
Publ. Math. Debrecen

88/3-4 (2016), 487–510

DOI: 10.5486/PMD.2016.7451

Focal set of curves in the Minkowski space near lightlike points

By ANA CLAUDIA NABARRO (São Carlos)
and ANDREA DE JESUS SACRAMENTO (São Carlos)

Abstract. We study the geometry of curves in the Minkowski space and in the de

Sitter space, specially at points where the tangent direction is lightlike (i.e. has length

zero) called lightlike points of the curve. We define the focal sets of these curves and

study the metric structure of them. At the lightlike points, the focal set is not defined.

We use singularity theory techniques to carry out our study and investigate the focal

set near lightlike points.

1. Introduction

The study of submanifolds in Minkowski space is of interest in relativity

theory. We believe that it is important to study the geometry of submanifolds

in the Minkowski space with the induced metric degenerating at some points on

the submanifolds. For example, any closed (compact without boundary) surfaces

in the Minkowski 3-space has an non-empty locus of points where the metric is

degenerate. (We observe that there are various studies in geometry on such sub-

manifolds. For example, in [13] a Gauss–Bonnet type theorem is proven, and in

[10], the problem of how to extend the Levi–Civita connection to the locus of

degeneracy of the metric is considered). For this reason, some authors started to

investigate the geometry of such submanifolds using the singularity theory. The

first step was to study the cases of curves in the Minkowski plane [12] and of
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surfaces in the Minkowski 3-space [14]. In [14], the author studied the caustics

of surfaces in the Minkowski 3-space. Although the focal set of the surface is

not defined at points where the metric is degenerate, the caustic is. The prop-

erties of the induced metric on the caustic are studied in [14]. Submanifolds in

pseudo-spheres of the Minkowski space are also studied in several papers. In [5],

Izumiya–Pei–Sano defined the hyperbolic Gauss indicatrix of a hypersurface

in the Minkowski space model of the hyperbolic space. The work in [5] set the

foundations of applications of singularity theory for the extrinsic geometry of sub-

manifolds in the hyperbolic space. The extrinsic geometry of spacelike or timelike

submanifolds in other pseudo-spheres of the Minkowski-space are investigated in

subsequent papers.

In this paper, we study the geometry of curves in Minkowski 3-space and in

pseudo-spheres S2
1 and S3

1 . In order to do this, we study the families of Lorentz

distance squared functions on the curves. We study their focal sets and the

bifurcation set of the family of the Lorentz distance squared functions on these

curves in order to investigate what happens near the lightlike points.

The paper is organised as follows. Section 2 addresses some preliminary

results and notions that are used in the paper. We define an open and dense set

of curves, such that the lightlike points of a curve are isolated. Besides, given a

curve in this set, passing by lightlike points, the curve changes from spacelike to

timelike.

We consider in §3 spacelike and timelike curves γ using the Frenet–Serret

formulae. These formulae and the family of Lorentz distance squared functions

on γ are the main tools in this section. Here we study the geometry and metric

structure of the focal set of γ.

In Section 4, we study the bifurcation set of the family of Lorentz distance

squared functions on γ in the neighborhood of lightlike points of the curve. In

this case, we cannot parametrise the curve by arc length, therefore we cannot use

the Frenet–Serret formulae as in §3.

In §5 and §6, we consider curves, the focal sets and the bifurcation sets in the

pseudo-spheres S2
1 and S3

1 . We study the metric structures of these sets locally

at lightlike points of γ.

2. Preliminaries

The Minkowski space Rn+1
1 is the vector space Rn+1 endowed with the

pseudo-scalar product 〈x, y〉 = −x1y1 + x2y2 + . . . + xn+1yn+1, for any x =
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(x1, x2, . . . , xn+1) and y = (y1, y2, . . . , yn+1) in Rn+1. We say that a non-zero

vector x ∈ Rn+1
1 is spacelike if 〈x, x〉 > 0, lightlike if 〈x, x〉 = 0 and timelike

if 〈x, x〉 < 0. The norm of a vector x ∈ Rn+1
1 is defined by ‖x‖ =

√
|〈x, x〉|.

This is an example of the Lorentzian metric. In R3
1, the pseudo vector product of

x = (x1, x2, x3) and y = (y1, y2, y3) is:

x ∧ y =

∣∣∣∣∣∣∣
−e1 e2 e3
x1 x2 x3
y1 y2 y3

∣∣∣∣∣∣∣ ,
where {e1, e2, e3} is the standard basis of R3. For basic concepts and details of

properties, see [11].

