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An associated graph to a graded ring

By FAHIMEH KHOSH-AHANG (Ilam) and SAKINEH NAZARI-MOGHADAM (Tabriz)

Abstract. This work is mainly devoted to study of the graph ΓS(R) associated

to a graded ring R and a multiplicatively closed subset S of R. Recall that the vertices

of ΓS(R) are all of the elements of R and two distinct vertices are adjacent if their sum

belongs to S.

In fact, we investigate some basic graph-theoretical properties of ΓS(R), where

R =
⊕

i Ri is a graded ring. Moreover, we deal with the relationship between the

graph-theoretical properties of ΓS(R) and ΓS∩R0(R0).

1. Introduction

Throughout the paper, R =
⊕

n Rn is a commutative graded (or more pre-

cisely Z-graded) ring with non-zero identity unless otherwise stated, S is a mul-

tiplicatively closed subset of R and S0 = S ∩ R0. Also, we denote the set of

all zero-divisors of R, the nilradical and the set of unit elements of R by Z(R),

Nil(R) and U(R), respectively.

The graphs associated to algebraic structures have been extensively studied

by various authors. Recently there has been a lot of interest in this subject and

various papers were published establishing different properties of these graphs as

well as relationships between graphs of various ring extensions (see e.g. [1], [2], [4],

[8], [12], [15], [16]). The graded ring R is one of the well-known extensions of R0

which is a natural generalization of the rings of polynomials and power series. On

the other hand, the graph ΓS(R) introduced in [9] is a natural generalization of

total graph [5] and unit graph [7]. Also, in [6], the authors studied ΓS(R) for a
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multiplicatively closed subset S of R such that R\S is a saturated multiplicatively

closed subset of R. The main theme of this work is the study of the graph-

theoretical properties of ΓS(R), where R is a graded ring. Also, we find some

relationships between ΓS(R) and ΓS0(R0) and check the preservation of the graph-

theoretic properties of ΓS0(R0) under this extension of R0. Also, we generalize

or present new versions of some of the results obtained in [3], [9] and [13].

In order to make this paper easier to follow, we recall here the various notions

from graph theory which will be used in the sequel.

Let G be a graph. Then the valency of a vertex a, denoted by degG(a), is

the number of edges of G incident to a. For two distinct vertices a and b in G, the

notation a ∼ b means that a and b are adjacent. A graph G is said to be connected

if there exists a path between any two distinct vertices, and it is complete if every

two distinct vertices are adjacent. The distance between two vertices a and b of G,

denoted by dG(a, b) or briefly d(a, b), is the length of a shortest path connecting

a and b if such a path exists; otherwise we set dG(a, b) = ∞. For a positive

integer r, an r-partite graph is one whose vertex set can be partitioned into r

subsets so that no edge has both ends in any one subset. A complete r-partite

graph is one in which each vertex is joined to every vertex that is not in the same

subset. The complete bipartite graph (2-partite graph) with part sizes m and n

is denoted by Km,n. A graph is called planar if it can be drawn in the plane so

that its edges intersects only at their ends. Also, for a graph G, a subset B of

the vertex set of G is called a dominating set if every vertex not in B is adjacent

to a vertex in B. The reader may refer to [10] for undefined terms and concepts

concerning graph theory.

2. Preliminaries

We devote this section to the definition of ΓS(R) and some elementary re-

marks about graded rings which may be valuable in turn. Recall that a multi-

plicatively closed subset S of R is called saturated if xy ∈ S implies that x ∈ S

and y ∈ S.

Definition 2.1. (See [9].) Let S be an arbitrary multiplicatively closed subset

of R. ΓS(R) is the simple graph whose vertices are all of the elements of R and

two distinct vertices a and b are adjacent if and only if a + b ∈ S.

Remark 2.2. If S is a saturated multiplicatively closed subset of R, then for

each x ∈ R\S, (x) is disjoint from S, since S is saturated. Expand (x) to an ideal



An associated graph to a graded ring 403

I maximal with respect to disjointness from S. One can show that I is a prime

ideal. Hence R \ S =
⋃

j∈A Pj , where Pjs are prime ideals of R (see [11, Page 2,

Theorem 2]). Hereafter, we set IS =
⋂

j∈A Pj . It is easily seen that Nil(R) ⊆ IS .

Lemma 2.3. Let S be a saturated multiplicatively closed subset of R and∑
fi be an element of R such that for each i 6= 0, fi ∈ IS . Then

∑
i fi ∈ S if and

only if f0 ∈ S0.

Proof. (⇒) If f0 /∈ S0, then f0 /∈ S. Therefore, by Remark 2.2, f0 ∈ Pj

for some j ∈ A. On the other hand, by our assumption,
∑

i 6=0 fi ∈ IS and so∑
i 6=0 fi ∈ Pj . Hence

∑
i fi ∈ Pj . Now Remark 2.2 implies that

∑
i fi /∈ S.

