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On the x-coordinates of Pell equations which are rep-digits

By APPOLINAIRE DOSSAVI-YOVO (Porto-Novo), FLORIAN LUCA (Wits)

and ALAIN TOGBÉ ( Westville)

Abstract. For a positive integer d which is not a square, we show that there is at

most one value of the positive integer x participating in the Pell equation x2 − dy2 = 1

which is a rep-digit, that is all its base 10 digits are equal, with a few exceptions in the

pairs (d, x) which we determine.

1. Introduction

Let d > 1 be a positive integer which is not a perfect square. It is well-known

that the Pell equation

x2 − dy2 = 1 (1)

has infinitely many positive integer solutions (x, y). Furthermore, putting (x1, y1)

for the smallest solution with x > 1, all solutions are of the form (xn, yn) for some

positive integer n where

xn +
√
dyn = (x1 +

√
dy1)n.

There are many papers in the literature which solve Diophantine equations in-

volving members of the sequences {xn}n≥1 or {yn}n≥1 being squares, or perfect

powers of larger exponents of some other integers, etc. (see, for example, [3], [5]).

In this paper, we study a new problem of this kind which we now describe.

Let g ≥ 2 be an integer. A natural number N is called a base g rep-digit if

all of its base g-digits are equal; that is, if

N = a

(
gm − 1

g − 1

)
, for some m ≥ 1 and a ∈ {1, 2, . . . , g − 1}.
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When g = 10, we omit the base and simply say that N is a rep-digit. Diophantine

equations involving rep-digits were also considered in several papers which found

all rep-digits which are perfect powers, or Fibonacci numbers, or generalized

Fibonacci numbers, and so on (see [1], [2], [4], [7], [8], [9], [10], [12] for a sample of

such results). In this paper, we study when xn can be a rep-digit, which reduces

to the Diophantine equation

xn = a

(
10m − 1

9

)
, m ≥ 1 and a ∈ {1, . . . , 9}. (2)

Of course, for every integer x ≥ 2 there is a unique square-free integer d ≥ 2 such

that

x2 − dy2 = 1.

Namely d is the product of all prime factors of x2 − 1 which appear at odd

exponents in its factorization. In particular, taking x = a(10m − 1)/9, we get

that any rep-digit is the x-coordinate of the Pell equation corresponding to some

specific square-free integer d. Here we study the square-free integers d such that

the sequence {xn}n≥1 contains at least two rep-digits. Our result is the following.

Theorem. Let d ≥ 2 be square-free. The Diophantine equation

xn = a

(
10m − 1

9

)
, m ≥ 1 and a ∈ {1, . . . , 9} (3)

has at most one positive integer solution n with the following exceptions:

(i) d = 2, n ∈ {1, 3};
(ii) d = 3, n ∈ {1, 2}.

Our proof proceeds in two cases according to whether n is even or odd. If n

is even, we reduce the problem to the study of integer points on twelve elliptic

curves, getting only the solution (d, n) = (3, 2) for which x2 = 7 is a rep-digit.

When n is odd, the proof is more difficult and it uses lower bounds for linear

forms in complex and p-adic logarithms as well as some computations to lower

the bounds to values up to which we can search for the potential solutions. The

tools we need from the literature will be mentioned as needed.

2. The case n even

Write n = 2n1. Since

xn = x2n1
= 2x2

n1
− 1,
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it suffices to solve the equation

2x2 − 1 = a

(
10m − 1

9

)
, m ≥ 1 and a ∈ {1, . . . , 9}.

Since the left-hand side above is odd, it follows that a is odd. If a = 9, we get

2x2 = 10m, which has no integer solutions (x,m). So, a ∈ {1, 3, 5, 7}. We write

m = 3m0 + r where r ∈ {0, 1, 2} and proceed according to the value of r.

When r = 0, we get

2x2 − 1 =
a

9

(
y3 − 1

)
, with y = 10m0 . (4)

Multiplying both sides of equation (4) above by 72a2 and simplifying give the

elliptic curves

Y 2 = X3 +A0, (5)

where X := 2ay, Y := 12ax, and A0 := 8a2(9 − a), with a ∈ {1, 3, 5, 7}. With

MAGMA we find all integer points (X,Y ) on the four curves above. None yields

a convenient solution to our original problem.