We have the following pseudo-spheres in Rn+1
1 with centre 0 and radius r > 0,

Hn(−r) = {x ∈ Rn+1
1 | 〈x, x〉 = −r2}, called Hyperbolic n-space;

Sn1 (r) = {x ∈ Rn+1
1 | 〈x, x〉 = r2}, called de Sitter n-space;

LC∗ = {x ∈ Rn+1
1 \ {0} | 〈x, x〉 = 0}, called Lightcone.

Instead of Sn1 (1), we usually write Sn1 .

Let V be a vector subspace of Rn+1
1 . Then we say that V is timelike if V has

a timelike vector, spacelike if every non-zero vector in V is spacelike, or lightlike

otherwise. For a non-zero vector v ∈ Rn+1
1 and a real number c, we define a

hyperplane with normal v by

P (v, c) = {x ∈ Rn+1
1 | 〈x, v〉 = c}.

We call P (v, c) a spacelike hyperplane, a timelike hyperplane or lightlike hyper-

plane if v is timelike, spacelike or lightlike, respectively.

We consider an embedding γ : I → Rn1 , where I is an open interval of R. The

set Emb(I,Rn1 ) of such embeddings is endowed with the Whitney C∞-topology.

We say that a property is generic if it is satisfied by curves in a residual subset

of Emb(I,Rn1 ).

We say that γ is spacelike (resp. timelike) if γ′(t) is a spacelike (resp. time-

like) vector for all t ∈ I. A point γ(t) is called a lightlike point if γ′(t) is a lightlike

vector.

As in [12] for plane curves, we define the subset Ω of Emb(I,Rn1 ) such that

a curve γ is in Ω if and only if 〈γ′′(t), γ′(t)〉 6= 0 whenever 〈γ′(t), γ′(t)〉 = 0. One

can show, using Thom’s transversality results (see for example [1, Chapter 9]),

that Ω is a residual subset of Emb(I,Rn1 ).
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Proposition 2.1. Let γ ∈ Ω. Then the lightlike points of γ are isolated

points.

Proof. The proof is similar to the case n = 2 given in [12]. �

We observe that if the curve γ ∈ Ω then at a lightlike point γ(t0), the curve

changes from a spacelike curve to a timelike curve or vice-versa.

To study the local properties of γ at γ(t0), we use the germ γ : R, t0 → R3
1

of γ at t0. The family of Lorentz distance squared functions f : I ×R3
1 → R on γ

is given by

f(t, v) = 〈γ(t)− v, γ(t)− v〉.

We denote by fv : I → R the function fv(t) = f(t, v), for any fixed v ∈ R3
1.

The Lorentz distance squared function fv has singularity of type Ak at t0 if

the derivatives (fv)
(p)(t0) = 0 for all 1 ≤ p ≤ k, and (fv)

(k+1)(t0) 6= 0. We also

say that fv has singularity of type A≥k at t0 if (fv)
(p)(t0) = 0 for all 1 ≤ p ≤ k.

This is valid including if γ(t0) is a lightlike point of the curve. Now let F : R3
1 → R

be a submersion and γ : I → R3
1 be a regular curve. We say that γ and F−1(0)

have contact of order k or k-point contact at t = t0 if the function g(t) = F ◦ γ(t)

satisfies g(t0) = g′(t0) = · · · = g(k)(t0) = 0 and g(k+1)(t0) 6= 0, i.e., if g has

singularity Ak at t0. Then the singularity type of fv at t0 measures the contact

of γ at γ(t0) with the pseudo-sphere of centre v and radius ‖γ(t0)− v‖. The type

of pseudo-sphere is determined by the sign of 〈γ(t0)− v, γ(t0)− v〉. For a generic

curve in R3
1, fv has local singularities of type A1, A2, A3 or A4 (see [9]), and the

singularities A4 occur at isolated points of the curve. If fv0 has an Ak-singularity

(k = 2, 3, 4) at t0, then f is a (p)-versal unfolding of fv0 [9]. The bifurcation set

of f is given by

Bif(f) = {v ∈ R3
1 | f ′v(t) = f ′′v (t) = 0 in (t, v) for some t},

i.e., the directions where fv at t has a degenerate (non-stable) singularity, that

is, the singularity is of type A≥2. It is defined even when the point is a lightlike

point of γ.