(⇐) Assume that
∑

i fi /∈ S. Then Remark 2.2 insures that
∑

i fi ∈ Pj for

some j ∈ A. By assumption,
∑

i 6=0 fi ∈ IS which implies that f0 ∈ Pj . Using

Remark 2.2 again implies that f0 /∈ S. This completes the proof. �

Definition 2.4. We say that S is an IS-graded m.c.s of R if S is a saturated

multiplicatively closed subset of R such that for each
∑

fi in S, we have fi ∈ IS
for all i 6= 0.

Note that if S is a saturated multiplicatively closed subset of R such that

0 ∈ S, then S = R and so ΓS(R) is a complete graph. In this case we also have

IS = R and therefore S is an IS-graded m.c.s of R. Hence hereafter we may

assume that 0 /∈ S. If S is an IS-graded m.c.s of R and R has at least one non-

zero homogeneous element x with non-zero degree, then x and 0 are not adjacent

by Lemma 2.3, and so ΓS(R) necessarily can’t be complete.

When S = U(R), we can state Lemma 2.3 as follows.

Lemma 2.5. (Compare [14, Exercise 3.3]).

(i) Let R be a positively graded ring such that every minimal prime ideal is

homogeneous and
∑

i fi an element of R. Then
∑

i fi is a unit element of R

if and only if f0 is a unit element of R0 and fi is nilpotent for all i 6= 0.

(ii) Let R be a graded ring such that every minimal prime ideal is homogeneous

and
∑

i fi an element of R such that f0 is not in any minimal prime of R.

Then
∑

i fi is a unit element of R if and only if f0 is a unit element of R0

and fi is nilpotent for all i 6= 0.

Proof. (i) , (ii) (⇐) The result follows from the fact that the sum of a

nilpotent element and a unit element is a unit.

(i) (⇒) Assume that
∑

i fi is a unit element of R. Then it has an inverse,

say
∑

i gi. Hence, f0g0 = 1 which implies that f0 ∈ U(R0). Now, we are going

to show that fi ∈ Nil(R) for each i 6= 0. Since Nil(R) =
⋂

P∈Min(R) P , we
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show that fi ∈ P for each P ∈ Min(R) and i 6= 0. Suppose that P ∈ Min(R).

Since (
∑

i fi)(
∑

i gi) = 1, we have (
∑

i(fi + P ))(
∑

i(gi + P )) = 1R/P . Therefore,∑
i(fi + P ) is a unit element in R/P . By Exercise 1.1 of [14], we know that, all

units in a graded domain are homogeneous. Hence
∑

i(fi + P ) is homogeneous.

Since f0 is unit, we conclude that f0 /∈ P , and so we have fi ∈ P for all i 6= 0 as

desired.

(ii) (⇒) By applying a method similar to that we used in the proof of (i), we

conclude that
∑

i(fi +P ) is homogeneous for each P ∈ Min(R). Since f0 /∈ P for

any minimal prime P of R, then fi ∈ P for all i 6= 0 as desired. So,
∑

i6=0 fi ∈
Nil(R). Now since

∑
i fi ∈ U(R), we have f0 ∈ U(R), and hence f0 ∈ U(R0).

This completes the proof. �

Remark 2.6. If S = U(R), then U(R) is a saturated multiplicatively closed

subset of R. In this case, we have IS = J(R). Since Nil(R) ⊆ J(R), Lemma 2.5

shows that S is an IS-graded m.c.s of R, if R is a positively graded ring or for each

element
∑

i fi of S, f0 /∈ P for all P ∈ Nil(R). Also, note that for an arbitrary

element s in an IS-graded m.c.s S of R, 1 · s ∈ S. Hence 1 ∈ S which implies

U(R) ⊆ S. The next example illustrates that an IS-graded m.c.s of R is not

necessarily U(R).

Example 2.7. Consider the trivial grading on R = Z12. Then U(R) =

{1, 5, 7, 11}. Set S = {1, 3, 5, 7, 9, 11}. It is easy to see that S is a saturated

multiplicatively closed subset of R such that for each element
∑

i gi in S, we have

0 = gi ∈ IS for all i 6= 0. Hence, S is an IS-graded m.c.s of R.

Remarks 2.8. (1) Let S be a saturated multiplicatively closed subset of R.

Then S0 is a saturated multiplicatively closed subset of R0.

(2) Let R be a graded local ring. Then, for each i 6= 0, every element in Ri is

nilpotent. (See [14, Exercise 3.4].)

(3) Consider the graded subring A = {
∑

i fi | f0 = 0} of R. If S is an IS-graded

m.c.s of R, then, in view of Lemma 2.3, the induced subgraph of ΓS(R) on A

is a totally disconnected graph.

(4) If S is an IS-graded m.c.s of R and IS = {0}, then S ⊆ R0 and R is reduced.

