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An associated graph to a graded ring

By FAHIMEH KHOSH-AHANG (Ilam) and SAKINEH NAZARI-MOGHADAM (Tabriz)

Abstract. This work is mainly devoted to study of the graph I's(R) associated
to a graded ring R and a multiplicatively closed subset S of R. Recall that the vertices
of I's(R) are all of the elements of R and two distinct vertices are adjacent if their sum
belongs to S.

In fact, we investigate some basic graph-theoretical properties of I's(R), where
R = @, R: is a graded ring. Moreover, we deal with the relationship between the
graph-theoretical properties of I's(R) and I'snr, (Ro)-

1. Introduction

Throughout the paper, R = @, R, is a commutative graded (or more pre-
cisely Z-graded) ring with non-zero identity unless otherwise stated, S is a mul-
tiplicatively closed subset of R and Sy = S N Ry. Also, we denote the set of
all zero-divisors of R, the nilradical and the set of unit elements of R by Z(R),
Nil(R) and U(R), respectively.

The graphs associated to algebraic structures have been extensively studied
by various authors. Recently there has been a lot of interest in this subject and
various papers were published establishing different properties of these graphs as
well as relationships between graphs of various ring extensions (see e.g. [1], [2], [4],
[8], [12], [15], [16]). The graded ring R is one of the well-known extensions of Ry
which is a natural generalization of the rings of polynomials and power series. On
the other hand, the graph I'g(R) introduced in [9] is a natural generalization of
total graph [5] and unit graph [7]. Also, in [6], the authors studied I's(R) for a

Mathematics Subject Classification: 05C75, 13A02.
Key words and phrases: connectedness, diameter, girth, graded ring, unit graph.



402 Fahimeh Khosh-Ahang and Sakineh Nazari-Moghadam

multiplicatively closed subset S of R such that R\ S is a saturated multiplicatively
closed subset of R. The main theme of this work is the study of the graph-
theoretical properties of I'g(R), where R is a graded ring. Also, we find some
relationships between I's (R) and I's, (R ) and check the preservation of the graph-
theoretic properties of I'g,(Rp) under this extension of Ry. Also, we generalize
or present new versions of some of the results obtained in [3], [9] and [13].

In order to make this paper easier to follow, we recall here the various notions
from graph theory which will be used in the sequel.

Let G be a graph. Then the valency of a vertexr a, denoted by degq(a), is
the number of edges of G incident to a. For two distinct vertices a and b in G, the
notation a ~ b means that a and b are adjacent. A graph G is said to be connected
if there exists a path between any two distinct vertices, and it is complete if every
two distinct vertices are adjacent. The distance between two vertices a and b of G,
denoted by dg(a,b) or briefly d(a,b), is the length of a shortest path connecting
a and b if such a path exists; otherwise we set dg(a,b) = oo. For a positive
integer 7, an r-partite graph is one whose vertex set can be partitioned into r
subsets so that no edge has both ends in any one subset. A complete r-partite
graph is one in which each vertex is joined to every vertex that is not in the same
subset. The complete bipartite graph (2-partite graph) with part sizes m and n
is denoted by K,, . A graph is called planar if it can be drawn in the plane so
that its edges intersects only at their ends. Also, for a graph G, a subset B of
the vertex set of G is called a dominating set if every vertex not in B is adjacent
to a vertex in B. The reader may refer to [10] for undefined terms and concepts
concerning graph theory.

2. Preliminaries

We devote this section to the definition of I's(R) and some elementary re-
marks about graded rings which may be valuable in turn. Recall that a multi-
plicatively closed subset S of R is called saturated if xy € S implies that € S
and y € S.

Definition 2.1. (See [9].) Let S be an arbitrary multiplicatively closed subset
of R. T's(R) is the simple graph whose vertices are all of the elements of R and
two distinct vertices a and b are adjacent if and only if a +b € S.

Remark 2.2. 1f S is a saturated multiplicatively closed subset of R, then for
each x € R\ S, (z) is disjoint from S, since S is saturated. Expand (z) to an ideal
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I maximal with respect to disjointness from S. One can show that [ is a prime
ideal. Hence R\ S = (J;c 4 Pj, where Pjs are prime ideals of R (see [11, Page 2,
Theorem 2]). Hereafter, we set Is = (;c4 P;. It is easily seen that Nil(R) C Is.

Lemma 2.3. Let S be a saturated multiplicatively closed subset of R and
>~ fi be an element of R such that for each i # 0, f; € Is. Then ), f; € S if and
only if fo S S().

PRrROOF. (=) If fo ¢ So, then fo ¢ S. Therefore, by Remark 2.2, fy € P;
for some j € A. On the other hand, by our assumption, Z#O fi € Is and so
> iz fi € Pj. Hence 3, f; € P;. Now Remark 2.2 implies that >, fi ¢ S.