When r = 1, we get

2x2 − 1 =
a

9

(
10y3 − 1

)
, with y = 10m0 . (6)

We multiply equation (6) by 7200a2 and then simplify the result to obtain the

elliptic curves

Y 2 = X3 +A1, (7)

where X := 20ay, Y := 120ax, and A1 := 800a2(9 − a). With MAGMA we find

all integer points (X,Y ) on the four elliptic curves above. The only convenient

solution is (X,Y ) = (140, 1680) when a = 7 which leads to (d, n) = (3, 2) for

which x2 = 7.

When r = 2, we get

2x2 − 1 =
a

9

(
100y3 − 1

)
, with y = 10m0 . (8)

We multiply both sides of equation (8) by 8 · 9 · 104 · a2 and get

Y 2 = X3 +A2, (9)

where X := 200ay, Y := 1200ax, and A2 := 8 · 104 · a2(9 − a). With MAGMA

we find all integer points (X,Y ) on the four elliptic curves above. None of these

yields any convenient solution to our original problem.
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This analysis shows that the only instance in which xn is a rep-digit for some

even n is when n = 2 for which d = 3. In the last computational section, we will

find all indices n such that xn is a rep-digit for all non-square d ∈ {1, 2, . . . , 100},
which includes the case d = 3. From now on until the last computational section

we assume that d > 100 and that there exist two odd n1 6= n2 for which both xn1

and xn2 are rep-digits.

3. On the greatest common divisor of two rep-digits

Suppose that n1 6= n2 are odd and

xn1 = a1

(
10m1 − 1

9

)
, xn2 = a2

(
10m2 − 1

9

)
, where a1, a2 ∈ {1, . . . , 9}.

Let n3 := gcd(n1, n2). Since n1 and n2 are odd, from known properties of solutions

to Pell equations, we get that xn3
= gcd(xn1

, xn2
). We put a3 := gcd(a1, a2),

a′1 := a1/a3, a′2 := a2/a3. We also put m3 := gcd(m1,m2) and use the fact that

gcd(10m1 − 1, 10m2 − 1) = 10m3 − 1. We then get that

xn = gcd(xn1
, xn2

) = gcd

(
a1

(
10m1 − 1

9

)
, a2

(
10m2 − 1

9

))
= a3

(
10m3 − 1

9

)
gcd

(
a′1

(
10m1 − 1

10m3 − 1

)
, a′2

(
10m2 − 1

10m3 − 1

))
:= a3`

(
10m3 − 1

9

)
. (10)

The quantities inside the greatest common divisor ` in the right-hand side of (10)

above have the property that a′1, a′2 are coprime, that (10m1− 1)/(10m3− 1) and

(10m2 − 1)/(10m3 − 1) are also coprime and each one of these two last numbers is

coprime to 10. A quick analysis shows then that ` ∈ {1, 3, 7, 9, 21, 63}. Further-

more, if ` > 1, then a3 ∈ {1, 2, 3} and if ` > 3 then a3 = 1. Summarizing, we get

that

xn3 = a3

(
10m3 − 1

9

)
with some a3 ∈ {1, 2, 3, . . . , 9, 21, 63}.

Since n1 6= n2, we may assume that n1 < n2, and then n3 < n2 and n3 is a

proper divisor of n2. Putting n := n2/n3 d := x2
n3
− 1, m := m3, ` := m2/m3,

our problem is now seen to be a subproblem of the following slightly more general

one:
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A somewhat more general problem. Find all instances in which

x1 = a

(
10m − 1

9

)
with a ∈ {1, 2, . . . , 9, 21, 63} and

xn = b

(
10m` − 1

9

)
with b ∈ {1, 2, . . . , 9}, (11)

where n > 1 is odd and `, m are positive integers.

4. Bounds among `, m, n

We assume that m ≥ 20. The calculations for m ≤ 19 appear in the last

section. We put

α := x1 +
√
x2

1 − 1 = x1 + y1

√
d.

Then

xn =
1

2
(αn + α−n).

