for any x ∈ T and

p ∈ {1, . . . , n − 1} is an invertible derivation of Tn. Define the bracket on the

vector space T̃n = Tn ⊕ (Tn)∗ by

[X + f, Y + g, Z + h] = [X,Y, Z]Tn
+ [f, Y, Z] + [X, g, Z] + [X,Y, h],

where, for any X,Y, Z,W ∈ Tn, f, g, h ∈ (Tn)∗,

[f, Y, Z](W ) := f([W,Z, Y ]), [X, g, Z](W ) := g([Z,W,X]),

[X,Y, h](W ) := h([Y,X,W ]).

Define a bilinear form on T̃n by

B(X + f, Y + g) = f(Y ) + g(X).

Then (T̃n, B) is a quadratic Lie triple system. Define D̃ on T̃n by

D̃(X + f) = D(X) +D∗f, ∀X ∈ Tn, f ∈ (Tn)∗,

where D∗(f) = −f ◦ D. Then D̃ is an invertible derivation which is skew-

symmetric with respect to B, hence the quadratic Lie triple system (T̃n, B) admits

a symplectic structure.

3. Quadratic Lie triple systems with symplectic structures

Definition 3.1 ([LWD]). Let a be a Lie triple system over a field K and a∗ its

dual space. Consider a Yamaguti 3-cocycle (cf. [Y]) θ : a× a× a→ a∗ and define

the bracket on the vector space T ∗θ a = a⊕ a∗ by

[x+ f, y + g, z + h] = [x, y, z] + θ(x, y, z) + [f, y, z] + [x, g, z] + [x, y, h],

where

[f, y, z](a) := f([a, z, y]), [x, g, z](a) := g([z, a, x]), [x, y, h](a) := h([y, x, a]),

for any x, y, z, a ∈ a, and f, g, h ∈ a∗. The pair (T ∗θ a, [·, ·, ·]) is a Lie triple system,

which is called the T ∗-extension of the Lie triple system a by means of θ.
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If, in addition, the 3-cocycle θ satisfies θ(x, y, z)(a) = θ(a, z, y)(x) for any

x, y, z, a ∈ a, then the symmetric bilinear form B on T ∗θ a, given by B(x+f, y+g) =

f(y)+g(x) for any x, y ∈ a, f, g ∈ a∗, defines a quadratic structure on T ∗θ a. Define

θ](a, x, y, z) := θ(x, y, z)(a). Then it is proved in [LWD], p. 2080 that θ] is a scalar

4-cocycle of a to K.

As in the case of Lie algebras [J1], we have the similar result for Lie triple

systems.

Theorem 3.2. Let T be a finite dimensional Lie triple system over an alge-

braically closed field of characteristic zero and suppose that there exists a nilpo-

tent subalgebra D of the algebra of derivations of T such that there are no nonzero

D-constants, i.e., Dc = 0 for any D ∈ D implies that c = 0. Then T is nilpotent.

Proof. We denote the derivation algebra of T by D and consider T as a

module for D, hence for D. If R denotes the representation of D in T and adD

the adjoint representation in D, then the characteristic roots of DR and adDD,

D ∈ D, are in the base field K since K is algebraically closed, that is to say, DR
and adDD are split Lie algebras of linear transformations. If DR → ρ(DR) is

a weight on DR, then D → ρ(D) ≡ ρ(DR) is a weight for D in the module T .

Since D is nilpotent, the result on weight spaces for a split nilpotent Lie algebra of

linear transformations ([J, Theorem 2.7]) implies that T is a direct sum of weight

modules Tρ. Similarly, we have a decomposition of the algebra D of derivations

into weight modules Dα. Thus we have

T = Tρ ⊕ Tσ ⊕ · · · ⊕ Tτ , D = Dα ⊕Dβ ⊕ · · · ⊕Dγ

where ρ, σ, · · · , τ are weights of T and α, β, · · · , γ are roots of D in D. Take

R = id. Since there are no nonzero D-constants, 0 is not a weight. By Proposition

3.5 of [J], we have [Dα, Tρ] ⊆ Tα+ρ if α + ρ is a weight of T relative to D
otherwise [Dα, Tρ] = 0 (adD(x) = [D,x] := Dx). It follows that [Tσ, Tτ , Tρ] =