So, two elements
∑

i fi and
∑

i gi are adjacent if and only if f0 is adjacent

to g0 and for each i 6= 0, fi = −gi.
(5) ΓS0

(R0) is an induced subgraph of ΓS(R).

Proposition 2.9. (Compare [9, Lemma 2.3 and Proposition 2.13]). Let S

be a saturated multiplicatively closed subset of R. Then the following statements

hold.
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(i) For each x ∈ IS and s ∈ S, we have x± s ∈ S.

(ii) For each element x ∈ IS , degΓS(R)(x) = |S|.

(iii) The induced subgraph of ΓS(R) on R \ S is an |A|-partite graph, where A is

the same as Remark 2.2.

(iv) If 2 /∈ S, then for each f ∈ R, degΓS(R)(f) ≥ |S|.

(v) If S is an IS-graded m.c.s of R and f =
∑

i fi ∈ R, then degΓS(R)(f) =

|S0|
∏

i |IS ∩Ri|.

Proof. (i) Let x ∈ IS and s ∈ S. If x ± s /∈ S, then Remark 2.2 insures

that x± s ∈ P for some prime ideal P of R. Since x ∈ IS , we should have s ∈ P

which is a contradiction. Therefore x± s ∈ S as desired.

(ii) If x ∈ IS and y ∈ S, then by (i) x + y ∈ S. If x ∈ IS and y /∈ S, then

Remark 2.2 insures that y ∈ P for some prime ideal P of R. Since x ∈ P , we

have that x + y ∈ P which implies that x + y /∈ S. Hence each element x of IS is

just adjacent to each element of S. So degΓS(R)(x) = |S|.
(iii) Since R\S =

⋃
j∈A Pj , for two elements x, y ∈ Pj for some j ∈ A, we have

x+y ∈ Pj . This means that x+y /∈ S. Therefore the induced subgraph of ΓS(R)

on R \ S is an |A|-partite graph with parts P1, P2 \ P1, P3 \ (P1 ∪ P2), . . . , P|A| \⋃|A|−1
i=1 Pi.

(iv) It is easily seen that x ∼ s − x for all s ∈ S. This immediately implies

the result.

(v) Lemma 2.3 and part (i) imply that f ∼
∑

i gi if and only if g0 = s−f0 for

some s ∈ S0 and gi = xi−fi for some xi ∈ Ri∩IS . This completes the proof. �

Proposition 2.10. Let S be a saturated multiplicatively closed subset of R

and a and b are two distinct non-zero elements in IS . Then ΓS(R) is not planar.

Proof. In view of Proposition 2.9(i), we have that the induced subgraph of

ΓS(R) on the vertices 0, a, b, s, s + a, s + b form a K3,3, for each s ∈ S. Hence,

Kouratowski’s Theorem insures that ΓS(R) can’t be planar. �

3. Connectedness and dominating sets

In this section, we are going to study connectedness and some of the prop-

erties of ΓS(R). Also we study some of its relationships with ΓS0(R0) in special

circumstances. We begin with the following theorem which is one of the main re-

sults of this paper and presents a sufficient condition for the disconnectedness of
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ΓS(R). Note that since J(R[x]) = Nil(R[x]), in view of Remark 2.6, the following

result is a generalization of [3, Theorem 2.3] and [7, Proposition 4.6].

Theorem 3.1. (See [3, Theorem 2.3] and [7, Proposition 4.6]). Let S be

an IS-graded m.c.s of R. If (R \ IS) ∩ Rn 6= ∅ for some non-zero integer n, then

ΓS(R) is disconnected.

Proof. By our assumption, we may choose r ∈ (R \ IS)∩Rn for some non-

zero integer n. We show that there is not any path between zero and r in ΓS(R).

To this end, suppose to the contrary that 0 ∼
∑

i fi,1 ∼ · · · ∼
∑

i fi,m ∼ r is

a path from zero to r in ΓS(R) such that fi,j ∈ Ri for each 1 ≤ j ≤ m. Since∑
i fi,1 is adjacent to zero, fi,1 is in IS for all i 6= 0. Also, since

∑
i fi,1 ∼

∑
i fi,2,

fi,1 + fi,2 is in IS for all i 6= 0. These insure that fi,2 is also in IS . By a similar

argument, we have that fi,j belongs to IS for all i 6= 0 and 1 ≤ j ≤ m. Now, since∑
i fi,m ∼ r, we have r + fn,m ∈ IS , which implies that r ∈ IS . This contradicts

with our assumption. �

The following two examples illustrate that not only is the given condition in

Theorem 3.10 not a necessary condition, but it is also an irredundant condition.