Thus, from the first relation (11), we have

1

2
(α+ α−1) = x1 = a

10m − 1

9
with a ∈ {1, 2, . . . , 9, 21, 63}.

We get

α >
1

2
(α+ α−1) = a

10m − 1

9
> 10m−1, (12)

giving

m− 1 <
logα

log 10
.

On the other hand,

α

2
<

1

2
(α+ α−1) = x1 < 7 · 10m, or α < 14 · 10m, (13)

so that
logα

log 10
< m+

log 14

log 10
< m+ 2.

Hence, we have that

m− 1 <
logα

log 10
< m+ 2. (14)
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We now exploit the second relation (11). We have

αn > xn = b

(
10m` − 1

9

)
> 9`−1

(
10m − 1

9

)`
> 9`−1

( α

140

)`
>

(
9α

140

)`−1

> α
`−1
2 , (15)

where in the above chain of inequalities we used the right–most inequality (13)

to infer that 10m−1 > α/140, as well as the fact that m ≥ 20 together with (12)

which implies that α is sufficiently large so that both inequalities α > 140 and

9α/140 > α1/2 hold. Clearly, (15) shows that

` < 2n+ 1. (16)

On the other hand

αn

2
<

1

2
(αn + α−n) = xn < 10m` < (10α)`,

where we used once again inequality (12). The last inequality above leads to

αn < (20α)` < (α3/2)`, (17)

where we used the fact that α1/2 > 20, which follows from (12) together with the

fact that m ≥ 20. Inequality (17) yields

` > 2n/3,

which together with (16) gives

2n/3 < ` < 2n+ 1. (18)

We will use (14) and (18) later.

5. Bounding m in terms of n

We recall that xn = Pn(x1), where Pn(X) ∈ Z[X] is the nth Chebyshev

polynomial given by

Pn(X) :=
1

2

(
(X +

√
X2 − 1 )n + (X −

√
X2 − 1 )n

)
.

Throughout this section, we work with divisibility relations among {3}-integers.

That is, we work with algebraic numbers of the form δ/3k, for some algebraic
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integer δ and some integer k. Given two {3}-integers δ and λ, we will say that

δ | λ if λ/δ is a {3}-integer. Using (11), it follows that

−b/9 ≡ xn ≡ Pn(x1) ≡ Pn (−a/9) (mod 10m). (19)

We will exploit relation (19).

We treat first the case a = 9. Then x1 = 10m − 1, so x1 + 1 = 10m.

We find the last two terms of Pn(X) as a polynomial in X + 1. For this, we put

Y := X + 1, Qn(Y ) := Pn(Y − 1), so

Qn(Y ) =
1

2

(
Y − 1 +

√
(Y − 1)2 − 1 )n + (Y − 1−

√
(Y − 1)2 − 1 )n

)
.

Taking Y = 0 in the above expression, we get

Qn(0) =
1

2
((−1)n + (−1)n) = −1

because n is odd.

For the coefficient of Y , we take the derivative of Qn(Y ) with respect to Y .

We get

Qn(Y )′ =
n

2

(
(Y − 1 +

√
(Y − 1)2 − 1)n−1

(
1 +

(Y − 1)√
(Y − 1)2 − 1

)

+ (Y − 1−
√

(Y − 1)2 − 1)n−1

(
1− (Y − 1)√

(Y − 1)2 − 1

))

=
n

2

(
((Y − 1 +

√
(Y − 1)2 − 1 )n−1 + (Y − 1−

√
(Y − 1)2 − 1 )n−1)

+
(Y − 1)√

(Y − 1)2 − 1

(
(Y − 1 +

√
(Y − 1)2 − 1 )n−1

− (Y − 1−
√

(Y − 1)2 − 1 )n−1
))

=
n

2

(
(Y − 1 +

√
(Y − 1)2 − 1)n−1 + (Y − 1−

√
(Y − 1)2 − 1 )n−1)

+ 2(Y − 1)
∑

0≤k≤n−1
k≡1 (mod 2)

(
n− 1

k

)
(Y − 1)n−1−k

√
(Y − 1)2 − 1

k−1

)
.
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For Y = 0 and using the fact that n is odd, we get that

Q′n(0) =
n

2

(
(−1)n−1 + (−1)n−1 + 2(−1)

(
n− 1

1

)
(−1)n−2

)
= n2.