The focal set of γ, for spacelike or timelike curves, is the locus of centres of

pseudo-spheres that has at least a 2-point contact with the curve. Therefore, the

Bif(f) and the focal set of γ coincide for spacelike and timelike curves.

We have a fundamental result of the unfolding theory:

Theorem 2.2 ([1]). Let G : (R × R3, (t0, v0)) → R be a 3-parameter un-

folding of g(t) which has an Ak-singularity at t0. Suppose that G is a (p)-versal

unfolding, then Bif(G) is locally diffeomorphic to
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(a) R2, if k = 2;

(b) cuspidal edge C × R, if k = 3;

(c) swallowtail SW , if k = 4,

where C = {(x1, x2) | x21 = x32} is the ordinary cusp and SW = {(x1, x2, x3) |
x1 = 3u4 + u2v, x2 = 4u3 + 2uv, x3 = v} is the swallowtail (see [1] for figure of

the SW surface).

3. The focal sets of spacelike and timelike curves

Let γ : I → R3
1 be a spacelike or a timelike curve. Since γ has no lightlike

points, we can suppose γ parametrised by arc length s.

In this section, we remember the Frenet–Serret formulae of γ and we find

the parametrisation of their focal surfaces. Furthermore, we study the metric

structure of these focal surfaces.

We denote by t the unit tangent vector to γ. Let n be the unit normal

vector to γ given by γ′′(s) = k(s)n(s), where k(s) = ‖γ′′(s)‖ is defined as being

the curvature of γ at s, and b(s) = t(s) ∧ n(s) the unit binormal vector to γ(s).

Then, we have the pseudo-orthonormal basis {t(s), n(s), b(s)} of R3
1 along γ. Using

exactly the same arguments as the case for a curve in the Euclidian 3-space, we

have the following Frenet–Serret formulae (see [8], [4]):
t′(s) = k(s)n(s)

n′(s) = −ε(γ(s))δ(γ(s))k(s)t(s) + ε(γ(s))τ(s)b(s)

b′(s) = τ(s)n(s),

with τ(s) being the torsion of γ at s, ε(γ(s)) = sign(t(s)), δ(γ(s)) = sign(n(s)),

where sign(v) is 1 if the vector v is spacelike or −1 if the vector v is timelike. We

write them, ε and δ for short.

Observe that if γ is a spacelike or a timelike curve and k(s) = 0 for some

s ∈ I, then f ′′v (s) = ε(γ(s)) 6= 0 and there is no singularity A≥2. Now if τ(s) = 0

for some s ∈ I, then generically f
(3)
v (s) = −ε(γ(s))k′(s) 6= 0, that is, there is no

singularity A≥3. This is the reason why we assume that k(s) 6= 0 and τ(s) 6= 0 in

the following proposition.

Proposition 3.1 ([9]). Let γ : I → R3
1 be a spacelike or a timelike curve

parametrised by arc length, with k(s) 6= 0 and τ(s) 6= 0. Then

(1) f ′v(s0) = 0 if and only if there exist λ, µ ∈ R such that γ(s0)− v = λn(s0) +

µb(s0).
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(2) f ′v(s0) = f ′′v (s0) = 0 if and only if v = γ(s0) + ε(γ(s0))
δ(γ(s0))k(s0)

n(s0) + µb(s0) for

some µ ∈ R.

(3) f ′v(s0) = f ′′v (s0) = f
(3)
v (s0) = 0 if and only if

v = γ(s0) +
ε(γ(s0))

δ(γ(s0))k(s0)
n(s0) +

k′(s0)

ε(γ(s0))δ(γ(s0))k2(s0)τ(s0)
b(s0).

Thus, for a spacelike or timelike curve γ parametrised by arc length with

k(s) 6= 0, we have that the focal surface of γ is given by

B(s, µ) = γ(s) +
ε(γ(s))

δ(γ(s))k(s)
n(s) + µb(s), (1)

with µ ∈ R. The cuspidal curve of the focal surface is given by

B(s) = γ(s) +
ε(γ(s))

δ(γ(s))k(s)
n(s) + µ(s)b(s), (2)

with µ(s) = k′(s)
ε(γ(s))δ(γ(s))k2(s)τ(s) , that is, where the Lorentz distance squared

function has singularity A≥3. We denote the cuspidal curve B(s) by C.
We observe that the focal surface is a developable surface (for more details

see [3]).