Example 3.2. Consider the trivial grading on R = Z4×Z4 and the saturated

multiplicatively closed subset S = {(1, 1), (1, 3), (3, 1), (3, 3)} of R. It is clear that

ΓS(R) is the union of two disjoint K4,4 with parts

V1 = {(0, 0), (0, 2), (2, 0), (2, 2)}, V2 = {(1, 1), (1, 3), (3, 1), (3, 3)},

and

V ′1 = {(1, 0), (1, 2), (3, 0), (3, 2)}, V ′2 = {(0, 1), (0, 3), (2, 1), (2, 3)}.

Therefore ΓS(R) is disconnected, while (R\IS)∩Rn = ∅ for all non-zero integers n.

Example 3.3. Consider R = D[x] with the standard grading, where D is an

integral domain, and S = R \ (x). Then IS = (x) and (R \ IS) ∩ Rn = ∅ for

all n 6= 0. Let
∑

i fi and
∑

i gi be two distinct elements of R. If f0, g0 6= 0, we

have that
∑

i fi ∼ 0 ∼
∑

i gi. In addition, if f0, g0 = 0, then
∑

i fi ∼ 1 ∼
∑

i gi.

Moreover, if f0 = 0 and g0 6= 0, then
∑

i fi ∼
∑

i gi. So, ΓS(R) is connected.

In the sequel of this section, we are going to provide some necessary or

sufficient conditions for the connectedness of ΓS(R).

Theorem 3.4. Let S be a multiplicatively closed subset of R such that

S = −S and A = {
∑

i fi|f0 = 0}. If every element of R0 is a finite sum of

elements of S0, then
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(i) A intersects every connected component of ΓS(R);

(ii) |A| is an upper bound for the number of connected components of ΓS(R);

(iii) if |A| = 1, then ΓS(R) is connected;

(iv) if Ri ⊆ IS for all i 6= 0, then d(
∑

i fi, 0) ≤ s0(R0) in ΓS(R) for all
∑

i fi ∈ R,

where

s0(R0) =


min{k | every element of R0 is sum of k

elements of S0}; if min exists

ω; otherwise

and so ΓS(R) is connected.

Proof. (i) Consider an arbitrary element
∑

i fi of R. Since every element

of R0 is a finite sum of elements of S0, f0 = s1 + · · ·+ sk for some s1, . . . , sk ∈ S0.

It can be easily seen that∑
i

fi ∼ −(s2 + · · ·+ sk) +
∑
i 6=0

(−fi)

∼ (s3 + · · ·+ sk) +
∑
i 6=0

fi

∼ · · ·

∼ (−1)k−1sk +
∑
i6=0

(−1)k−1fi

∼
∑
i 6=0

(−1)kfi

is a path in ΓS(R) which connects
∑

i fi to an element in A.

(ii) and (iii) follow from (i).

(iv) Let
∑

i fi ∈ R and s0(R0) = k. Then f0 = s1 + · · · + sk for some

s1, . . . , sk ∈ S0. For every 1 ≤ i ≤ k, set bi := (−1)i
∑k−i

j=1 sj (note that bk = 0).

Since Ri ⊆ IS for all i 6= 0, fi ∈ IS for all i 6= 0. Hence by Lemma 2.3, there exists

the path
∑

i fi ∼ b1 ∼ · · · ∼ bk from
∑

i fi to zero in ΓS(R). This completes the

proof of (iv). �

Corollary 3.5. (Compare [3, Theorem 2.6], [9, Theorem 1.7] and [13, Propo-

sition 3.2]). Let S be a multiplicatively closed subset of R such that S = −S.

Then ΓS(R) is connected if and only if every element of R is a finite sum of

elements of S.
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Proof. Note that the trivial grading on R is equivalent to the fact that

|{
∑

i fi | f0 = 0}| = 1. So Theorem 3.4(iii) proves the if part. Conversely, if

ΓS(R) is connected, since every element in R is connected to zero, the result

immediately follows. �

Corollary 3.6. Assume that S is an IS-graded m.c.s of R such that S = −S
and A = {

∑
i fi | f0 = 0}. Let B be a dominating set for ΓS(R) such that for

each element
∑

i fi in B, f0 is a finite sum of elements of S0. Then A intersects

every connected component of ΓS(R).

Proof. Since B is a dominating set for ΓS(R), for arbitrary element f0

of R0 \ B, there is a
∑
i

gi in B such that f0 +
∑
i

gi ∈ S. Thus f0 + g0 ∈ S0

by Lemma 2.3. Therefore, there is s0 ∈ S0 such that f0 + g0 = s0. Since∑
i

gi ∈ B, there exist s1, . . . , sk ∈ S0 such that g0 = s1 + · · · + sk. Thus f0 =

s0− (s1 + · · ·+sk). Therefore, every element of R0 is finite sum of elements of S0.

Now, by Theorem 3.4(i), A intersects every connected component of ΓS(R). �

Proposition 3.7. (i) Let S be a saturated multiplicatively closed subset

of R such that Ri ⊆ IS for all i 6= 0. Then S0 is a dominating set for ΓS0
(R0)

if and only if S is a dominating set for ΓS(R).