(<) Assume that ), f; ¢ S. Then Remark 2.2 insures that ), f; € P; for
some j € A. By assumption, Z#O fi € Is which implies that fy € P;. Using
Remark 2.2 again implies that fy ¢ S. This completes the proof. O

Definition 2.4. We say that S is an Ig-graded m.c.s of R if S is a saturated
multiplicatively closed subset of R such that for each > f; in .S, we have f; € Ig
for all i # 0.

Note that if S is a saturated multiplicatively closed subset of R such that
0 € S, then S = R and so I's(R) is a complete graph. In this case we also have
Is = R and therefore S is an Ig-graded m.c.s of R. Hence hereafter we may
assume that 0 ¢ S. If S is an Ig-graded m.c.s of R and R has at least one non-
zero homogeneous element x with non-zero degree, then x and 0 are not adjacent
by Lemma 2.3, and so I's(R) necessarily can’t be complete.

When S = U(R), we can state Lemma 2.3 as follows.

Lemma 2.5. (Compare [14, Exercise 3.3]).

(i) Let R be a positively graded ring such that every minimal prime ideal is
homogeneous and ), f; an element of R. Then ), f; is a unit element of R
if and only if fy is a unit element of Ry and f; is nilpotent for all i # 0.

(ii) Let R be a graded ring such that every minimal prime ideal is homogeneous
and ), f; an element of R such that fy is not in any minimal prime of R.
Then ), f; is a unit element of R if and only if fy is a unit element of Ry
and f; is nilpotent for all i # 0.

PrOOF. (i) , (ii) («=) The result follows from the fact that the sum of a
nilpotent element and a unit element is a unit.

(i) (=) Assume that ), f; is a unit element of R. Then it has an inverse,
say ».;gi. Hence, fogo = 1 which implies that fy € U(Ry). Now, we are going
to show that f; € Nil(R) for each i # 0. Since Nil(R) = Npeyiin(r) £> We
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show that f; € P for each P € Min(R) and ¢ # 0. Suppose that P € Min(R).
Since (32, fi)(3_; 9:) = 1, we have (3_;(fi + P))(32;(9; + P)) = 1gr/p. Therefore,
>;(fi + P) is a unit element in R/P. By Exercise 1.1 of [14], we know that, all
units in a graded domain are homogeneous. Hence ) .(f; + P) is homogeneous.
Since fy is unit, we conclude that fo ¢ P, and so we have f; € P for all i # 0 as
desired.

(ii) (=) By applying a method similar to that we used in the proof of (i), we
conclude that . (f; + P) is homogeneous for each P € Min(R). Since fy ¢ P for
any minimal prime P of R, then f; € P for all i # 0 as desired. So, 2#0 fi €
Nil(R). Now since ), fi € U(R), we have fo € U(R), and hence fy € U(Ry).
This completes the proof. O

Remark 2.6. If S = U(R), then U(R) is a saturated multiplicatively closed
subset of R. In this case, we have Is = J(R). Since Nil(R) C J(R), Lemma 2.5
shows that S'is an Is-graded m.c.s of R, if R is a positively graded ring or for each
element ), f; of S, fo ¢ P for all P € Nil(R). Also, note that for an arbitrary
element s in an Ig-graded m.c.s S of R, 1-s € S. Hence 1 € S which implies
U(R) C S. The next example illustrates that an Ig-graded m.c.s of R is not
necessarily U(R).

Ezample 2.7. Consider the trivial grading on R = Zj3. Then U(R) =
{1,5,7,11}. Set S = {1,3,5,7,9,11}. It is easy to see that S is a saturated
multiplicatively closed subset of R such that for each element . g; in S, we have
0=g; € Ig for all i # 0. Hence, S is an Ig-graded m.c.s of R.

Remarks 2.8. (1) Let S be a saturated multiplicatively closed subset of R.
Then Sy is a saturated multiplicatively closed subset of Ry.

(2) Let R be a graded local ring. Then, for each i # 0, every element in R; is
nilpotent. (See [14, Exercise 3.4].)

(3) Consider the graded subring A= {>", fi | fo = 0} of R. If S is an Ig-graded
m.c.s of R, then, in view of Lemma 2.3, the induced subgraph of I's(R) on A
is a totally disconnected graph.

(4) If S is an Ig-graded m.c.s of R and Is = {0}, then S C Ry and R is reduced.
So, two elements ). f; and ), g; are adjacent if and only if fy is adjacent
to go and for each i # 0, f; = —g;.

(5) T's,(Rop) is an induced subgraph of I's(R).

Proposition 2.9. (Compare [9, Lemma 2.3 and Proposition 2.13]). Let S

be a saturated multiplicatively closed subset of R. Then the following statements
hold.
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(i) For eachx € Is and s € S, we havex £ 5 € S.
(ii) For each element x € Ig, degr,(ry(x) = |S].