Proposition 3.2. Let γ be a connected timelike curve, then γ does not

intersect its focal surface.

Proof. Suppose that γ is timelike and intersects its focal surface, then there

exists s1, s2 ∈ I with s1 6= s2 (for simplicity suppose that s2 < s1) such that,

γ(s1)− 1

k(s1)
n(s1) + µb(s1) = γ(s2).

Consider a function g : [s2, s1] → R defined by g(s) = 〈γ(s), γ′(s1)〉 −
〈γ(s1), γ′(s1)〉. Then g(s1) = g(s2) = 0 and therefore, by the Rolle’s theorem,

there exists s3 ∈ (s2, s1) such that g′(s3) = 0. Since g′(s3) = 〈γ′(s1), γ′(s3)〉,
γ′(s3) belongs to a plane generated by n(s1) and b(s1). This contradicts to the

fact that the plane is spacelike. Therefore, γ does not intersect its focal sur-

face. �

Remark 3.3. If γ is spacelike and γ intersects its focal surface, then generi-

cally its occurs at isolated points because this is given by a generic transversality

condition.
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To study the metric structure of the focal surface B, we need some concepts.

A spacelike surface is a surface for which the tangent plane, at any point, is a

spacelike plane (i.e., consists only of spacelike vectors). A timelike surface is a

surface for which the tangent plane, at any point, is a timelike plane (i.e., consists

of spacelike, timelike and lightlike vectors).

The pseudo scalar product in R3
1 induces a metric on the focal surface B

that may be degenerated at some points of B. This means that the tangent

planes to B are lightlike at these points. We label the locus of such points the

Locus of Degeneracy and we denote it by LD (see [14] for Locus of Degeneracy

of caustics of surfaces in R3
1). The LD of B may be empty (Theorem 3.4, (d))

or a smooth curve (Proposition 4.3) that splits the focal surface B locally into

a Riemannian (where the tangent planes are spacelike) and a Lorentzian region

(where the tangent planes are timelike). It is interesting to study what happens

at points where the metric is degenerate and explain how to change the geometry

from a Riemannian region to a Lorentzian region of the submanifold (see §4).

Furthermore, the focal surface can have a set of singularities.

Consider the focal surface of a spacelike or a timelike curve γ , that is,

B(s, µ) = γ(s) +
ε(γ(s))

δ(γ(s))k(s)
n(s) + µb(s), µ ∈ R.

Observe that Bs = ∂B
∂s (s, µ) is parallel to Bµ = ∂B

∂µ (s, µ) if and only if

µ(s) =
k′(s)

ε(γ(s))δ(γ(s))k2(s)τ(s)
,

and B(s, µ(s)) is the parametrisation of the curve where fv has singularities of

type A≥3, that is the cuspidal curve C.
Supposing

µ(s) 6= k′(s)

ε(γ(s))δ(γ(s))k2(s)τ(s)
,

then Bs and Bµ generate the tangent planes of the surface B, and for v =

λ1Bs + λ2Bµ,

〈v, v〉 = λ21

(
τ2

k2
〈b, b〉+

k′2δ

k4
− 2

εk′µτ

k2
+ µ2τ2δ

)
+ 2λ1λ2

( τ
δk
〈b, b〉

)
+ λ22〈b, b〉.

We use this expression in the following theorem.

The above calculations show the item (a) of the next result, that is, the set

of singularities of the focal surface is the cuspidal curve C given by equation (2).
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Theorem 3.4. (a) The set of singular points of the focal surface is equal to

the cuspidal curve C.
Away from the cuspidal curve C:

(b) the focal surface of a timelike generic curve is spacelike;

(c) the focal surface of a spacelike generic curve is timelike;

(d) if the curve is spacelike and timelike, then the LD set of the focal surface is

empty.

Proof. (b) Let γ be a timelike curve, then n(s) and b(s) are spacelike.

Therefore, v = λ1Bs + λ2Bµ are vectors on the tangent plane and

〈v, v〉 = λ21

((
k′

k2
+ µτ

)2

+
τ2

k2

)
(s) + 2λ1λ2

(τ
k

)
(s) + λ22. (∗)

Making 〈v, v〉 = 0, we can think in the above equation as a quadratic equation

of λ1, thus ∆ = −4λ22
(
k′

k2 + µτ
)2

(s) ≤ 0.

