Publ. Math. Debrecen 88/3-4 (2016), 439–448 DOI: 10.5486/PMD.2016.7398

Trans-Sasakian manifolds homothetic to Sasakian manifolds

By SHARIEF DESMUKH (Riyadh), UDAY CHAND DE (Calcutta) and FALLEH AL-SOLAMY (Jeddah)

Abstract. In this paper, we obtain necessary and sufficient conditions for a 3dimensional compact and connected trans-Sasakian manifold of type (α, β) to be homothetic to a Sasakian manifold. We also show that if a compact trans-Sasakian manifold admits an isometric immersion in the Euclidean space R^4 with Reeb vector field being transformation of unit normal vector field under the complex structure of R^4 , then it is homothetic to a Sasakian manifold. We also introduce the axiom of flat torus for a 3-dimensional trans-Sasakian manifold and show that a 3-dimensional connected trans-Sasakian manifold with Ricci curvature in the direction of Reeb vector field a nonzero constant, satisfying axiom of flat torus is homothetic to a Sasakian manifold.

1. Introduction

Let $(M, \varphi, \xi, \eta, g)$ be a (2n + 1)-dimensional almost contact metric manifold (cf. [1]). Then the product $\overline{M} = M \times R$ has natural almost complex structure Jwith the product metric G being almost Hermitian metric. The geometry of the almost Hermitian manifold (\overline{M}, J, G) dictates the geometry of the almost contact metric manifold $(M, \varphi, \xi, \eta, g)$ and gives different structures on M, a Sasakian structure, a quasi-Sasakian structure, a Kenmotsu structure and others (cf. [1], [2], [12]). It is known that there are sixteen different types of structures on the almost Hermitian manifold (\overline{M}, J, G) (cf. [10]), using the structure in the class \mathcal{W}_4 on (\overline{M}, J, G) a structure $(\varphi, \xi, \eta, g, \alpha, \beta)$ on M called a trans-Sasakian structure

Mathematics Subject Classification: 53C15, 53D10.

Key words and phrases: Sasakian manifold, trans-Sasakian manifold, Jacobi-type vector field, axiom of flat torus.

is introduced (cf. [16]) which generalizes Sasakian structure and Kenmotsu structure on an almost contact metric manifold (cf. [2], [14]), where α, β are smooth functions defined on M. Since the introduction of trans-Sasakian manifolds, very important contributions of BLAIR and OUBIÑA [2] and MARRERO [14] have appeared studying the geometry of trans-Sasakian manifolds. In general, a trans-Sasakian manifold $(M, \varphi, \xi, \eta, g, \alpha, \beta)$ is called a trans-Sasakian manifold of type (α, β) . The trans-Sasakian manifolds of type (0, 0), $(\alpha, 0)$ and $(0, \beta)$ are called the cosymplectic, α -Sasakian and β -Kenmotsu manifolds, respectively. Some authors have studied α -Sasakian and β -Kenmotsu manifolds with α, β as constants, however in this paper we consider α -Sasakian and β -Kenmotsu manifolds with both α, β as functions. MARRERO [14] has shown that a trans-Sasakian manifold of dimension ≥ 5 is either a cosymplectic manifold, an α -Sasakian manifold or a β -Kenmotsu.

Since then there have been an emphasis on studying the geometry of 3dimensional trans-Sasakian manifolds, putting some restrictions on the smooth functions α, β appearing in the definition of trans-Sasakian manifolds or the Reeb vector field ξ . There are several examples of trans-Sasakian manifolds constructed mostly on 3-dimensional non-compact simply connected Riemannian manifolds (cf. [2], [15]). Recall that a trans-Sasakian manifold of type (α, β) is said to be proper if neither of the functions α or β is zero. As MARRERO [14] has classified trans-Sasakian manifolds in dimension ≥ 5 and has shown that there are no proper trans-Sasakian manifolds in these dimensions, one naturally raises the question: 'under what conditions a 3-dimensional trans-Sasakian manifold is not proper?'.

This question was taken up in [9], and in this paper we continue answering this question by obtaining two different necessary and sufficient conditions for a trans-Sasakian manifold to be homothetic to a Sasakian manifold.