(iii) The induced subgraph of Ts(R) on R\ S is an |A|-partite graph, where A is
the same as Remark 2.2.

(iv) If2 ¢ S, then for each f € R, degrgry(f) > |S].

(v) If S is an Is-graded m.c.s of R and f = ), fi € R, then degry(r)(f) =
1Sol TT; [Is N Ry

PROOF. (i) Let € Ig and s € S. If z £ s ¢ S, then Remark 2.2 insures
that x + s € P for some prime ideal P of R. Since = € Ig, we should have s € P
which is a contradiction. Therefore z + s € S as desired.

(i) Ifr e Isandy € S, then by (i) x+y € S. If z € Ig and y ¢ S, then
Remark 2.2 insures that y € P for some prime ideal P of R. Since z € P, we
have that 2 +y € P which implies that 2 +y ¢ S. Hence each element z of Ig is
just adjacent to each element of S. So degrg(r)(x) = |S|.

(iif) Since R\S = ;¢ 4 P}, for two elements z,y € P; for some j € A, we have
x+y € P;. This means that x +y ¢ S. Therefore the induced subgraph of I's(R)
on R\ S is an |Al-partite graph with parts Py, P, \ Py, P3 \ (PLU Py),..., Plaj\
U2 A

(iv) It is easily seen that x ~ s — x for all s € S. This immediately implies
the result.

(v) Lemma 2.3 and part (i) imply that f ~ >, g; if and only if gy = s— fo for
some s € Sy and g; = x; — f; for some z; € R; N Ig. This completes the proof. [

Proposition 2.10. Let S be a saturated multiplicatively closed subset of R
and a and b are two distinct non-zero elements in Is. Then I's(R) is not planar.

PROOF. In view of Proposition 2.9(i), we have that the induced subgraph of
I's(R) on the vertices 0,a,b,s,s + a,s + b form a K33, for each s € S. Hence,
Kouratowski’s Theorem insures that I's(R) can’t be planar. O

3. Connectedness and dominating sets

In this section, we are going to study connectedness and some of the prop-
erties of I'g(R). Also we study some of its relationships with I's, (Rp) in special
circumstances. We begin with the following theorem which is one of the main re-
sults of this paper and presents a sufficient condition for the disconnectedness of
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I's(R). Note that since J(R[x]) = Nil(R[z]), in view of Remark 2.6, the following
result is a generalization of [3, Theorem 2.3] and [7, Proposition 4.6].

Theorem 3.1. (See [3, Theorem 2.3] and [7, Proposition 4.6]). Let S be
an Ig-graded m.c.s of R. If (R \ Is) N R, # () for some non-zero integer n, then
I's(R) is disconnected.

PROOF. By our assumption, we may choose r € (R\ Is) N R, for some non-
zero integer n. We show that there is not any path between zero and r in I'g(R).
To this end, suppose to the contrary that 0 ~ > fi1 ~ -+ ~ > fim ~ ris
a path from zero to r in I'g(R) such that f; ; € R, for each 1 < j < m. Since
>, fiq is adjacent to zero, f; 1 isin Ig for all ¢ # 0. Also, since >, fi1 ~ Y. fi2,
fi1+ fi2 is in Ig for all ¢ # 0. These insure that f; o is also in Ig. By a similar
argument, we have that f; ; belongs to Iy for all i # 0 and 1 < j < m. Now, since
> fim ~ 1, we have 7 + f, ,,, € I, which implies that r € Ig. This contradicts
with our assumption. O

The following two examples illustrate that not only is the given condition in
Theorem 3.10 not a necessary condition, but it is also an irredundant condition.

Ezxample 3.2. Consider the trivial grading on R = Z4 X Z4 and the saturated
multiplicatively closed subset S = {(1,1),(1,3), (3,1),(3,3)} of R. It is clear that
I's(R) is the union of two disjoint Ky 4 with parts

Vi= {(070)7 (Ov 2)7 (27 O)a (27 2)}7 Vo = {(17 1)7 (la 3)7 (3’ 1)’ (37 3)}7

and

Vll = {(17 0)7 (11 2)7 (37 O)’ (37 2)}7 VZI = {(07 l)a (07 3)7 (2a 1)7 (27 3)}
Therefore I's (R) is disconnected, while (R\Is)NR, = @ for all non-zero integers n.

Ezample 3.3. Consider R = D|x] with the standard grading, where D is an
integral domain, and S = R\ (z). Then Is = (z) and (R\ Is) N R, = 0 for
all n # 0. Let >, fi and ), g; be two distinct elements of R. If fy, g0 # 0, we
have that >, fi ~ 0~ 3. g;. In addition, if fo,go =0, then >, fi~1~>".g;.
Moreover, if fo =0 and go # 0, then >, fi ~ > . g;. So, I's(R) is connected.