[L(Tσ, Tτ ), Tρ] ⊆ Tσ+τ+ρ, if σ + τ + ρ is a weight of T relative to D otherwise

[Tσ, Tτ , Tρ] = 0. This implies that every R(x, y)(R(x, y)(z) := [z, x, y]) for any

x ∈ Tτ , y ∈ Tρ is nilpotent on T if τ + ρ 6= 0. In addition, we can prove that B =⋃
τ+ρ6=0R(Tτ , Tρ) is a weakly closed set. By Theorem 2.1 of [J], the enveloping

associative algebra of B is nilpotent. Hence, (adx)2 = R(x, x) for any x ∈ T is

nilpotent. According to Engel’s theorem [H] of Lie triple systems, we know that

T is nilpotent. �

Corollary 3.3. Let (T,B) be a finite dimensional quadratic Lie triple system

over an algebraically closed field of characteristic zero. If T admits a symplectic

structure, then T is nilpotent.
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Proof. It follows from Lemma 2.7 and Theorem 3.2. �

Proposition 3.4 ([LWD], Theorem 4.3). Suppose that K is algebraically

closed of characteristic different from 2 and let (T,B) be a quadratic even-

dimensional Lie triple system over K. If T is nilpotent, then (T,B) is isomet-

rically isomorphic to a quadratic T ∗-extension (T ∗θ a, B), where a is isomorphic to

the quotient system of T by a completely isotropic ideal.

Thus we know that every Lie triple system admitting both a quadratic struc-

ture and a symplectic structure is isometrically isomorphic to a T ∗-extension of

some Lie triple system. In particular, we have the following theorem.

Theorem 3.5. Let (T,B) be a quadratic Lie triple system over an alge-

braically closed field K which admits a skew-symmetric invertible derivation D̄.

Then there exist a Lie triple system a, an invertible derivation D of a and a Ya-

maguti cocycle θ ∈ Z3(a, a∗) such that T = T ∗θ a. Moreover the map Θ defined

by

Θ(x, y, z, a) = θ(Dx, y, z)(a) + θ(x,Dy, z)(a) + θ(x, y,Dz)(a) + θ(x, y, z)(Da),

for any x, y, z, a ∈ a, is a 4-coboundary for the scalar cohomology of a.

Proof. Consider the semidirect sum of Lie algebras L = L(T, T ) ⊕ KD̄.

Since T is nilpotent, the Lie algebra L(T, T ) is nilpotent and L is solvable. Thus,

according to Lemma 3.2 in [B], there is a maximal isotropic (with respect to the

quadratic form B) ideal J of T which is also stable under the derivation D̄. Now,

if a = T/J then a∗ is isomorphic to T ∗θ a ([LWD, Theorem 4.3]). Furthermore,

a∗ = J is stable under D̄ and hence, there exist linear mappings D11 : a→ a, D21 :

a → a∗ and D22 : a∗ → a∗ such that D̄(x + f) = D11x + D21x + D22f holds for

any x ∈ a, f ∈ a∗. Clearly, D11 and D22 are invertible since D̄ is. The skew-

symmetry of D̄ is equivalent to the conditions D22f = −f ◦ D11, for any f ∈ a

and B(D21x, y) = −B(D21y, x) for any x, y ∈ a. Indeed, B(D̄(x + f), y + g) =

B(D11x+D21f, y+g) = g◦D11x+D22◦f(y)+B(D21x, y) and B(x+f, D̄(y+g)) =

B(x+ f,D11(y) +D21(y) +D22g) = f ◦D11(y) +D22 ◦ g(x) +B(x,D21(y)). Let

H = −D21 and D = D11. Since D̄ is a derivation, we get

0 = [D̄x, y, z] + [x, D̄y, z] + [x, y, D̄z]− D̄[x, y, z]

= [Dx, y, z]a + [x,Dy, z]a + [x, y,Dz]a −D[x, y, z]a

+H[x, y, z]a − [Hx, y, z]a − [x,Hy, z]a − [x, y,Hz]a

+ θ(x, y, z) ◦D + θ(Dx, y, z) + θ(x,Dy, z) + θ(x, y,Dy),
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for any x, y, z ∈ a, which shows that D is a derivation of a and that if