It is well known that a Killing vector field is a Jacobi-type vector field and the converse is not true (see [7] for a definition of Jacobi-type vector fields) and that the Reeb vector field on a Sasakian manifold being Killing is a Jacobi-type vector field. We use this fact to show that the Reeb vector field of a 3-dimensional compact and connected trans-Sasakian manifold with the Ricci curvature $\operatorname{Ric}(\xi, \xi)$ a positive constant, is a Jacobi-type vector field if and only if the trans-Sasakian manifold is homothetic to a Sasakian manifold (see Theorem 3.1).

We also show that the Reeb vector field ξ of a 3-dimensional compact and connected trans-Sasakian manifold with Ricci curvature $\operatorname{Ric}(\xi, \xi)$ a constant, is a conformal vector field if and only if the trans-Sasakian manifold is homothetic to a Sasakian manifold (see Theorem 3.2). It is known that a compact 3-dimensional smooth manifold can be immersed in the Euclidean space R^4 (cf. [5]); we use this

441

result that a 3-dimensional compact trans-Sasakian manifold can be immersed in the Euclidean space R^4 and under the condition that this immersion is an isometric immersion with Reeb vector field ξ is related to the unit normal vector field N of the immersion by $\xi = -JN$, to show that the trans-Sasakian manifold is homothetic to a Sasakian manifold (In fact, isometric to $S^3(c)$ see Theorem 4.1).

Finally, we introduce the axiom of flat torus for a 3-dimensional compact trans-Sasakian manifold analogous to such axioms in [3], [4] and [17] and show that a trans-Sasakian manifold with nonzero constant $\text{Ric}(\xi,\xi)$, satisfying this axiom, is homothetic to a Sasakian manifold (see Theorem 5.1).

2. Preliminaries

Let $(M, \varphi, \xi, \eta, g)$ be a (2n + 1)-dimensional contact metric manifold, with φ is a (1, 1)-tensor field, ξ is a unit vector field and η is smooth 1-form dual to ξ with respect to the Riemannian metric g such that

$$\varphi^2 = -I + \eta \otimes \xi, \varphi(\xi) = 0, \eta \circ \varphi = 0, g(\varphi X, \varphi Y) = g(X, Y) - \eta(X)\eta(Y) \quad (2.1)$$

 $X, Y \in \mathfrak{X}(M)$, where $\mathfrak{X}(M)$ denotes the Lie algebra of smooth vector fields on M (cf. [1]). If there are smooth functions α, β on an almost contact metric manifold $(M, \varphi, \xi, \eta, g)$ satisfying

$$(\nabla\varphi)(X,Y) = \alpha \left(g(X,Y)\xi - \eta(Y)X\right) + \beta \left(g(\varphi X,Y)\xi - \eta(Y)\varphi X\right), \qquad (2.2)$$

then it is called a trans-Sasakian manifold. ($(\nabla \varphi)(X, Y) = \nabla_X \varphi Y - \varphi(\nabla_X Y)$, $X, Y \in \mathfrak{X}(M)$ and ∇ is the Levi Civita connection with respect to the metric g, cf. [2], [7], [10].) We shall denote this trans-Sasakian manifold by $(M, \varphi, \xi, \eta, g, \alpha, \beta)$ and call it a trans-Sasakian manifold of type (α, β) . From equations (2.1) and (2.2) it follows that

$$\nabla_X \xi = -\alpha \varphi(X) + \beta (X - \eta(X)\xi), \quad X \in \mathfrak{X}(M).$$
(2.3)

It is clear that a trans-Sasakian manifold of type (1,0) is a Sasakian manifold (cf. [1]) and a trans-Sasakian manifold of type (0,1) is Kenmotsu manifold (cf. [10]). A trans-Sasakian manifold of type (0,0) is called a cosymplectic manifold (cf. [9]).

Let Ric be the Ricci tensor of a Riemannian manifold (M, g). Then the Ricci operator Q is a symmetric tensor field of type (1, 1) defined by $\operatorname{Ric}(X, Y) = g(QX, Y), X, Y \in \mathfrak{X}(M)$. We state following results, which we need in the sequel.