(ii) If R is a graded local ring and S = U(R), then S0 is a dominating set for

ΓS0
(R0) if and only if S is a dominating set for ΓS(R).

Proof. (i) Let S0 be a dominating set for ΓS0
(R0) and

∑
i fi ∈ R \ S. In

light of Lemma 2.3, f0 ∈ R0 \ S0. Hence there is an element g0 ∈ S0 such that

f0 + g0 ∈ S0. Using Lemma 2.3 again implies that
∑

i fi + g0 ∈ S. This shows

that S is a dominating set for ΓS(R). Conversely, assume that S is a dominating

set for ΓS(R) and f0 ∈ R0 \ S0. Then there is an element
∑

i gi ∈ S such that

f0 +
∑

i gi ∈ S. Now, Lemma 2.3 insures that f0 + g0 ∈ S0, which completes the

proof.

(ii) follows from (i) in conjunction with Remarks 2.6 and 2.8(2). �

Lemma 3.8. Let S be a multiplicatively closed subset of R and A =

{
∑

i fi | f0 = 0}. If S0 is a dominating set for ΓS0(R0), then A intersects ev-

ery connected component of ΓS(R).

Proof. Let
∑

i fi be an arbitrary element of R. If f0 ∈ S0, then
∑

i fi ∼∑
i 6=0(−fi). Otherwise, since S0 is a dominating set for ΓS0

(R0), there exists an

s0 ∈ S0 such that f0 + s0 ∈ S0. So
∑

i fi ∼ s0 +
∑

i6=0(−fi) ∼
∑

i 6=0 fi. This

shows that A intersects every connected component of ΓS(R). �
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The following theorem shows that for a special saturated multiplicatively

closed subset of R, the converse of Theorem 3.4 also holds.

Theorem 3.9. Let S be an IS-graded m.c.s of R such that S = −S and

A = {
∑

i fi | f0 = 0}. If A intersects every connected component of ΓS(R), then

every element of R0 is finite sum of elements of S0.

Proof. Let A intersect every connected component of ΓS(R). Then for an

arbitrary element f0 of R0, there is an element
∑
i

gi in A such that there exists

a path

f0 ∼
∑
i

fi,1 ∼
∑
i

fi,2 ∼ · · · ∼
∑
i

fi,k ∼
∑
i

gi

from f0 to
∑
i

gi in ΓS(R). Hence the elements

f0 +
∑
i

fi,1,
∑
i

fi,1 +
∑
i

fi,2, . . . ,
∑
i

fi,k−1 +
∑
i

fi,k,
∑
i

fi,k +
∑
i

gi

are in S. Thus f0+f0,1, f0,1+f0,2, . . . , f0,k−1+f0,k, f0,k+g0 are in S0 by Lemma 2.3.

Since g0 = 0, we have f0 = (f0 + f0,1) − (f0,1 + f0,2) + · · · + (−1)k−1(f0,k−1 +

f0,k)+(−1)k(f0,k +g0). Hence f0 is a finite sum of elements of S0 as required. �

Corollary 3.10. Let S be an IS-graded m.c.s of R such that S = −S. If

S0 is a dominating set for ΓS0
(R0), then every element of R0 is a finite sum of

elements of S0.

Proof. The result follows from Lemma 3.8 and Theorem 3.9. �

Corollary 3.11. (Compare [3, Corollary 2.7]). Let S be a multiplicatively

closed subset of R such that S = −S and S is a dominating set of ΓS(R). Then

ΓS(R) is connected.

Proof. Since S is a dominating set for ΓS(R), by considering the trivial

grading on R, Corollary 3.10 implies that every element of R is finite sum of

elements of S. Hence Corollary 3.5 completes the proof. �

The next result provides conditions under which ΓS0
(R0) inherits connect-

edness from ΓS(R).

Theorem 3.12. Let S be an IS-graded m.c.s of R such that S = −S. If

ΓS(R) is connected, then every element of R0 is finite sum of elements of S0 and

thus ΓS0
(R0) is connected.
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Proof. Let ΓS(R) be a connected graph. For f0 ∈ R0, there exists a path

f0 ∼
∑
i

fi,1 ∼
∑
i

fi,2 ∼ · · · ∼
∑
i

fi,k ∼ 0

from f0 to zero in ΓS(R). Hence the elements

f0 +
∑
i

fi,1,
∑
i

fi,1 +
∑
i

fi,2, . . . ,
∑
i

fi,k−1 +
∑
i

fi,k,
∑
i

fi,k

are in S. Thus f0 + f0,1, f0,1 + f0,2, . . . , f0,k−1 + f0,k, f0,k are in S0. On the other

hand, we have f0 = (f0 + f0,1) − (f0,1 + f0,2) + · · · + (−1)k−1(f0,k−1 + f0,k) +

(−1)kf0,k, which implies that f0 is finite sum of elements of S0. The last assertion

follows from Corollary 3.5. �

Since studying ΓS0
(R0) is usually simpler than ΓS(R), Theorem 3.12 provides

a suitable criterion about the disconnectedness of ΓS(R), where R is a graded ring.