Since µ(s) 6= − k′

k2τ (s) at the regular points of the focal surface, then ∆ = 0

⇐⇒ λ2 = 0. Replacing λ2 = 0 in (∗), we have a lightlike direction if τ(s) = 0 and

k′(s) = 0, but we are supposing τ(s) 6= 0 (see Proposition 3.1), so ∆ < 0. Thus,

we do not have lightlike directions in this plane, and therefore the tangent planes

are spacelike.

(c) Let γ be a spacelike curve, then we have two cases: n(s) timelike and b(s)

spacelike or n(s) spacelike and b(s) timelike.

In the case where n(s) is timelike and b(s) is spacelike, we have

〈v, v〉 = λ21

(
τ2

k2
−
(
k′

k2
+ µτ

)2
)

(s)− 2λ1λ2

(τ
k

)
(s) + λ22. (∗∗)

Similar to (b), we obtain ∆ ≥ 0 and at the regular points ∆ = 0 ⇐⇒ λ2 = 0.

Replacing λ2 = 0 in (∗∗) we have a lightlike direction if
(
τ2

k2 −
(
k′

k2 +µτ
)2)

(s) = 0,

i.e., µ(s) = µ1(s) =
(
1
k −

k′

k2τ

)
(s) or µ(s) = µ2(s) =

(
− 1

k −
k′

k2τ

)
(s). Then

Bs(s, µ1(s)) =
τ(s)

k(s)
(n(s)− b(s)) and Bs(s, µ2(s)) = −τ(s)

k(s)
(n(s) + b(s))

are linearly independent lightlike vectors and Bµ(s, µ1(s)) = Bµ(s, µ2(s)) = b(s).

On the other hand, we have

Bs(s, µ2(s)) = −Bs(s, µ1(s))− 2τ(s)

k(s)
Bµ(s, µ1(s)),

i.e., Bs(s, µ2(s)) belongs to the plane generated by Bs(s, µ1(s)) and Bµ(s, µ1(s)).

Similarly, the vector Bs(s, µ1(s)) is in the plane generated by Bs(s, µ2(s)) and

Bµ(s, µ2(s)). Therefore if λ2 = 0, the tangent planes at B(s, µ1(s)) and at
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B(s, µ2(s)) will have two lightlike directions and then these planes will be time-

like. Thus, we conclude that at all points of the focal surface, the tangent plane

is timelike.

When n(s) is spacelike and b(s) is timelike, it follows that at all points of the

focal surface, the tangent plane is timelike, because Bµ(s, µ) = b(s) where b(s) is

timelike.

(d) The LD set is empty and it is a consequence of (a), (b) and (c). �

4. The focal set near lightlike points

So far, we have studied what is happening to the focal surface of a spacelike

or a timelike curve. The focal set is not defined at the lightlike points of the curve,

but at these points, the bifurcation set of the family of Lorentz distance squared

functions on the curve is defined. Furthermore, the focal set is contained in the

bifurcation set and they coincide if the curve is spacelike or timelike. Consider

a curve with lightlike points. As the curve is in Ω, these points are isolated

(Proposition 2.1) and the curve changes from spacelike to timelike at these points.

We can think of the bifurcation set as a form of pass from the focal set of the

spacelike side of the curve to the focal set of the timelike side of the curve.

Our main goal in this section is then to understand this passage by studying the

geometry of the bifurcation set near the lightlike point of the curve. The principal

result in this section is given by Theorem 4.3.

To study the bifurcation set near lightlike points γ(t0) of γ, we cannot

parametrise the curve by the arc length since 〈γ′(t0), γ′(t0)〉 = 0. We consider

then a smooth and regular curve γ : I → R3
1 not parametrised by the arc length.

The Lorentz distance squared function is given by fv(t) = 〈γ(t) − v, γ(t) − v〉.
Thus

1

2
f ′v(t) = 〈γ(t)− v, γ′(t)〉.

It follows that fv is singular at t if and only if 〈γ(t)−v, γ′(t)〉 = 0, equivalently,

γ(t) − v = µN(t) + λB(t), where N(t) and B(t) are vectors that generate the

normal plane to the vector γ′(t). (This condition includes the lightlike points.)