Lemma 2.1. [9] Let $(M, \varphi, \xi, \eta, g, \alpha, \beta)$ be a 3-dimensional trans-Sasakian manifold. Then $\xi(\alpha) + 2\alpha\beta = 0$.

Lemma 2.2. [9] Let $(M, \varphi, \xi, \eta, g, \alpha, \beta)$ be a 3-dimensional trans-Sasakian manifold. Then its Ricci operator satisfies

$$Q(\xi) = \varphi(\nabla \alpha) - \nabla \beta + 2(\alpha^2 - \beta^2)\xi - g(\nabla \beta, \xi)\xi,$$

where $\nabla \alpha$, $\nabla \beta$ are the gradients of the smooth functions α , β .

Theorem 2.1. [15] Let (M, g) be a Riemannian manifold. If M admits a Killing vector field ξ of constant length satisfying

$$k^{2} \left(\nabla_{X} \nabla_{Y} \xi - \nabla_{\nabla_{X} Y} \xi \right) = g(Y,\xi) X - g(X,Y)\xi; \quad X, Y \in \mathfrak{X}(M)$$

for a nonzero constant k, then M is homothetic to a Sasakian manifold.

Recall that a smooth vector field u on a Riemannian manifold (M, g) is said to be a Jacobi-type vector field if it satisfies (cf. [7], [8])

$$\nabla_X \nabla_X u - \nabla_{\nabla_X X} u + R(u, X) X = 0, \quad X \in \mathfrak{X}(M),$$
(2.4)

where R is the curvature tensor field. It is clear that each Killing vector field is a Jacobi-type vector field, however a Jacobi-type vector field need not be a Killing vector field. For example, the position vector field on the Euclidean space R^n is a Jacobi-type vector field which is not a Killing vector field.

3. The Reeb vector field $\boldsymbol{\xi}$ as Jacobi-type vector field

Recall that the Reeb vector field ξ on a (2n + 1)-dimensional Sasakian manifold is a Killing vector field and therefore it is a Jacobi-type vector field. Note that an α -Sasakian manifold with constant α satisfies the hypothesis of Theorem 2.1 and is therefore homothetic to a Sasakian manifold. However, owing to the importance of Theorem 2.1, we shall refer to it for proving that a trans-Sasakian manifold is homothetic to a Sasakian manifold instead of the above observation about an α -Sasakian manifold with constant α .

Theorem 3.1. Let $(M, \varphi, \xi, \eta, g, \alpha, \beta)$ be a 3-dimensional compact and connected trans-Sasakian manifold. Suppose that the Ricci curvature $\operatorname{Ric}(\xi, \xi)$ of (M, g) is a nonzero constant. Then M is homothetic to a Sasakian manifold if and only if the vector field ξ is a Jacobi-type vector field.

PROOF. Suppose ξ is a Jacobi-type vector field. Then (2.4) gives

$$\nabla_X \nabla_X \xi - \nabla_{\nabla_X X} \xi + R(\xi, X) X = 0, \quad X \in \mathfrak{X}(M).$$

Using (2.3) in the equation above, after an easy calculation we obtain

$$-X(\alpha)\varphi X + X(\beta)X + 2\alpha\beta\eta(X)\varphi X + (\alpha^2 - \beta^2)\eta(X)X$$

- {X(\beta) + (\alpha^2 + \beta^2)g(X, X) + 2\beta^2\eta(X)^2} \xi
+ R(\xi, X)X = 0.

Taking trace, we find

$$Q(\xi) = \varphi(\nabla \alpha) - \nabla \beta + \left\{ 2(\alpha^2 + \beta^2) + \xi(\beta) \right\} \xi.$$

Now, combining this equation with Lemma 2.2, we obtain

$$\xi(\beta) = -2\beta^2. \tag{3.1}$$

Using (2.3), it follows that

$$\operatorname{div} \xi = 2\beta. \tag{3.2}$$

Equations (3.1) and (3.2) give

$$\operatorname{div}\left(\beta^{3}\xi\right) = 3\beta^{2}\xi(\beta) + \beta^{3}\operatorname{div}\xi = -4\beta^{4},$$

so by Stokes' theorem $\beta = 0$. Hence, by Lemma 2.2, $\operatorname{Ric}(\xi, \xi) = 2\alpha^2$ is nonzero constant, therefore α is a nonzero constant and thus equations (2.2) and (2.3) give

$$\alpha^{-2} \left(\nabla_X \nabla_Y \xi - \nabla_{\nabla_X Y} \xi \right) = g(Y,\xi) X - g(X,Y)\xi,$$

thus proving that M is homothetic to a Sasakian manifold (cf. Theorem 2.1). The converse is obvious.