In the sequel of this section, we are going to provide some necessary or
sufficient conditions for the connectedness of I'g(R).

Theorem 3.4. Let S be a multiplicatively closed subset of R such that
S = —Sand A = {), filfo = 0}. If every element of Ry is a finite sum of
elements of Sy, then
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(i) A intersects every connected component of T's(R);
(iii) if | A| =1, then I's(R) is connected;

(iv) if R; C Ig for alli # 0, then d(}_, fi,0) < so(Ro) in's(R) for all ), fi € R,

where

)

(i) |.A| is an upper bound for the number of connected components of I's(R);
)
)

min{k | every element of Ry is sum of k
s0(Ro) = elements of Sy}; if min exists
w; otherwise

and so I's(R) is connected.

PROOF. (i) Consider an arbitrary element )", f; of R. Since every element
of Ry is a finite sum of elements of Sy, fo = s1+ -+ si for some sq,...,s; € Sy.
It can be easily seen that

S i —(sattsk)+ Y (=F)
i i#0
N(33+"'+Sk)+2fi
i#0

A~ e

~ (D s+ Y (DM
i#0
~ D (DR

i#0
is a path in I'¢(R) which connects ), f; to an element in A.

(ii) and (iii) follow from (i).

(iv) Let Y, fi € R and so(Ry) = k. Then fo = s1 + --- + s for some
S1,...,8K € So. For every 1 <i < k, set b; := (—1)° 25;; s; (note that by = 0).
Since R; C Ig for alli # 0, f; € Ig for all i # 0. Hence by Lemma 2.3, there exists
the path >, fi ~ b1 ~ -+ ~ by, from >, f; to zero in I's(R). This completes the

proof of (iv). O

Corollary 3.5. (Compare [3, Theorem 2.6], [9, Theorem 1.7] and [13, Propo-
sition 3.2]). Let S be a multiplicatively closed subset of R such that S = —S.
Then T's(R) is connected if and only if every element of R is a finite sum of
elements of S.
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PRrROOF. Note that the trivial grading on R is equivalent to the fact that
H>; fil fo = 0}] = 1. So Theorem 3.4(iii) proves the if part. Conversely, if
I's(R) is connected, since every element in R is connected to zero, the result
immediately follows. O

Corollary 3.6. Assume that S is an Ig-graded m.c.s of R such that S = —S
and A= {3, fi | fo = 0}. Let B be a dominating set for I's(R) such that for
each element ), f; in B, fy is a finite sum of elements of So. Then A intersects
every connected component of I'g(R).

PROOF. Since B is a dominating set for I's(R), for arbitrary element fy
of Ry \ B, there is a > g; in B such that fo + > ¢; € S. Thus fo + go € So

1 (3
by Lemma 2.3. Therefore, there is sg € Sy such that fy + g9 = sp. Since
> gi; € B, there exist s1,...,8; € Sy such that go = s; + -+ + sx. Thus fo =
i

s0— (814 -+ sk). Therefore, every element of Ry is finite sum of elements of Sy.
Now, by Theorem 3.4(i), A intersects every connected component of I's(R). O

Proposition 3.7. (i) Let S be a saturated multiplicatively closed subset
of R such that R; C Ig for alli # 0. Then Sy is a dominating set for I's, (Rp)
if and only if S is a dominating set for I's(R).

(ii) If R is a graded local ring and S = U(R), then Sy is a dominating set for
T's,(Ro) if and only if S is a dominating set for I's(R).

PRrOOF. (i) Let Sy be a dominating set for I's,(Rp) and >, fi € R\ S. In
light of Lemma 2.3, fo € Ry \ So. Hence there is an element gg € Sy such that
fo+ go € So. Using Lemma 2.3 again implies that >, f; + go € S. This shows
that S is a dominating set for I's(R). Conversely, assume that S is a dominating
set for I's(R) and fo € Ry \ Sp. Then there is an element ), g; € S such that
fo+>,9; €S. Now, Lemma 2.3 insures that fo + go € Sp, which completes the
proof.

(ii) follows from (i) in conjunction with Remarks 2.6 and 2.8(2). O

Lemma 3.8. Let S be a multiplicatively closed subset of R and A =
{3 fil fo = 0}. If Sy is a dominating set for I's,(Ry), then A intersects ev-
ery connected component of I'g(R).

PROOF. Let ), f; be an arbitrary element of R. If fy € Sp, then >, f; ~
>_izo(—fi). Otherwise, since Sy is a dominating set for I's,(Ro), there exists an

so € So such that fo +so € So. So >, fi ~ s0 + D2, 40(—fi) ~ D240 fi- This
shows that A intersects every connected component of I's(R). O
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The following theorem shows that for a special saturated multiplicatively
closed subset of R, the converse of Theorem 3.4 also holds.