Differentiating again we obtain

1

2
f ′′v (t) = 〈γ(t)− v, γ′′(t)〉+ 〈γ′(t), γ′(t)〉.

The singularity of fv is degenerate if and only if f ′v(t) = f ′′v (t) = 0, equiva-

lently, γ(t)− v = µN(t) + λB(t) and

µ〈N(t), γ′′(t)〉+ λ〈B(t), γ′′(t)〉+ 〈γ′(t), γ′(t)〉 = 0. (3)
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It follows that the bifurcation set of f is given by

Bif(f) = {γ(t)− µN(t)− λB(t) | (µ, λ) is solution of (3)}. (4)

Away from the isolated lightlike points of γ, the bifurcation set is precisely the

focal surface of the spacelike and timelike components of γ studied in Section 3.

Now our aim is to study the general expression (4) of the bifurcation set of

the family of Lorentz distance squared functions on the curve, to analyse what is

happening with this surface when the curve γ has lightlike points. We remember

that since γ ∈ Ω, then near a lightlike point, γ changes from a spacelike curve to

a timelike curve.

Taking N(t) = γ′(t) ∧ γ′′(t) and B(t) = γ′(t) ∧ (γ′(t) ∧ γ′′(t)) and replacing

in (3) and (4), we have that the bifurcation set of f can be written as

Bif(f) = {γ(t)− µN(t)− 〈γ′(t), γ′(t)〉
〈γ′(t) ∧ γ′′(t), γ′(t) ∧ γ′′(t)〉

B(t) | µ ∈ R}.

In short, we will denote the map that defines Bif(f) as B(t, µ), and the Bif(f)

set also as B.

Since γ ∈ Ω, at a lightlike point γ(t0) of γ, the vector N(t0) = γ′(t0)∧γ′′(t0)

is not lightlike, thus the bifurcation set above is well defined in the neighborhood

of t0. Furthermore, B(t0) is parallel to γ′(t0), and the vectors N(t0) and B(t0)

generate the normal plane to γ′(t0). In this case as 〈γ′(t0), γ′(t0)〉 = 0, then γ′(t0)

is contained in this normal plane, which is a situation totally different from the

Euclidian case.

Given a curve γ with lightlike points γ(t0), in the next result, we prove which

types of singularities can occur if v = B(t0, µ) for the Lorentz distance squared

function fv. These are the only points of the bifurcation set that are not in the

focal surfaces of the spacelike and timelike parts of the curve.

Proposition 4.1. Let γ ∈ Ω. If γ(t0) is the lightlike point of γ and v =

B(t0, µ) then the Lorentz distance squared function fv has A2-singularity except

if µ0 = −3〈γ′(t0),γ
′′(t0)〉

〈γ′(t0)∧γ′′(t0),γ′′′(t0)〉 , where fv0 has A≥3-singularity for v0 = B(t0, µ0).

Proof. Consider fv(t) = 〈γ(t) − v, γ(t) − v〉 the Lorentz distance squared

function on γ. Then f
(3)
v (t) = 6〈γ′(t), γ′′(t)〉+ 2〈γ(t)− v, γ′′′(t)〉, i.e.,

f (3)v (t) = 6〈γ′(t), γ′′(t)〉+ 2〈λ(t)γ′(t) ∧ (γ′(t) ∧ γ′′(t)) + µγ′(t) ∧ γ′′(t), γ′′′(t)〉.

Therefore, at lightlike point γ(t0), f
(3)
v (t0) = 6〈γ′(t0), γ′′(t0)〉 + 2〈µγ′(t0) ∧

γ′′(t0), γ′′′(t0)〉. Remember that we are supposing as in Section 3 that the torsion

is non zero at t0 and therefore 〈γ′(t0) ∧ γ′′(t0), γ′′′(t0)〉 6= 0. Then we have

f
(3)
v (t0) = 0 if and only if µ = −3〈γ′(t0),γ

′′(t0)〉
〈γ′(t0)∧γ′′(t0),γ′′′(t0)〉 6= 0, because γ ∈ Ω. �



Focal set of curves in the Minkowski space near lightlike points 497

We analyse the curve B(t0, µ), µ ∈ R, of the surface B, that is a curve that

split the focal surface of the spacelike side of γ of the focal surface of the timelike

side of γ.