Recall that a smooth vector field ξ on a Riemannian manifold (M,g) is said to be a conformal vector field if

$$(\pounds_{\xi}g)(X,Y) = 2\rho g(X,Y), \quad X,Y \in \mathfrak{X}(M), \tag{3.3}$$

where \pounds_{ξ} is the Lie derivative with respect to ξ and ρ is a smooth function on M. Now, we prove the following:

Theorem 3.2. Let $(M, \varphi, \xi, \eta, g, \alpha, \beta)$ be a 3-dimensional compact and connected trans-Sasakian manifold whose Ricci curvature $\text{Ric}(\xi, \xi)$ is nonzero constant. Then M is homothetic to a Sasakian manifold if and only if the vector field ξ is a conformal vector field.

PROOF. Suppose ξ is a conformal vector field. Using equations (2.3) and (3.3), we get

$$\beta g(X,Y) - \beta \eta(X)\eta(Y) = \rho g(X,Y), \quad X,Y \in \mathfrak{X}(M).$$
(3.4)

Taking $X = Y = \xi$ in the equation above, we obtain $\rho = 0$. Hence ξ is a Killing vector field and, consequently, is a Jacobi-type vector field. Thus we get the result by Theorem 3.1. Conversely, if $(M, \varphi, \xi, \eta, g, \alpha, \beta)$ is homothetic to a Sasakian manifold, the vector field ξ is Killing and therefore a conformal vector field.

4. Trans-Sasakian manifolds isometrically immersed in R^4

It is well known that if $(M, \varphi, \xi, \eta, g, \alpha, \beta)$ is a 3-dimensional compact trans-Sasakian manifold, then there exists a smooth immersion $\Psi : M \to R^4$ (cf. [3]). This immersion need not be an isometric immersion in to the Euclidean space (R^4, \langle, \rangle) . It is known that this Euclidean space has a complex structure J such that $(R^4, J, \langle, \rangle)$ is a Kaehler manifold. In this section, we show that if the immersion $\Psi : M \to R^4$ is an isometric immersion with unit normal N with $\xi = -JN$, then M is homothetic to a Sasakian manifold. The main result of this section is the following:

Theorem 4.1. Let $(M, \varphi, \xi, \eta, g, \alpha, \beta)$ be a 3-dimensional compact and connected trans-Sasakian manifold. Then there exists an isometric immersion of M in the Euclidean space R^4 with unit normal N satisfying $\xi = -JN$ if, and only if, M is isometric to the Sasakian manifold $S^3(\alpha^2)$.

PROOF. Let $\Psi: M \to R^4$ be the isometric immersion. The Euclidean space $(R^4, J, \langle, \rangle)$ is a Kaehler manifold with complex structure J and the Euclidean metric \langle, \rangle . We denote by A the shape operator of the hypersurface M. Define an operator $\psi: \mathfrak{X}(M) \to \mathfrak{X}(M)$ by $JX = \psi(X) + \eta(X)N$, where $\psi(X)$ is tangential component of JX to M. Then using the properties of complex structure J and Gauss–Wiengarten formulae for the hypersurface we immediately get the following:

$$\psi^{2}(X) = -X + \eta(X)\xi, \psi(\xi) = 0, \eta(\psi(X)) = 0, \quad X \in \mathfrak{X}(M), \tag{4.1}$$

$$g(\psi X, \psi Y) = g(X, Y) - \eta(X)\eta(Y), \quad X, Y \in \mathfrak{X}(M),$$
(4.2)

and

$$\nabla_X \xi = \psi AX, \quad (\nabla_X \psi) (Y) = \eta(Y) AX - g(AX, Y)\xi, \quad X, Y \in \mathfrak{X}(M).$$
(4.3)