Theorem 3.9. Let S be an Ig-graded m.c.s of R such that S = —S and
A={>, fi | fo =0}. If A intersects every connected component of I's(R), then
every element of Ry is finite sum of elements of Sy.

PROOF. Let A intersect every connected component of I's(R). Then for an
arbitrary element fy of Ry, there is an element ) g; in A such that there exists
i

fONZfi,lNZfi,2N"'NZfi,kNZgi

from fy to Y g; in T's(R). Hence the elements

a path

fo+ Zfi,hqu + Zfi,27 . ~7Zfi,k—1 + Zfi,k,Zfi,k + Zgi

arein S. Thus fo+fo.1, fo1+Sfo.2,- -, fok—1+fo.k, for+g0 arein Sy by Lemma 2.3.
Since go = 0, we have fo = (fo + fo1) — (foq + fo2) + -+ (_1)k71(f0,k:71 +
fox)+ (—l)k(fo,;g +9go). Hence fj is a finite sum of elements of Sy as required. O

Corollary 3.10. Let S be an Ig-graded m.c.s of R such that S = —S. If
So is a dominating set for I's,(Ry), then every element of Ry is a finite sum of
elements of Sg.

PROOF. The result follows from Lemma 3.8 and Theorem 3.9. O

Corollary 3.11. (Compare [3, Corollary 2.7]). Let S be a multiplicatively
closed subset of R such that S = —S and S is a dominating set of I's(R). Then
T's(R) is connected.

PROOF. Since S is a dominating set for I's(R), by considering the trivial
grading on R, Corollary 3.10 implies that every element of R is finite sum of
elements of S. Hence Corollary 3.5 completes the proof. O

The next result provides conditions under which I'g,(Ry) inherits connect-
edness from I'g(R).

Theorem 3.12. Let S be an Ig-graded m.c.s of R such that S = —S. If
I's(R) is connected, then every element of Ry is finite sum of elements of Sy and
thus I's, (Ry) is connected.



410 Fahimeh Khosh-Ahang and Sakineh Nazari-Moghadam

PROOF. Let I's(R) be a connected graph. For fy € Ry, there exists a path
fo ~ Zfi,l ~ Zfi,Z ey Zfi,k: ~0
from fp to zero in I's(R). Hence the elements
fot D Find fin+ D fizee s> fika D fiks D fik
i i i i i i

are in S. Thus fo + fo1, fo,1 + fo,2, -+, fo.e—1 + fok, fo,r are in Sp. On the other
hand, we have fo = (fo + fo1) — (foo + fo2) + -+ (=D (for—1 + for) +
(=1)* fo.r, which implies that fo is finite sum of elements of Sy. The last assertion
follows from Corollary 3.5. O

Since studying I's, (Rp) is usually simpler than I'g (R), Theorem 3.12 provides
a suitable criterion about the disconnectedness of I's(R), where R is a graded ring.
The following example illustrates this fact.

Ezample 3.13. Consider R = (Z4 x Z4)[z] and the Is-graded m.c.s
S={ap+ax+--+anz" |ap € {(1,1),(1,3),(3,1),(3,3)},
a; € {(0,0),(0,2),(2,0),(2,2)},V i=1,...,n}
of R. Note that Sy = {(1,1),(1,3),(3,1),(3,3)}. Therefore I's,(Rp) is discon-

nected, by Example 3.2. Now, Theorem 3.12 yields that I's(R) is also discon-
nected.

Recall that a graph is said to be FEulerian if it has a closed trail containing
all edges. It is well-known that a graph is Eulerian if and only if it is connected
and the valency of its vertices is even (see [17, 1.2.10]). We end this section with
the following result concerning I's(R), when it is Eulerian.

Corollary 3.14. Let S be an Ig-graded m.c.s of R such that S = —S. If
T's(R) is Eulerian, then

(i) every element of Ry is a finite sum of elements of Sy,

)
(ii) |S| is an even number,
(iii) = +x ¢ S for each x € R.

PROOF. (i) Since I's(R) is Eulerian, it is connected. Now the result follows
from Theorem 3.12.

(ii) immediately follows from Proposition 2.9(ii) and the fact that in an Euler-
ian graph the valency of all vertices is even.

(iii) Assume to the contrary that x+x € S for some z € R. Then degp(g)(7)
= [S| =1 by [9, Lemma 1.3(b)]. Now in view of (ii), degp g, () is odd which is
a contradiction. d
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4. Diameter and girth

Suppose that G is a graph with vertex set V. Recall that the diameter of G,
denoted by diam(G), is defined as follows:

diam(QG) := sup{d(a, b)|a,b € V}.