Thus,

Qn(X) = n2(X + 1)− 1 (mod (X + 1)2).

Making X := x1, we get that when a = 9, then

−b/9 ≡ xn ≡ Pn(x1) ≡ −1 + n210m (mod 102m).

If b 6= 9, we then get that 10m | b− 9, a contradiction because m ≥ 20. If b = 9,

we then get 10m | n2, which is also a contradiction since n is odd. This takes care

of the case a = 9.

Suppose now that a 6= 9. We put

β := −a/9 +
√

(−a/9)2 − 1,

and study these numbers for a ∈ {1, 2, . . . , 8, 21, 63}. Then β is one of the numbers

−1 + 4
√
−5

9
,
−2 +

√
−77

9
,
−1 + 2

√
−2

3
,
−4 +

√
−65

9
,
−5 + 2

√
−14

9
,

−2 +
√
−5

3
,
−7 + 4

√
−2

9
,
−8 +

√
−17

9
,
−7 + 2

√
10

3
, −7 + 4

√
3.

Clearly, β is a {3}-integer. The numbers from the above list are multiplicatively

independent any two (in fact, they live in distinct quadratic fields) except for

−1 + 4
√
−5

9
=

(
2 +
√
−5

3

)2

and

(
1 + 2

√
−2

3

)2

=
−7 + 4

√
−2

9
.

The divisibility relation (19) that we exploit becomes

10m | Pn(−a/9) + b/9. (20)

Observe that

Pn(−a/9) + b/9 =
1

2
(βn + β−n) + b/9 =

β−n

2

(
(βn)2 + (2b/9)(β)n + 1

)
=
β−n

2
(βn − γ)(βn − γ−1), (21)
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where

γ := −b/9 +
√

(−b/9)2 − 1.

Since β is a {3}-unit (that is, β−1 is also a {3}-integer), divisibility relation (20)

and relation (21) yield

10m | (βn − γ)(βn − γ−1). (22)

We distinguish four cases.

Case 1. b = 9. Then γ = −1, and (22) implies

10m | (βn + 1)2. (23)

Let π be a prime ideal dividing 2 in K = Q(β). Computing the norm of β + 1

from K to Q, we get

NK/Q(β + 1) = (β + 1)(β−1 + 1) = (−a/9 + 1)2 − ((a/9)2 − 1) =
2(9− a)

9
,

which is a rational number of the form r/s with odd s and even r. Hence,

π|2|(β + 1)(β−1 + 1).

Since also β + β−1 = −2a/9 ≡ 0 (mod π), it follows that β ≡ β−1 (mod π). In

particular, π | (β + 1)2, therefore π | β + 1. Note that

βn + 1 = (β + 1)

(
βn + 1

β + 1

)
, (24)

and
βn + 1

β + 1
= βn−1 + · · ·+ 1 ≡ 1 + · · ·+ 1︸ ︷︷ ︸

n times

≡ n ≡ 1 (mod π), (25)

because n is odd. It now follows that the divisibility relation (23) gives 2m |
(β + 1)2. Taking norms we get

22m | NK/Q(β + 1)2 =

(
2(9− a)

9

)2

, (26)

which leads to m < 10, a contradiction. Thus, the case b = 9 is not possible.

Case 2. b = a. Then γ = β, and we get

10m
∣∣ β−n

2
(βn − β)(βn − β−1)

=
1

2
(β(n+1)/2 − β−(n+1)/2)(β(n−1)/2 − β−(n−1)/2). (27)
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For a positive integer k put

vk =
βk − β−k

β − β−1
.

The sequence {vk}k≥1 is a binary recurrent sequence of {3}-units. We are inter-

ested in the exponent of 2 in the factorization of vk. Since v1 = 1, v2 = −2a/9

and

vk+2 = (−2a/9)vk+1 − vk, for all k ≥ 1,

one proves easily that vk has an even numerator if and only if k is even. Further,

writing an even k as k = 2uk0 with a positive integer u and an odd integer k0, we

get that

vk = v2uk0 = (β + β−1)(β2 + β−2) · · · (β2u−1

+ β−2u−1

)

(
β2uk0 − β−2uk0

β2u − β−2u

)
.