Θ(x, y, z, a) = θ(Dx, y, z)(a) + θ(x,Dy, z)(a) + θ(x, y,Dz)(a) + θ(x, y, z)(Da)

and F is the skew-symmetric bilinear form on a defined by F (x, y) = −B(Hx, y) =

−Hx(y), then we have Θ(x, y, z, a)−F ([x, y, z]a, a)+F (x, [a, z, y]a)+F (y, [z, a, x]a)

= Θ(x, y, z, a)− dF (x, y, z, a) = 0 for any x, y, z, a ∈ a, which ends the proof. �

Remark 3.6. (1) It is interesting to point out that if the derivation D̄ is

semisimple then the derivation D is also semisimple. Actually, if we choose a

basis of the completely isotropic ideal I composed of eigenvectors of D, then each

element in its dual basis (with respect to B) is an eigenvector of D.

(2) Theorem 3.5 does not hold in general in the case of a non-algebraically

closed field. For example, an even-dimensional abelian Lie triple system T over

R with a positive definite bilinear form is obviously a quadratic Lie triple system

which admits an invertible skew-symmetric derivation. However, it cannot be a

T ∗-extension since there are no isotropic subspaces.

Indeed, the inverse problem of Theorem 3.5 also holds.

Theorem 3.7. Let a be a Lie triple system admitting an invertible derivation

D. Consider a Yamaguti 3-cocycle θ ∈ Z3(a, a∗) and define

Θ(x, y, z, a) = θ(Dx, y, z)(a)+θ(x,Dy, z)(a)+θ(x, y,Dz)(a)+θ(x, y, z)(Da), (1)

for any x, y, z, a ∈ a. If Θ is a 4-coboundary for the scalar cohomology of a, then

the quadratic Lie triple system T ∗θ a admits a symplectic structure.

Proof. Let B be the quadratic form on T ∗θ a defined in Definition 3.1. By

Lemma 2.6, it is enough to prove the existence of an invertible skew-symmetric

derivation of (T ∗θ a, B).

Consider F : a× a→ K such that Θ = δF where δ is defined in ([LWD, page

2080]). Explicitly, for any x, y, z, a ∈ a,

(δF )(x, y, z, a) = F ([x, a, z], y)−F ([x, a, y], z)+F ([z, y, x], a)−F (x, [y, z, a]). (2)

Let H : a → a∗ be the mapping defined by B(Hx, y) = F (x, y) for any x, y ∈ a.

Then according to Definition 3.1, we have

B(Hx, y) = Hx(y) = F (x, y), ∀x, y ∈ a. (3)
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Define D̄ : T ∗θ a→ T ∗θ a by

D̄(x+ f) = Dx−Hx− f ◦D

for any x ∈ a, f ∈ a∗. Define D̄′ : T ∗θ a→ T ∗θ a by

D̄′(x+ f) = D−1x−HD−1x ◦D−1 − f ◦D−1

for any x ∈ a, f ∈ a∗. Then

D̄′D̄(x+ f) = D̄′(Dx−Hx− f ◦D)

= D−1Dx−HD−1Dx ◦D−1 +Hx ◦D−1 + f ◦D ◦D−1 = x+ f,

and

D̄D̄′(x+ f) = D̄(D−1x−HD−1x ◦D−1 − f ◦D−1)

= DD−1x−HD−1x+HD−1x ◦D−1 ◦D + f ◦D−1 ◦D = x+ f,

that is, D̄ is invertible and D̄′ is the inverse of D̄. Since

B(D̄(x+ f), y + g) = B(Dx−Hx− f ◦D, y + g)

= B(Dx, y)− F (x, y)− f ◦Dy + g ◦Dx

and

B(x+ f, D̄(y + g)) = B(x+ f,Dy −Hy − g ◦D)

= B(x,Dy) + f ◦Dy − F (y, x)− g ◦Dx,

we have B(D̄(x+ f), y+ g) = B(x+ f, D̄(y+ g)), i.e., D̄ is skew-symmetric with

respect to B.