We set diam(G) = oo if G is disconnected. Also recall that the girth of G, denoted
by girth(G), is the length of a shortest cycle in G if G has a cycle; otherwise,
girth(G) = oo.

By a similar argument to that used in [3] we have the following result.

Theorem 4.1. (Compare [3, Corollary 3.4]). For a graded ring R and Is-
graded m.c.s S of R, we have the inequalities

diam(T's, (Ry)) < diam(I's(R)),

and
girth(I's(R)) < girth(I's, (Ro))-

Lemma 4.2. (Compare [3, Lemma 3.3]) Let S be a saturated multiplica-
tively closed subset of R such that R; C Ig for alli# 0 and ), fi, >, gi be two
distinct vertices of T's(R).

(1) If f() = 4o, then

dFS(R) <quzg@> = {1 2fo €S

2 2f0¢sv

(11) If fo 7& g0, then

drg(r) (Z fi,Zgz) = drg, (Ro)(f0:90) -

PROOF. (i) If 2fy € S, then Lemma 2.3 implies that >, f; ~ >, g;. Other-
wise, by Lemma 2.3, we have the path >, fi ~ 1 — fo ~ >, g; in I'g(R). Note

that since 2fy ¢ S, we have 1 — fo # >, fi and 1 — fo # >, 9s-
(ii) Similar to the proof of [3, Lemma 3.3(ii)]. O

The following theorem is a natural generalization of [3, Theorem 3.5] and [9,
Theorem 2.23]. Although some parts of its proof are similar to [3, Theorem 3.5],
we give a complete proof for it here.
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Theorem 4.3. (Compare [3, Theorem 3.5] and [9, Theorem 2.23]). Let S
be a saturated multiplicatively closed subset of R such that R; C Ig for all i # 0.
(i) If Sy = R \ {0}, then diam(T's(R)) < 2.
(ii) IfT's,(Ryo) is complete, then diam(I's(R)) < 2,
(iii) If T's,(Rop) is not complete, then diam(I'g,(Ry)) = diam(I's(R)),
(iv) If Ry is a finite ring, then diam(T's(R)) € {1,2,3,00}.

PRrOOF. (i) Let ), fiand ), g; be two distinct vertices of I's(R). If fy and go
are non-zero, then in view of Lemma 2.3, >, fi ~ 0 ~ 3. g; is a path from . f;
to Y, ¢; in I'g(R). In addition, if fo = 0 or go = 0, but not both, then . f;
is adjacent to ) . g;. Moreover, if fo = go = 0, then Lemma 2.3 implies that
> fi~ 1~ giis apath from ) . f; to >, g;. Therefore, diam(I's(R)) < 2.

(ii) Let Y°, fi and ), g; be two distinct vertices of I's(R). Since I'g, (Rp) is
complete, if fo # go, then fo + go € So. By Lemma 2.3, we have >, fi +> . 9; €
S. If fo = go, then since I'g,(Rp) has no isolated vertex, there exists a vertex
ho € Ry adjacent to fo. Hence Y . fi ~ ho ~ Y .¢; by Lemma 2.3, and so
diam(Is(R)) < 2.

(iii) Assume that for two natural numbers m and n, diam(I'g, (Ro)) = n and

diam(T's(R)) = drg(r) (Z fis Z%) =m.

(Note that, in view of Lemma 4.2, if diam(I's,(Rp)) is finite, then diam(I's(R))
is also finite.) Since I'g,(Rp) is not complete, n > 2. Hence Theorem 4.1 yields
that m > 2. Now, if fo = go, then by Lemma 4.2 (i), dpgr)(>_; fi, >, 9i) = 2,
and so the result follows from Theorem 4.1 in this case. Also, if fy # go, then by
Lemma 4.2 (ii), dFSO(RO)(fong) = m. Therefore, we should have n > m. Now,
Theorem 4.1 completes the proof.

(iv) In view of Remarks 2.8(1) and [9, Theorem 2.23], we have

diam(T'g, (Ry)) € {1,2,3,00}.

Now, (ii) and (iii) insure that diam(I's(R)) € {1,2,3, 00} as desired. O
So, we are also able to improve Corollary 3.6 of [3] as follows.

Corollary 4.4. (Compare [3, Corollary 3.6]). Let S be a saturated multi-
plicatively closed subset of R, Sy = Ry \ {0}, char(Ry) # 2 and R; C Ig for all
i # 0. Then

diam(T'g, (Ry)) = diam(T's(R)) = 2.
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PROOF. The result follows from Proposition 2.1 of [9], and parts (i) and (iii)
of Theorem 4.3. O

Theorem 4.3 provides an indirect method to calculate the diameter of I'g(R).
The following examples illustrate this fact.