The following example illustrates this fact.

Example 3.13. Consider R = (Z4 × Z4)[x] and the IS-graded m.c.s

S = {a0 + a1x + · · ·+ anx
n | a0 ∈ {(1, 1), (1, 3), (3, 1), (3, 3)},

ai ∈ {(0, 0), (0, 2), (2, 0), (2, 2)}, ∀ i = 1, . . . , n}

of R. Note that S0 = {(1, 1), (1, 3), (3, 1), (3, 3)}. Therefore ΓS0
(R0) is discon-

nected, by Example 3.2. Now, Theorem 3.12 yields that ΓS(R) is also discon-

nected.

Recall that a graph is said to be Eulerian if it has a closed trail containing

all edges. It is well-known that a graph is Eulerian if and only if it is connected

and the valency of its vertices is even (see [17, 1.2.10]). We end this section with

the following result concerning ΓS(R), when it is Eulerian.

Corollary 3.14. Let S be an IS-graded m.c.s of R such that S = −S. If

ΓS(R) is Eulerian, then

(i) every element of R0 is a finite sum of elements of S0,

(ii) |S| is an even number,

(iii) x + x /∈ S for each x ∈ R.

Proof. (i) Since ΓS(R) is Eulerian, it is connected. Now the result follows

from Theorem 3.12.

(ii) immediately follows from Proposition 2.9(ii) and the fact that in an Euler-

ian graph the valency of all vertices is even.

(iii) Assume to the contrary that x+x ∈ S for some x ∈ R. Then degΓS(R)(x)

= |S| − 1 by [9, Lemma 1.3(b)]. Now in view of (ii), degΓS(R)(x) is odd which is

a contradiction. �
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4. Diameter and girth

Suppose that G is a graph with vertex set V . Recall that the diameter of G,

denoted by diam(G), is defined as follows:

diam(G) := sup{d(a, b)|a, b ∈ V }.

We set diam(G) =∞ if G is disconnected. Also recall that the girth of G, denoted

by girth(G), is the length of a shortest cycle in G if G has a cycle; otherwise,

girth(G) =∞.

By a similar argument to that used in [3] we have the following result.

Theorem 4.1. (Compare [3, Corollary 3.4]). For a graded ring R and IS-

graded m.c.s S of R, we have the inequalities

diam(ΓS0
(R0)) ≤ diam(ΓS(R)),

and

girth(ΓS(R)) ≤ girth(ΓS0
(R0)).

Lemma 4.2. (Compare [3, Lemma 3.3]) Let S be a saturated multiplica-

tively closed subset of R such that Ri ⊆ IS for all i 6= 0 and
∑

i fi,
∑

i gi be two

distinct vertices of ΓS(R).

(i) If f0 = g0, then

dΓS(R)

(∑
i

fi,
∑
i

gi

)
=

{
1 2f0 ∈ S

2 2f0 /∈ S ,

(ii) If f0 6= g0, then

dΓS(R)

(∑
i

fi,
∑
i

gi

)
= dΓS0

(R0)(f0, g0) .

Proof. (i) If 2f0 ∈ S, then Lemma 2.3 implies that
∑

i fi ∼
∑

i gi. Other-

wise, by Lemma 2.3, we have the path
∑

i fi ∼ 1 − f0 ∼
∑

i gi in ΓS(R). Note

that since 2f0 /∈ S, we have 1− f0 6=
∑

i fi and 1− f0 6=
∑

i gi.

(ii) Similar to the proof of [3, Lemma 3.3(ii)]. �

The following theorem is a natural generalization of [3, Theorem 3.5] and [9,

Theorem 2.23]. Although some parts of its proof are similar to [3, Theorem 3.5],

we give a complete proof for it here.
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Theorem 4.3. (Compare [3, Theorem 3.5] and [9, Theorem 2.23]). Let S

be a saturated multiplicatively closed subset of R such that Ri ⊆ IS for all i 6= 0.

(i) If S0 = R0 \ {0}, then diam(ΓS(R)) ≤ 2.

(ii) If ΓS0
(R0) is complete, then diam(ΓS(R)) ≤ 2,

(iii) If ΓS0
(R0) is not complete, then diam(ΓS0

(R0)) = diam(ΓS(R)),

(iv) If R0 is a finite ring, then diam(ΓS(R)) ∈ {1, 2, 3,∞}.