The arguments from Case 1 (see (24) and (25)) show that the right–most factor

above is odd (that is, it is a rational number of the form r/s with odd r), and

also that 2‖β2i + β−2i for i = 1, 2, . . .. Further, β + β−1 = −2a/9 and since

a ∈ {1, 2, . . . , 8, 21, 63} it follows that the exponent of 2 in β + β−1 is at most

4. Thus, putting ν2(r) for the exponent of 2 in the factorization of the rational

number r, we get that

ν2(v2uk0) ≤ 3 + u = 3 + log k/ log 2.

Now, we return to divisibility (27) which can be rewritten as

10m | 1

2
(β − β−1)2v(n+1)/2v(n−1)/2.

Observing that (β−β−1)2 = 4
81 (a2−92), that ν2(a2−92) ≤ 5 for our possibilities

for a, and that one of (n+ 1)/2 and (n− 1)/2 is odd, we get that

m ≤ 1 + ν2

(
(a2 − 92)v(n+1)/2v(n−1)/2

)
≤ 1 + ν2(a2 − 92) + ν2(v(n+1)/2)

+ ν2(v(n−1)/2) ≤ 9 + log((n+ 1)/2)/ log 2. (28)

Case 3. a 6= b but β and γ are multiplicatively dependent. As we saw

before, this happens only when Q(β) = Q(
√
−5 ) or Q(

√
−2 ) and either γ = β2

or β = γ2. In this case, the divisibility (22) becomes one of

10m | (βn+2 − 1)(βn−2 − 1) or 10m | (γ2n+1 − 1)(γ2n−1 − 1).
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The arguments from Case 1 show that either one of the above two relations yields

that either 2m | (β − 1)2 or 2m | (γ − 1)2. By the argument used to prove (26),

we get

22m | NK/Q(β − 1)2 =

(
2(a+ 9)

9

)2

,

or a similar relation with the pair (β, a) replaced by (γ, b), and none of them holds

with some m ≥ 20. So, this case cannot occur.

Case 4. β and γ are multiplicatively independent. Let L = Q(β, γ),

which is a field of degree D = 4. Let π be any prime ideal dividing 2 in L. For an

algebraic number δ ∈ L, we put νπ(δ) for the exponent of π in the factorization

of the principal fractional ideal δOL. Relation (22) gives

m ≤ νπ(10m) ≤ νπ(βn − γ) + νπ(βn − γ−1).

Clearly,

min{νπ(βn − γ), νπ(βn − γ−1)} ≤ νπ(γ − γ−1). (29)

Since

NL/Q(γ − γ−1) =

(
2
√
b2 − 92

9

)4

=
24(b− 9)2(b+ 9)2

94
,

form ≥ 20, it follows that ν2(NL/Q(γ−γ−1)) ≤ 14. Putting eπ for the ramification

of π, we get from (29) that

min{νπ(βn − γ), νπ(βn − γ−1)} ≤ νπ(γ − γ−1) ≤ eπν2

(
NL/Q(γ − γ−1)

)
≤ 56.

Hence,

m ≤ max{νπ(βn − γ), νπ(βn − γ−1)}+ 56.

Note also that νπ(γ) = νπ(γ−1) because γ is a {3}-unit. Hence,

m ≤ max{νπ(βnγ±1 − 1)}+ 56. (30)

To estimate the maximum above, we use a linear form in p-adic logarithms due

to Kunrui Yu [13]. The statement is the following.