Proposition 4.2. (a) Let γ : I → R3
1 be a regular curve with γ(t0) a lightlike

point of γ. On the points of the curve B(t0, µ), µ ∈ R, surface B has degenerate

tangent plane except for µ0 = −3〈γ′(t0),γ
′′(t0)〉

〈γ′(t0)∧γ′′(t0),γ′′′(t0)〉 . Thus, the LD set of B is

B(t0, µ) with µ 6= µ0.

(b) The curve B(t0, µ), µ ∈ R, intersects the cuspidal curve C when µ = µ0.

Proof. (a) We have

∂B

∂t
(t, µ) = γ′(t)− µ

(
γ′(t) ∧ γ′′′(t)

)
− λ′(t)

(
γ′(t) ∧ (γ′(t) ∧ γ′′(t))

)
− λ(t)

(
γ′(t) ∧ (γ′(t) ∧ γ′′(t))

)′
∂B

∂µ
(t, µ) = −

(
γ′(t) ∧ γ′′(t)

)
, where

λ′(t) =

2〈γ′(t), γ′′(t)〉〈γ′(t) ∧ γ′′(t), γ′(t) ∧ γ′′(t)〉−2〈γ′(t), γ′(t)〉〈γ′(t) ∧ γ′′(t), γ′(t) ∧ γ′′′(t)〉
(〈γ′(t) ∧ γ′′(t), γ′(t) ∧ γ′′(t)〉)2

Then ∂B
∂t (t0, µ) = 3γ′(t0) − µ(γ′(t0) ∧ γ′′′(t0)) and ∂B

∂µ (t0, µ) = −(γ′(t0) ∧
γ′′(t0)), and therefore ∂B

∂t (t0, µ) ∧ ∂B
∂µ (t0, µ) = (3〈γ′(t0), γ′′(t0)〉 + µ〈γ′(t0) ∧

γ′′(t0), γ′′′(t0)〉)γ′(t0). As the torsion is non zero at t0, we have that the vec-

tors γ′(t0), γ′′(t0) and γ′′′(t0) are linearly independent and then ∂B
∂t (t0, µ) and

∂B
∂µ (t0, µ) are linearly dependent if and only if µ = −3〈γ′(t0),γ

′′(t0)〉
〈γ′(t0)∧γ′′(t0),γ′′′(t0)〉 , which we

call µ0.

Furthermore, using Theorem 3.4, we have that the focal surface of the space-

like side of the curve is timelike and that the focal surface of the timelike side of

the curve is spacelike. Thus, the LD is contained in B(t0, µ).

Supposing µ 6= µ0, the vectors of the tangent planes at the points of the

curve B(t0, µ) are given by:

v = λ1(3γ′(t0)− µ (γ′(t0) ∧ γ′′′(t0)))− λ2 (γ′(t0) ∧ γ′′(t0)) .

Then

〈v, v〉 = λ21µ
2〈γ′(t0) ∧ γ′′′(t0), γ′(t0) ∧ γ′′′(t0)〉

+ 2λ1λ2µ〈γ′(t0) ∧ γ′′′(t0), γ′(t0) ∧ γ′′(t0)〉

+ λ22〈γ′(t0) ∧ γ′′(t0), γ′(t0) ∧ γ′′(t0)〉.

Making 〈v, v〉 = 0 and thinking of the above equation as a quadratic equation of

λ2, we have ∆ = 0. Therefore, each tangent plane has a unique lightlike direction,
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given by

(λ1, λ2) =

(
λ1,−λ1

µ〈γ′(t0) ∧ γ′′′(t0), γ′(t0) ∧ γ′′(t0)〉
〈γ′(t0) ∧ γ′′(t0), γ′(t0) ∧ γ′′(t0)〉

)
,

with λ1 6= 0. Thus, the induced metric on these planes is degenerate and the

curve B(t0, µ), with µ 6= µ0, is the LD of the surface B. (Observe that the

denominator is different from zero because γ ∈ Ω.)

(b) The proof of this case follows from Proposition 4.1, where we have that

fv0 has singularity A≥3 for v0 = B(t0, µ0), and the cuspidal curve is precisely

given by v′s where fv has singularity A≥3. �

We prove below that the surface B intersects the curve γ at the lightlike

points and we study the geometric behavior of B at the neighborhood of these

points.

Theorem 4.3. Let γ ∈ Ω, with γ(t0) lightlike point, and let B be the

bifurcation set of the family of Lorentz distance squared functions on γ. Then

(1) the surface B intersects the curve γ locally only at the lightlike point γ(t0).