Proof. (i) Let
∑

i fi and
∑

i gi be two distinct vertices of ΓS(R). If f0 and g0

are non-zero, then in view of Lemma 2.3,
∑

i fi ∼ 0 ∼
∑

i gi is a path from
∑

i fi
to
∑

i gi in ΓS(R). In addition, if f0 = 0 or g0 = 0, but not both, then
∑

i fi
is adjacent to

∑
i gi. Moreover, if f0 = g0 = 0, then Lemma 2.3 implies that∑

i fi ∼ 1 ∼
∑

i gi is a path from
∑

i fi to
∑

i gi. Therefore, diam(ΓS(R)) ≤ 2.

(ii) Let
∑

i fi and
∑

i gi be two distinct vertices of ΓS(R). Since ΓS0(R0) is

complete, if f0 6= g0, then f0 + g0 ∈ S0. By Lemma 2.3, we have
∑

i fi +
∑

i gi ∈
S. If f0 = g0, then since ΓS0(R0) has no isolated vertex, there exists a vertex

h0 ∈ R0 adjacent to f0. Hence
∑

i fi ∼ h0 ∼
∑

i gi by Lemma 2.3, and so

diam(ΓS(R)) ≤ 2.

(iii) Assume that for two natural numbers m and n, diam(ΓS0(R0)) = n and

diam(ΓS(R)) = dΓS(R)

(∑
i

fi,
∑
i

gi

)
= m.

(Note that, in view of Lemma 4.2, if diam(ΓS0(R0)) is finite, then diam(ΓS(R))

is also finite.) Since ΓS0(R0) is not complete, n ≥ 2. Hence Theorem 4.1 yields

that m ≥ 2. Now, if f0 = g0, then by Lemma 4.2 (i), dΓS(R)(
∑

i fi,
∑

i gi) = 2,

and so the result follows from Theorem 4.1 in this case. Also, if f0 6= g0, then by

Lemma 4.2 (ii), dΓS0
(R0)(f0, g0) = m. Therefore, we should have n ≥ m. Now,

Theorem 4.1 completes the proof.

(iv) In view of Remarks 2.8(1) and [9, Theorem 2.23], we have

diam(ΓS0
(R0)) ∈ {1, 2, 3,∞}.

Now, (ii) and (iii) insure that diam(ΓS(R)) ∈ {1, 2, 3,∞} as desired. �

So, we are also able to improve Corollary 3.6 of [3] as follows.

Corollary 4.4. (Compare [3, Corollary 3.6]). Let S be a saturated multi-

plicatively closed subset of R, S0 = R0 \ {0}, char(R0) 6= 2 and Ri ⊆ IS for all

i 6= 0. Then

diam(ΓS0
(R0)) = diam(ΓS(R)) = 2.
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Proof. The result follows from Proposition 2.1 of [9], and parts (i) and (iii)

of Theorem 4.3. �

Theorem 4.3 provides an indirect method to calculate the diameter of ΓS(R).

The following examples illustrate this fact.

Example 4.5. In Example 3.3, we saw that diam(ΓS(R)) = 2. Now, without

calculating the diameter of ΓS(R), we show this. It is easily seen that S0 = D\{0}
and R0 = D. Hence, by Theorem 4.3(i), we have diam(ΓS(R)) ≤ 2. Now since

ΓS(R) is not a complete graph (e.g., x � x2), we have diam(ΓS(R)) = 2.

Example 4.6. In Example 3.13, we saw that ΓS0(R0) is not complete. There-

fore, by Theorem 4.3(iii), diam(ΓS0(R0)) = diam(ΓS(R)). Since ΓS0(R0) is

the union of two disjoint K4,4s, diam(ΓS0(R0)) = ∞. Hence we also have

diam(ΓS(R)) =∞.

Theorem 4.7. Assume that S is an IS-graded m.c.s of R.

(i) If girth(ΓS(R)) ≥ 4 and IS = {0}, then girth(ΓS(R)) = girth(ΓS0
(R0)).

(ii) If girth(ΓS(R)) = girth(ΓS0
(R0)) ≥ 4, then IS = {0} or 2 /∈ S.

(iii) (See [9, Lemma 2.14].) If IS 6= 0, then girth(ΓS(R)) ≤ 4.

(iv) If R0 is finite and IS = {0}, then girth(ΓS(R)) ∈ {3, 4, 6,∞}.

Proof. (i) In view of Theorem 4.1, it is enough to show that girth(ΓS(R)) ≥
girth(ΓS0(R0)). So, we may assume that girth(ΓS(R)) = m for some integer

m ≥ 4. Let ∑
i

fi,1 ∼
∑
i

fi,2 ∼ · · · ∼
∑
i

fi,m−1 ∼
∑
i

fi,m ∼
∑
i

fi,1

be a cycle in ΓS(R). In the light of Lemma 2.3, we have

f0,1 ∼ f0,2 ∼ · · · ∼ f0,m−1 ∼ f0,m ∼ f0,1

in ΓS0
(R0). This induces a cycle in ΓS0

(R0) with length smaller than m, which

implies that girth(ΓS0
(R0)) ≤ m unless f0,j = f0,j+1 for all 1 ≤ j ≤ m−2. On the

other hand, if f0,j = f0,j+1 for all 1 ≤ j ≤ m− 2, then in view of Remarks 2.8(4),

we have
∑

i fi,1 =
∑

i fi,3, which is a contradiction. So, girth(ΓS0
(R0)) ≤ m as

required.