Using (2.3) in the first equation of (4.3), we get

$$-\alpha\varphi X - \beta\varphi^2 X = \psi A X. \tag{4.4}$$

Since A is symmetric and ψ is skew-symmetric, we have $Tr(\psi A) = 0$. Taking trace in (4.4), we get $\beta = 0$. Then equations (2.3) and (4.3) give $\psi AX = -\alpha \varphi X$, that is $g(\psi AX, X) = 0$. Polarizing the equation $g(\psi X, AX) = 0$, we get $\psi AX = A\psi X$, $X \in \mathfrak{X}(M)$, which leads to $\psi A\xi = 0$. Hence, $A\xi = \lambda \xi$ for a smooth function λ . Since $\beta = 0$, equation (2.3) assures that ξ is a Killing vector field and the one-parameter group $\{f_t\}$ of ξ consists of isometries which satisfy $df_t \circ A = A \circ df_t$. Hence

$$[\xi, AX] = A[\xi, X], \quad X \in \mathfrak{X}(M).$$

Using equation (2.3) in the above equation, we get

$$(\nabla A)(\xi, X) = \alpha A \varphi X - \alpha \varphi A X, \quad X \in \mathfrak{X}(M),$$

which, together with the Codazzi equation for hypersurfaces, equation (2.3) and $A\xi = \lambda \xi$, gives

$$X(\lambda)\xi - \lambda\alpha\varphi X = -\alpha\varphi AX.$$

Taking inner product with ξ in the above equation we get $X(\lambda)=0$. Thus λ is a constant and

$$\alpha\varphi\left(AX - \lambda X\right) = 0, \quad X \in \mathfrak{X}(M). \tag{4.5}$$

Note that the Ricci curvature of the hypersurface M, by Lemma 2.2 is given by

$$\operatorname{Ric}(\xi,\xi) = 2\alpha^2,\tag{4.6}$$

and on a compact hypersurface of the Euclidean space, there exists a point where the Ricci curvature is strictly positive. Hence $\alpha \neq 0$, thus equation (4.5) on connected M gives $\varphi AX = \lambda \varphi X$. Operating φ on the last equation and using $A\xi = \lambda \xi$, we get $AX = \lambda X$, $X \in \mathfrak{X}(M)$. Thus $A = \lambda I$, and, consequently M is isometric to $S^3(\lambda^2)$. However, equation (4.6) gives $\alpha = \lambda$, therefore M is isometric to $S^3(\alpha^2)$.

The converse is trivial as $S^3(\alpha^2)$ has a Sasakian structure.

5. Axiom of flat torus for trans-Sasakian manifolds

A Riemannian manifold (M, g) satisfies the axiom of planes if there exists a 2-dimensional totally geodesic submanifold tangent to any 2-dimensional section of the tangent bundle TM at every point of the manifold (cf. [4]). Also, a Riemannian manifold (M, g) satisfies the axiom of 2-spheres, if for each $p \in M$ and each 2-dimensional subspace $\pi \subset T_pM$ of the tangent space T_pM , there exists a 2-dimensional umbilical submanifold N with parallel mean curvature vector field such that $p \in N$ and $\pi = T_pN$ (cf. [17]). Similarly, axioms of holomorphic and antiholomorphic planes are defined for Kaehler manifolds (cf. [3], [17]). These axioms are used to characterize the real and complex space forms. In this section we introduce the axiom of flat torus for a 3-dimensional trans-Sasakian manifold and show that a connected 3-dimensional trans-Sasakian manifold whose Ricci curvature in the direction of the Reeb vector field ξ a nonzero constant and which satisfies the axiom of flat torus is homothetic to Sasakian manifold.

Let $(M, \varphi, \xi, \eta, g, \alpha, \beta)$ be a 3-dimensional trans-Sasakian manifold and $T^2 = S^1 \times S^1$ be the 2-dimensional flat torus with product metric of constant curvature 0. We say that the trans-Sasakian manifold $(M, \varphi, \xi, \eta, g, \alpha, \beta)$ satisfies the axiom of flat torus if for each $p \in M$, there exists an isometric immersion $f: T^2 \to M$ tangential to ξ and $p \in f(T^2)$.