Ezample 4.5. In Example 3.3, we saw that diam(T's(R)) = 2. Now, without
calculating the diameter of T'g(R), we show this. It is easily seen that Sy = D\ {0}
and Ry = D. Hence, by Theorem 4.3(i), we have diam(I's(R)) < 2. Now since
I's(R) is not a complete graph (e.g., ¥ < x2), we have diam(I's(R)) = 2.

Ezample 4.6. In Example 3.13, we saw that I's, (Rp) is not complete. There-
fore, by Theorem 4.3(iii), diam(I's,(Rp)) = diam(I's(R)). Since I'g,(Ro) is
the union of two disjoint Ky 4s, diam(I's,(Rg)) = oo. Hence we also have
diam(T's(R)) = oc.

Theorem 4.7. Assume that S is an Ig-graded m.c.s of R.
(i) If girth(T's(R)) > 4 and Is = {0}, then girth(I's(R)) = girth(T's, (Ro))-
(ii) If girth(T's(R)) = girth(I's,(Ro)) > 4, then Is = {0} or 2 ¢ S.
(iii) (See [9, Lemma 2.14].) If Is # 0, then girth(I's(R)) < 4.
If Ry is finite and Is = {0}, then girth(I's(R)) € {3,4, 6, 00}.

~— — ~— ~—

(iv
PRrROOF. (i) In view of Theorem 4.1, it is enough to show that girth(I's(R)) >

girth(T's, (Rp)). So, we may assume that girth(T's(R)) = m for some integer
m > 4. Let

qu ~ Zfi,Z N Zfi,m—l ~ Zflm ~ Zfi,l

be a cycle in I'g(R). In the light of Lemma 2.3, we have

for~ fo2~ -~ foom—1~ foom ~ fo1

in I'g, (Ro). This induces a cycle in I'g, (Rp) with length smaller than m, which
implies that girth(I's, (Ro)) < m unless fo ; = fo,j+1 forall 1 <j < m—2. On the
other hand, if fy ; = fo ;41 for all 1 < j < m—2, then in view of Remarks 2.8(4),
we have ), fi1 = >, fi,3, which is a contradiction. So, girth(I's,(Ro)) < m as
required.

(ii) Suppose to the contrary that Is # {0} and 2 € S. Then for each s € S
and 0 #r € Ig, 0 ~ s ~r+s~ 0is a cycle in I's(R), by Proposition 2.9(i).
Hence girth(T's(R)) = 3, which is a contradiction.
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(iii) Choose s € S and 0 # r € Is. It is easily seen that 0 ~ s ~r ~ s—7r ~ 0
is a cycle in I'g(R) by Proposition 2.9(i).
(iv) follows from Theorem 2.15 in [9] and (i). O

Corollary 4.8. (Compare [3, Proposition 3.7(iii)]). Let R be a positively
graded ring or for each element ). f; of R, fy ¢ P for all P € Nil(R). Assume
that S = U(R) and J(R) = 0. Then

(i) girth(I's(R)) = girth(T's, (Ro))-
(ii) If Ry is finite, then girth(I's(R)) € {3,4,6,00}.

ProOOF. (i) By Remark 2.6 and Theorem 4.7(i), we only need to consider
the case girth(Tg(R)) = 3. Also, by Theorem 4.1, we have girth(T's(R)) <
girth(FSo (Ro)) SO, let

S fin~d fia~ Y fiz~ Y fin
be a triangle in I'g(R). If fo1, fo.2 and fo 3 are distinct, then

Joa ~ fo2~ foz~ fo1

is a triangle in I'g,(Rp) by Lemma 2.3 and Remark 2.6. Therefore, without
loss of generality, we can assume that fo1 = fo2 and so 2fp1 € Sp. In view
of Remarks 2.8(1), 2 € Sy which implies that 2 is invertible. Since Is = {0},
by Remarks 2.8(4), we have fi1 + fie = 0,fi2a+ fis = 0and fis+ fi1 =0
for all ¢ # 0. Now, we have 2fi,1 = (fi,l + fi,g + fi,3) + (fi,l + fi,2 + fi,3) =
(fi,l + fiﬁg) —+ (fi,S —+ fi,l) —+ (fi,Q + fi,g) = (. Since 2 is invertible, fi,l = 0 for
all ¢ # 0 which implies that f;o = 0 for all ¢ # 0. Hence >, fi1 = >, fi2
which is a contradiction. Therefore fo1 # fo2. Since fo1, fo,2 were arbitrary,
fo1 ~ fo2 ~ fos ~ fo1 is a triangle in I'g, (Ro). Hence girth(I's,(Ro)) = 3 as
desired.

(ii) immediately follows from [9, Theorem 2.15] and (i). O

Corollary 4.9. Let S be an Ig-graded m.c.s of R and girth(I's,(Ryp)) = 4.
Then girth(I's(R)) = 4 if and only if Is = {0} or 2 ¢ S.