(ii) Suppose to the contrary that IS 6= {0} and 2 ∈ S. Then for each s ∈ S

and 0 6= r ∈ IS , 0 ∼ s ∼ r + s ∼ 0 is a cycle in ΓS(R), by Proposition 2.9(i).

Hence girth(ΓS(R)) = 3, which is a contradiction.
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(iii) Choose s ∈ S and 0 6= r ∈ IS . It is easily seen that 0 ∼ s ∼ r ∼ s−r ∼ 0

is a cycle in ΓS(R) by Proposition 2.9(i).

(iv) follows from Theorem 2.15 in [9] and (i). �

Corollary 4.8. (Compare [3, Proposition 3.7(iii)]). Let R be a positively

graded ring or for each element
∑

i fi of R, f0 /∈ P for all P ∈ Nil(R). Assume

that S = U(R) and J(R) = 0. Then

(i) girth(ΓS(R)) = girth(ΓS0
(R0)).

(ii) If R0 is finite, then girth(ΓS(R)) ∈ {3, 4, 6,∞}.

Proof. (i) By Remark 2.6 and Theorem 4.7(i), we only need to consider

the case girth(ΓS(R)) = 3. Also, by Theorem 4.1, we have girth(ΓS(R)) ≤
girth(ΓS0(R0)). So, let∑

i

fi,1 ∼
∑
i

fi,2 ∼
∑
i

fi,3 ∼
∑
i

fi,1

be a triangle in ΓS(R). If f0,1, f0,2 and f0,3 are distinct, then

f0,1 ∼ f0,2 ∼ f0,3 ∼ f0,1

is a triangle in ΓS0
(R0) by Lemma 2.3 and Remark 2.6. Therefore, without

loss of generality, we can assume that f0,1 = f0,2 and so 2f0,1 ∈ S0. In view

of Remarks 2.8(1), 2 ∈ S0 which implies that 2 is invertible. Since IS = {0},
by Remarks 2.8(4), we have fi,1 + fi,2 = 0, fi,2 + fi,3 = 0 and fi,3 + fi,1 = 0

for all i 6= 0. Now, we have 2fi,1 = (fi,1 + fi,2 + fi,3) + (fi,1 + fi,2 + fi,3) =

(fi,1 + fi,2) + (fi,3 + fi,1) + (fi,2 + fi,3) = 0. Since 2 is invertible, fi,1 = 0 for

all i 6= 0 which implies that fi,2 = 0 for all i 6= 0. Hence
∑

i fi,1 =
∑

i fi,2
which is a contradiction. Therefore f0,1 6= f0,2. Since f0,1, f0,2 were arbitrary,

f0,1 ∼ f0,2 ∼ f0,3 ∼ f0,1 is a triangle in ΓS0(R0). Hence girth(ΓS0(R0)) = 3 as

desired.

(ii) immediately follows from [9, Theorem 2.15] and (i). �

Corollary 4.9. Let S be an IS-graded m.c.s of R and girth(ΓS0
(R0)) = 4.

Then girth(ΓS(R)) = 4 if and only if IS = {0} or 2 /∈ S.

Proof. In the light of Theorem 4.7(ii), we only need to prove the if part. By

Theorem 4.1, we have girth(ΓS(R)) ≤ girth(ΓS0(R0)) = 4; so girth(ΓS(R)) can

be 3 or 4. Let girth(ΓS(R)) = 3 and seek a contradiction. Assume that
∑

i fi,1 ∼∑
i fi,2 ∼

∑
i fi,3 ∼

∑
i fi,1 is a triangle in ΓS(R). In view of Lemma 2.3, f0,1 ∼

f0,2 ∼ f0,3 ∼ f0,1 is a triangle in ΓS0(R0), which is a contradiction, unless f0,i =
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f0,j for some 1 ≤ i, j ≤ 3 with i 6= j. We may assume that f0,1 = f0,2, which

insures that 2f0,1 ∈ S0. Therefore 2 ∈ S. So, by our assumption we have IS =

{0}. Now Remarks 2.8(4) shows that
∑

i fi,1 =
∑

i fi,3, which is a contradiction.

Therefore girth(ΓS(R)) = 4 as desired. �

Remark 4.10. Note that by slight modifications similar to those we have used

in this note, one can gain the graded version of some of the other results in [3],

such as Theorems 4.4, 5.4 and 5.6.
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