Theorem 5.1. Let $(M, \varphi, \xi, \eta, g, \alpha, \beta)$ be a 3-dimensional compact and simply connected trans-Sasakian manifold with nonzero constant $\operatorname{Ric}(\xi, \xi)$. If M satisfies the axiom of flat torus, then M is homothetic to a Sasakian manifold.

PROOF. We denote by the same letter g the metric of constant curvature 0 on the flat torus T^2 and by $\tilde{\nabla}$ the Riemannian connection on the Riemannian manifold (T^2, g) . For an isometric immersion of T^2 into the trans-Sasakian manifold $(M, \varphi, \xi, \eta, g, \alpha, \beta)$, we denote by N and A the local unit normal vector field and the shape operator, respectively. Then we have the following Gauss and Wiengarten formulae

$$\nabla_X Y = \nabla_X Y + g(AX, Y)N, \quad \nabla_X N = -AX, \quad X, Y \in \mathfrak{X}(T^2).$$
(5.1)

Since φ is skew symmetric, we have $\varphi N \in \mathfrak{X}(T^2)$, and thus we get a vector field $u \in \mathfrak{X}(T^2)$ defined by $u = -\varphi N$. Since the vector field ξ is tangential to T^2 and $\varphi \xi = 0$, we get $\eta(u) = 0$, and, consequently, the vector field u is a unit vector field and hence $\{u, \xi\}$ is a local orthonormal frame on T^2 . Let ω be the smooth 1-form dual to the unit vector field u. We set

$$\varphi X = \psi X + \omega(X)N, \quad X \in \mathfrak{X}(T^2), \tag{5.2}$$

where ψX is the tangential component of φX to T^2 . As $\omega(\xi) = 0$, equation (5.2) gives $\psi(\xi) = 0$. Also, using $\varphi u = N$ in equation (5.2), we get $\psi u = 0$. Thus the orthonormal frame $\{u, \xi\}$ annihilates ψ , consequently the equation (5.2) reduces to

$$\varphi X = \omega(X)N, \quad X \in \mathfrak{X}(T^2). \tag{5.3}$$

Now, using equations (2.2), (5.1) and (5.3), we get

$$\nabla_X u = -(\nabla \varphi) (X, N) + \varphi A X$$

= $-\beta \omega(X) \xi + \omega(AX) N, \quad X \in \mathfrak{X}(T^2),$

which on equating tangential and normal components gives

$$\widetilde{\nabla}_X u = -\beta \omega(X)\xi, \quad X \in \mathfrak{X}(T^2),$$
(5.4)

where, by abuse of notation, β means the restriction of the given β to T^2 . Also, equations (2.3), (5.1) and (5.3) give

$$\widetilde{\nabla}_X \xi + g(AX,\xi)N = -\alpha\omega(X)N + \beta(X - \eta(X)\xi),$$

that is,

$$\widetilde{\nabla}_X \xi = \beta(X - \eta(X)\xi), \quad X \in \mathfrak{X}(RP^2) \text{and} A\xi = -\alpha u.$$
 (5.5)

Equations (5.4) and (5.5) give, in particular,

$$\widetilde{\nabla}_{\xi} u = 0, \widetilde{\nabla}_{u} \xi = \beta u, \widetilde{\nabla}_{\xi} \xi = 0, \widetilde{\nabla}_{u} u = -\beta \xi,$$

consequently the curvature tensor field \widetilde{R} of the Riemannian manifold (T^2,g) satisfies

$$\widetilde{R}(u,\xi)\xi = 0 - \xi(\beta)u - \beta^2 u = -(\xi(\beta) + \beta^2)u.$$

Taking inner product with u in the above equation and using the fact that (T^2, g) is of constant curvature 0, we get

$$\xi(\beta) = -\beta^2 \tag{5.6}$$

on T^2 . Since, through each point of M, there passes T^2 , the above equation is valid on the whole M. Using the equation (5.6) in Lemma 2.2, we get

$$\operatorname{Ric}(\xi,\xi) = 2\alpha^2$$

which proves that α is a nonzero constant. Then, on a connected M, Lemma 2.1, gives $\beta = 0$. Finally, equations (2.2) and (2.3) together with Theorem 2.1, prove that M is homothetic to Sasakain manifold.