PROOF. In the light of Theorem 4.7(ii), we only need to prove the if part. By
Theorem 4.1, we have girth(T'g(R)) < girth(T's,(Ro)) = 4; so girth(T'g(R)) can
be 3 or 4. Let girth(I's(R)) = 3 and seek a contradiction. Assume that ) . fi1 ~
Yo fia~ > fis~ >, fiais a triangle in I's(R). In view of Lemma 2.3, fo1 ~
fo,2 ~ fos ~ fo1 is a triangle in T's, (Ro), which is a contradiction, unless fo,; =
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fo,; for some 1 < 4,5 < 3 with 4 # j. We may assume that fo1 = fo,2, which
insures that 2fp 1 € So. Therefore 2 € S. So, by our assumption we have Ig =
{0}. Now Remarks 2.8(4) shows that >, f;1 = >, fi,3, which is a contradiction.
Therefore girth(I's(R)) = 4 as desired. O

Remark 4.10. Note that by slight modifications similar to those we have used

in this note, one can gain the graded version of some of the other results in [3],
such as Theorems 4.4, 5.4 and 5.6.

(1]
2]

3

(4]
(5]
[6]

7

8

(9]
(10]
(11]

(12]
(13]

(14]
[15]

(16]

References

M. AfrkHAMI and K. KHASHYARMANESH, Total graphs of polynomial rings and rings of
fractions, Discrete Math. Algorithms Appl. 5 (2013), 1350035.

M. ArkHAMI K. KHASHYARMANESH and F. SHAHSAVAR, On the planar, outer planar, cut
vertices and end-regular comaximal graph of lattices, Publ. Math. Debrecen 86 (2015),
295-312.

M. AFkHAMI and F. KHOSH-AHANG, Unit graphs of rings of polynomials and power series,
Arab. J. Math. (Springer) 2 (2013), 233-246.

D. F. ANDERSON and P. S. LIVINGSTON, The zero-divisor graph of a commutative ring, J.
Algebra 217 (1999), 434-447.

D. F. ANDERSON and A. BADAWI, The total graph of a commutative ring, J. Algebra 320
(2008), 2706-2719.

D. F. ANDERSON and A. BADAWI, The generalized total graph of a commutative ring, J.
Algebra Appl. 12 (2013), 1250212.

N. AsHrAFI, H. R. MAIMANI, M. R. POURNAKI and S. YAssEMI, Unit graphs associated
with rings, Comm. Algebra 38 (2010), 2851-2871.

M. AXTELL, J. COYKENDALL and J. STICKLES, Zero-divisor graphs of polynomials and
power series over commutative rings, Comm. Algebra 33 (2005), 2043—2050.

Z. BAarATI, K. KHASHYARMANESH, F. MOHAMMADI and KH. NAFAR, On the associated
graphs to a commutative ring, J. Algebra Appl. 11 (2012), 1250037.

J. A. BonNDY and U. S. R. MuURTY, Graph Theory with Applications, American Elsevier
Publishing Co. Inc., New York, 1976.

I. KapLANSKY, Commutative Rings. Revised edition, The University of Chicago Press,
Chicago, IL — London, 1974.

T. G. Lucas, The diameter of a zero divisor graph, J. Algebra 301 (2006), 174-193.

H. R. MamANI, M. R. POURNAKI and S. YASSEMI, Rings which are generated by their
units: a graph theoretical approach, Elem. Math. 65 (2010), 17-25.

T. MARLEY, Graded rings and modules, http://www.math.unl.edu/ tmarleyl/905notes.pdf.
Z. PucANOVI¢ and Z. PETROVIE, On the radius and the relation between the total graph of
a commutative ring and its extensions, Publ. Inst. Math. (Beograd) (N.S.) 89 (2011), 1-9.

H. Su, G. TANG and Y. ZHOU, Rings whose unit graphs are planar, Publ. Math. Debrecen
86 (2015), 363-376.



416 F. Khosh-Ahang et al. : An associated graph to a graded ring

[17] D. B. WEST, Introduction to Graph Theory. Second Edition, Upper Saddle River, New
Jersey: Prentice-Hall, 2000.

FAHIMEH KHOSH-AHANG
DEPARTMENT OF MATHEMATICS
UNIVERSITY OF ILAM

P. O. BOX 69315-516

ILAM

IRAN

E-mail: fahime_khosh@yahoo.com

SAKINEH NAZARI-MOGHADDAM
DEPARTMENT OF MATHEMATICS
AZARBAIJAN SHAHID MADANI UNIVERSITY
P. O. BOX 53714-161

TABRIZ

IRAN

E-mail: sakine.nazari.m@gmail.com

(Received 6 June, 2015; revised October 18, 2015)