Theorem 5.1. Let δ1, . . . , δt be algebraic numbers in a field L of degree D

and b1, . . . , bt be nonzero integers. Put

Λ = δb11 · · · δ
bt
t − 1

and

B ≥ max{|b1|, . . . , |bt|, 3}.
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Let π be a prime ideal of L sitting above the rational prime p of ramification eπ
and inertia fπ, respectively. Assume that

Hi ≥ max{h(δi), log p} for i = 1, . . . , t,

where h(δ) is the Weil height of δ. If Λ 6= 0, then

νπ(Λ) ≤ 19(20
√
t+ 1D)2(t+1)et−1

π

pfπ

(fπ log p)2
log(e5tD)H1 · · ·Ht logB. (31)

For us, we take t = 2, δ1 = β, δ2 = γ, b1 = n, b2 = ±1. Thus, B = n. The

degree D of the field L containing β and γ is 4. The form Λ is non-zero (because

β and γ are multiplicatively independent). Hence, we get

νπ(βnγ±1 − 1) ≤ 19(20
√

3 · 4)6eπ
2fπ

(fπ log 2)2
log(8e5)H1H2 log n, (32)

where

H1 ≥ max{h(β), log 2} and H2 ≥ max{h(γ), log 2},

and h(β) and h(γ) are the Weil heights of β and γ, respectively. Computing the

heights of β, γ one gets that we can take H1 = H2 = 1.5. Since eπ ≤ 4 and

fπ ≤ 4, a computation reveals that inequality (32) and (30) yield

m < 4× 1016 log n. (33)

Note that the upper bound (33) above is larger than (28) obtained at Case 2.

We record this as a lemma.

Lemma 5.1. In (11), we have for m ≥ 20 that

m < 4× 1016 log n. (34)

6. Bounding all variables `,m, n

The second equation (11) gives

αn + α−n = 2xn = (2b/9)10m` − (2b/9),

or

(2b/9)10m` − αn = α−n + (2b/9).

This leads to

0 < (2b/9)10m`α−n − 1 <
3

αn
<

1

αn−1
. (35)

The left-hand side above is nonzero because αn is irrational. We find a lower

bound on it using a result of Matveev [11] which we now state.
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Theorem 6.1. In the notations of Theorem 5.1, assume additionally that L
is real and

Hi ≥ max{Dh(δi), | log δi|, 0.16} for i = 1, . . . , t.

If Λ 6= 0, then

log |Λ| ≥ −1.4 · 30t+3 · t4.5 ·D2(1 + logD)(1 + logB)H1 · · ·Ht.

We take t = 3, δ1 = 2b/9, δ2 = 10, δ3 = α, b1 = 1, b2 = m`, b3 = −n. Since

` ≤ 2n by (18), it follows that we can take B = 2mn. We take L = Q(α) which

is real of degree D = 2. We can clearly take H1 = 2 log 16, H2 = 2 log 10 and

H3 = logα. Then applying Theorem 6.1 and using (35), we get

(n− 1) logα < 1.4 · 306 · 34.5 · 22(1 + log 2)(1 + log(2nm))(2 log 16)(2 log 10) logα,

which gives

n− 1 < 3× 1013(1 + log(2mn)), (36)

and using (34), we get

n− 1 < 3× 1013(1 + log(8× 1016n log n)), (37)

giving n < 3× 1015. Inequalities (18) and (34) now give

` ≤ 6× 1015 and m < 2× 1018.

We summarize these calculations as follows.

Lemma 6.1. In (11) we have for m ≥ 20 that

` ≤ 6× 1015, m ≤ 2× 1018, n ≤ 3× 1015.

7. The final calculations

7.1. Small cases. In this subsection, we deal with the cases deemed as “small”

along the way. These are the cases for which either d ≤ 100 (end of Section 2), or

x2
1 − 1 = dy2

1 ,

for some x1 as in (11) for some m ≤ 37. Put

D1 = {2 ≤ d ≤ 100 : µ2(d) = 1},
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D2 := {d : x2
1 − 1 = dy2

1 , with µ2(d) = 1, for some x1 as in (11) with m ≤ 37},

and

D = D1 ∪ D2.

Here, µ(d) is the Möbius function of the positive integer d. The set D has 451
elements. The smallest one is 2 and the largest one is

306249999999999999999999999999999999938750000000000000000000000000000000003.