Furthermore, since D is a derivation of a and

(−[f ◦D, y, z] + [Dx, g, z] + [Dx, y, h]− [x, g ◦D, z] + [f,Dy, z] + [x,Dy, h]

− [x, y, h ◦D] + [f, y,Dz] + [x, g,Dz]− [f, y, z] ◦D − [x, g, z] ◦D
− [x, y, h] ◦D)(a)

= −f ◦D([a, z, y]a) + g([z, a,Dx]a) + h([y,Dx, a])− g ◦D([z, a, x])

+ f([a, z,Dy]) + h([Dy, x, a]a)− h ◦D([y, x, a]a) + f([a,Dz, y])

+ g([Dz, a, x]) + f([Da, z, y]a) + g([z,Da, x]) + h([y, x,Da]) = 0,
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we get

[D̄(x+ f), y + g, z + h] + [x+ f, D̄(y + g), z + h] + [x+ f, y + g, D̄(z + h)]

− D̄([x+ f, y + g, z + h])

= [Dx, y, z]a + θ(Dx, y, z)− [Hx, y, z]− [f ◦D, y, z] + [Dx, g, z] + [Dx, y, h]

+ [x,Dy, z]a + θ(x,Dy, z)− [x,Hy, z]− [x, g ◦D, z] + [f,Dy, z] + [x,Dy, h]

+ [x, y,Dz]a + θ(x, y,Dz)− [x, y,Hz]− [x, y, h ◦D] + [f, y,Dz] + [x, g,Dz]

−D([x, y, z]a) +H([x, y, z]a) + [f, y, z] ◦D + [x, g, z] ◦D + [x, y, h] ◦D
+ θ(x, y, z) ◦D

= θ(Dx, y, z) + θ(x,Dy, z) + θ(x, y,Dz) + θ(x, y, z) ◦D +H([x, y, z]a)

− [Hx, y, z]− [x,Hy, z]− [x, y,Hz].

In particular,

(θ(Dx, y, z) + θ(x,Dy, z) + θ(x, y,Dz) + θ(x, y, z) ◦D +H([x, y, z]a)− [Hx, y, z]

− [x,Hy, z]− [x, y,Hz])(a)

Def.3.1
= θ(Dx, y, z)(a) + θ(x,Dy, z)(a) + θ(x, y,Dz)(a) + θ(x, y, z)(Da)

+H([x, y, z]a)(a)−Hx([a, z, y]a)−Hy([z, a, x]a)−Hz([y, x, a]a)

(1)(3)
= Θ(x, y, z, a) + F ([x, y, z]a, a)− F (x, [a, z, y]a)− F (y, [z, a, x]a)

− F (z, [y, x, a]a)

(2)
= Θ(x, y, z, a)− δF (x, y, z, a) = 0.

Hence, D̄ is a derivation. �

By Corollary 3.3, we know that if a Lie triple system admits an invertible

derivation, then it must be nilpotent. However, there are many nilpotent Lie

triple systems whose derivations are all non-invertible. The following result gives

a characterization of Lie triple systems admitting such a derivation. Note that

the result is valid for an arbitrary base field of characteristic zero (not necessarily

algebraically closed).

Proposition 3.8. Let K be a field of characteristic zero and let a be a Lie

triple system over K. There exists an invertible derivation of a if and only if a

is isomorphic to the quotient Lie triple system T/I of a quadratic symplectic Lie

triple system (T,B, ω) by a lagrangian and completely isotropic ideal I.
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Proof. If a admits an invertible derivation, then the Lie triple system

T = T ∗0 a obtained by T ∗-extension by the null cocycle θ = 0 is, according to

Theorem 3.7, a quadratic symplectic Lie triple system and I = a∗ is a lagrangian,

completely isotropic ideal of T . Conversely, suppose that a is isomorphic to T/I,

where (T,B, ω) is a quadratic symplectic Lie triple system and I is a Lagrangian

completely isotropic ideal of T . According to Corollary 3.1 of [LWD], T is iso-

metrically isomorphic to T ∗θ (T/I) = T ∗θ a since I is completely isotropic. Let

D̄ ∈ Dera(T,B) be the invertible derivation such that ω(X,Y ) = B(DX,Y ) for

any X,Y ∈ T . Clearly, ω(I, I) = 0 implies that D̄(I) ⊆ I⊥ = I. Now, since I

stable by D̄, the same arguments used in the proof of Theorem 3.5 prove that the

projection of D̄|a to a provides an invertible derivation of a. �
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