ACKNOWLEDGMENTS. This project was funded by the Deanship of Scientific Research (DSR), King Abdulaziz University, Jeddah, under grant No. (G-1436-130-241). The authors, therefore, acknowledge with thanks DSR technical and financial support. We express our sincere thanks to referees for many helpful suggestions.

S. Deshmukh et al. : Trans-Sasakian manifolds homothetic...

References

- D. E. BLAIR, Contact Manifolds in Riemannian Geometry, Lecture Notes in Mathematics 509, Springer, 1976.
- [2] D. E. BLAIR and J. A. OUBIÑA, Conformal and related changes of metric on the product of two almost contact metric manifolds, *Publ. Math. Debrecen* 34 (1990), 199–207.
- [3] B. Y. CHEN and K. OGIUE, Some characterizations of complex space forms, Duke Math. J. 40 (1973), 797–799.
- [4] E. CARTAN, Lecons su la geometrie des espaces de Riemann, Paris, 1946.
- [5] B. CHOW, The Ricci flow: Techniques and Applications, Part 1: Geometric Aspects, AMS Mathematical Surveys and Monographs 135 (2007).
- [6] R. L. COHEN, The immersion conjecture for differentiable manifolds, Ann. of Math. 122 (1985), 237–328.
- [7] S. DESHMUKH, Jacobi-type vector fields and Ricci solitons, Bull. Math. Soc. Sci. Math. Roumanie 55(103) (2012), 41–50.
- [8] S. DESHMUKH, Real hypersurfaces of a complex space form, Bull. Proc. Math. Sci. 121 (2011), 171–179.
- [9] S. DESHMUKH and M. M. TRIPATHI, A note on trans-Sasakian manifolds, Math. Slov. 63 (2013), 1361–1370.
- [10] A. GRAY and L. M. HERVELLA, The sixteen classes of almost Hermitian manifolds and their linear invariants, Ann. Mat. Pura Appl. 123 (1980), 35–58.
- [11] A. FUJIMOTO and H. MUTO, On cosymplectic manifolds, Tensor 28 (1974), 43-52.
- [12] K. A. KENMOTSU, A class of almost contact Riemannian manifolds, Tohoku Math. J. 24 (1972), 93–103.
- [13] V. F. KIRICHENKO, On the geometry of nearly trans-Sasakian manifolds (Russian), Dokl. Akad. Nauk 397 (2004), 733–736.
- [14] J. C. MARRERO, The local structure of trans-Sasakian manifolds, Ann. Mat. Pura Appl. 162 (1992), 77–86.
- [15] M. OKUMURA, Certain almost contact hypersurfaces in Kaehlerian manifolds of constant holomorphic sectional curvatures, *Tôhoku Math. J.* 16 (1964), 270–284.
- [16] J A. OUBIÑA, New classes of almost contact metric structures, Publ. Math. Debrecen 32 (1985), 187–193.
- [17] D. VAN LINDT and L. VERSTRAELEN, A survey on axioms of submanifolds in Riemannian and Kaehlerian geometry, *Colloq. Math.* 54 (1987), 193–213.

SHARIEF DESMUKH DEPARTMENT OF MATHEMATICS COLLEGE OF SCIENCE KING SAUD UNIVERSITY P.O. BOX-2455 RIYADH-11451 SAUDI ARABIA *E-mail:* shariefd@ksu.edu.sa UDAY CHAND DE DEPARTMENT OF PURE MATHEMATICS UNIVERSITY OF CALCUTTA WEST BENGAL INDIA *E-mail:* uc.de@yahoo.com FALLEH AL-SOLAMY DEPARTMENT OF MATHEMATICS COLLEGE OF SCIENCE KING ABDULAZIZ UNIVERSITY P.O. BOX-80015 JEDDAH-21589 SAUDI ARABIA *E-mail:* falleh@hotmail.com

(Received June 9, 2015; revised October 13, 2015)