For each d ∈ D, we let (x1, y1) be the minimal solution of the Pell equation

x2 − dy2 = 1,

and put as before α = x1 +
√
dy1. We need to find n ≥ 2 or deduce that it does

not exist such that

xn =
b(10M − 1)

9
, for some b ∈ {1, 2, . . . , 9}. (38)

Thus, we get
1

2
(αn + α−n) =

b(10M − 1)

9
. (39)

This can be regrouped as∣∣αn − (2b/9)10M
∣∣ < α−n + 2b/9 < 3. (40)

The maximal value of α for d ∈ D1 corresponds to d = 61, with corresponding

x1 = 1766319049, but this gives a smaller value of α then the largest element

corresponding to d ∈ D2, which is

x1 =
63(1037 − 1)

9
= 7(1037 − 1),

with corresponding

α = x1 +
√
x2

1 − 1 < 14 · 1037.

So, estimate (40) gives

10M−1 < (2b/9)10M < αn + 3 < (14 · 1037)n + 3 ≤ 1039n,

implying

M ≤ 39n. (41)
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On the other hand, since α ≥ 2 +
√

3, we get, again from (40), that

(2 +
√

3 )n ≤ αn < (2b/9)10M + 3 < 10M+1,

therefore

n ≤ log 10

log(2 +
√

3 )
(M + 1) ≤ 1.8(M + 1). (42)

So, from (41) and (42), we record that

M

39
≤ n ≤ 1.8(M + 1). (43)

Now from (40), and the fact that α ≥ 2 +
√

3 > 3, we get that

∣∣α−n(2b/9)10M − 1
∣∣ < 3

αn
<

1

αn−1
. (44)

The left-hand side above is not 0. To find a lower bound for it, we apply again

Matveev’s Theorem 6.1 in the same way as we did it for estimate (35). The only

difference now is that the exponent m` was replaced by M and M ≤ 39n, so

instead of estimate (36), we get

n− 1 < 3× 1013(1 + log(39n)),

giving n < 2× 1015 and then M < 8× 1016.

We record what we have proved.

Lemma 7.1. If d ∈ D, then in (38), we have n < 2×1015 and M < 8×1016.

We now need to lower n. Clearly n ≥ 3 since it is odd, so that αn−1 > 2.

We put

Γ = M log 10− n logα+ log(2b/9).

Relation (39) implies that Γ > 0. By (44), we have 0 < eΓ − 1 < α−(n−1) < 1/2,

so eΓ ∈ (1/2, 3/2). Thus,

Γ < eΓ − 1 <
1

αn−1
.

In particular,

0 < M

(
log 10

logα

)
− n+

log(2b/9)

logα
<

A

αn
, (45)

where A = α/ logα. We now recall a result of Dujella and Pethő, the proof of

Lemma 5 in [6].
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Lemma 7.2. Let M be a positive integer, let p/q be a convergent of the

continued fraction of the irrational γ such that q > 6M , and let A,B, µ be some

real numbers with A > 0 and B > 1. Let ε := ‖µq‖−M‖γq‖, where ‖ · ‖ denotes

the distance from the nearest integer. If ε > 0, then there is no solution to the

inequality

0 < uγ − v + µ < AB−w,

in positive integers u, |v| and w with

u ≤M and w ≥ log(Aq/ε)

logB
.

We applied Lemma 7.2 with γ = log 10/ logα, µ = log(2b/9)/ logα, B = α

for all b ∈ {1, . . . , 9} and each of the 451 α’s corresponding to d ∈ D with the

bounds on n and M given by Lemma 7.1. We got bounds for n and M that are

at most 33 and the remaining calculations were done by brute force. We only

obtained the small solutions indicated in the statement of Theorem 1. In fact, we

have:

• d = 2, (n,m, b, x) = (1, 1, 3, 3), (3, 2, 9, 99),

• d = 3, (n,m, b, x) = (1, 1, 2, 2), (2, 1, 7, 7),

• d = 62, (n,m, b, x) = (1, 1, 63, 63), (3, 6, 9, 999999).

Note that the case d = 62 above gives a convenient solution of (11) but not to our

original problem since 63 is not a rep-digit. Thus, this example is not included

in the statement of Theorem 1. So, from now on we are entitled to continue with

the computational part when d > 100 and m ≥ 20.

7.2. The large cases. Similarly to (35), the first equation (11) gives

0 < (2a/9)10mα−1 − 1 <
3

α
. (46)

Relations (35) and (46) lead via the inequality ez − 1 > z for positive real z to

the inequalities

|m` log 10− n logα+ log(2b/9)| < 3

αn
,

|m log 10− logα+ log(2a/9)| < 3

α
.

Multiplying the second relation above by n, using the triangular inequality, the

upper bound of Lemma 6.1 on n as well as inequality (12), we get

|m(`− n) log 10− n log(2a/9) + log(2b/9)| < 3n+ 3

α
<

1016

10m−1
=

1

10m−17
.
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If ` = n, we get

|n log(2a/9)− log(2b/9)| < 1

1000
, (47)

and this has no solution n ≥ 3, a ∈ {1, 2, . . . , 8, 21, 63}, b ∈ {1, 2, . . . , 9} as we

checked computationally. Thus, ` 6= n. Then we get∣∣∣∣n( log(2a/9)

log 10

)
−m(`− n)− log(2b/9)

log 10

∣∣∣∣ < 1

(log 10)10m−17
<

0.5

10m−17
. (48)

The above inequality is of the type

|uγ − v + µ| < A

Bw
,

where

u := n, γ :=
log(2a/9)

log 10
, v := m(`− n), µ = − log(2b/9)

log 10
,

A := 0.5, B := 10,

and w := m− 17. We first suppose a 6= b, where recall

a ∈ {1, 2, . . . , 9, 21, 63} and b ∈ {1, 2, . . . , 9}.

This we treat with Lemma 7.2 by distinguishing two cases according to the sign

of the expression on the left-hand side of (48). We took M := 3× 1015, which is

acceptable by Lemma 7.2, in order to get a small bound for m. A program was

written in PARI/GP running with 200 digits. For the computations, if the first

convergent such that q > 6M does not satisfy the condition ε > 0, then we use

the next convergent until the condition is satisfied. Fortunately, the bound was

reduced at the first round. It took about 3 minutes to run our program and in

all cases, we obtained m ≤ 36 if a ≤ 9, m ≤ 34 if a = 21, and m ≤ 37 if a = 63.

But this case has been covered at Subsection 7.1.

In the case a = b, we cannot use Lemma 7.2 because then (48) becomes∣∣∣∣(n− 1)
log(2a/9)

log 10
−m(`− n)

∣∣∣∣ < 0.5

10m−17
,

and now the left-hand side is “homogeneous”. That is, the parameter µ in Lem-

ma 7.2 becomes 0 and ε is always negative. So, we use Legendre’s criterion.

Namely, let a = b ∈ {1, 2, 3, 4, 5, 6, 7, 8, 9}. Note that n > 1. Then we get∣∣∣∣ log(2a/9)

log 10
− m(`− n)

n− 1

∣∣∣∣ < 0.5

(n− 1)10m−17
. (49)
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Recall that m ≥ 33. Then 10m−17 > 3×1015 ≥ n−1, so that the right-hand side is

< 1/(2(n−1)2), so m(`−n)/(n−1) = p/q is a convergent of log(2a/9)/ log 10 with

denominator q < 3 × 1015. We computed all the convergents pt/qt = [a0, . . . , at]

with tmaximal such that qt < 3×1015 and recorded A = max{ai : i = 0, . . . , t+1}.
We obtained the following values of A:

a = 1, A = 99; a = 2, A = 89; a = 3, A = 44; a = 4, A = 18; a = 5, A = 29;

a = 6, A = 254; a = 7, A = 459; a = 8, A = 509; a = 9, A = 42.

By the theory of continued fractions, we have∣∣∣∣ log(2a/9)

log 10
− p

q

∣∣∣∣ > 1

(A+ 2)q2
. (50)

Combining (49) and (50) we get

1

(A+ 2)q2
<

1

2(n− 1)10m−17
.

This gives

10m−17 <
(A+ 2)q2

2(n− 1)
≤ (A+ 2)(n− 1)

2
≤ 1.5× 1015(A+ 2).

Thus, with the above values of A we get m ≤ 34. So, again we are in the situation

treated at Subsection 7.1.

This completes the proof of Theorem 1.
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