(2) the surface B is regular at γ(t0).

(3) the tangent line to the curve at γ(t0) is contained in the tangent plane to B

at such a point, that is, the unique lightlike direction of the tangent plane of

B at γ(t0) is the direction of the tangent line of γ at γ(t0).

(4) the LD set of the surface B is a normal line to the curve passing through

γ(t0) and splits the focal surface into a Riemannian and a Lorentzian region.

Proof. (1) Since γ ∈ Ω, we have that at a lightlike point γ(t0),

〈γ′(t0), γ′(t0)〉
〈γ′(t0) ∧ γ′′(t0), γ′(t0) ∧ γ′′(t0)〉

= 0.

Then B(t0, 0) = γ(t0). Locally this intersection occurs only at the lightlike points

because of Proposition 3.2 and Remark 3.3.

(2) From Proposition 4.1, we have that at γ(t0) = B(t0, 0) = v0, fv0 has only

singularity of type A2. Thus, by Theorem 2.2, surface B is locally regular at this

point.

(3) Observe that γ′(t0) belongs to the tangent plane of the surface at γ(t0),

which is generated by ∂B
∂t (t0, 0) = 3γ′(t0) and ∂B

∂µ (t0, 0) = −(γ′(t0) ∧ γ′′(t0)).

Furthermore, the vectors of the tangent plane to the surface at γ(t0), are

given by:

v = 3λ1γ
′(t0)− λ2 (γ′(t0) ∧ γ′′(t0)) ,
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where λ1, λ2 ∈ R, and 〈v, v〉 = λ22〈γ′(t0), γ′′(t0)〉2 ≥ 0. Thus γ′(t0) is the unique

lightlike direction of the tangent plane, i.e. the tangent plane at γ(t0) is lightlike.

(4) As B(t0, µ) = γ(t0) − µN(t0), then this normal line of γ is contained

in the focal surface. By Proposition 4.2 (a), the LD is B(t0, µ) except when

µ0 = −3〈γ′(t0),γ
′′(t0)〉

〈γ′(t0)∧γ′′(t0),γ′′′(t0)〉 , which is different from zero because γ ∈ Ω. Therefore,

near the (t0, 0), i.e., near the B(t0, 0) = γ(t0), the induced metric along this

normal line is degenerate. For this, it is enough to take a neighborhood of (t0, 0)

that does not contain µ0. �

Observe that the cuspidal curve C intersects the curve B(t0, µ) at B(t0, µ0)

(Proposition 4.2 (b)), i.e., away from lightlike points where µ = 0. In this case,

the local configuration of the bifurcation set at B(t0, µ0) = v0 is as in Figure

below, if fv0 has singularity A3 at t0.

In the case where fv0 has singularity A4 at t0, for B(t0, µ0) = v0, the curve

LD intersects the cuspidal curve at the singular point of C.



500 Ana Claudia Nabarro and Andrea de Jesus Sacramento

5. Focal set of curves in S2
1

In this section, we consider curves in the de Sitter space S2
1 ⊂ R3

1 and their

focal sets also in S2
1 , which we call the spherical focal curve. To obtain the results,

we have Section 4 as a motivation.

Let γ : I → S2
1 be a spacelike or a timelike smooth and a regular curve in S2

1

parametrised by the arc length. For this curve, consider the pseudo-orthonormal

frame {γ(s), t(s) = γ′(s), n(s) = γ(s) ∧ t(s)} of R3
1 along γ. By standard argu-

ments, we have the following Frenet–Serret type formulae:
γ′(s) = t(s)

t′(s) = −ε(γ(s))γ(s) + δ(γ(s))kg(s)n(s)

n′(s) = −ε(γ(s))kg(s)t(s),

where ε(γ(s)) = sign(t(s)), δ(γ(s)) = sign(n(s)) and kg(s) = 〈γ′′(s), n(s)〉 is the

geodesic curvature of γ at s.

Consider the family of Lorentz distance squared functions f : I × S2
1 → R

on γ, defined by

f(s, v) = 〈γ(s)− v, γ(s)− v〉,

and fv : I → R defined by fv(s) = f(s, v), for some v ∈ S2
1 fixed.

The bifurcation set of f is given by

Bif(f) = {v ∈ S2
1 | f ′v(s) = f ′′v (s) = 0 in (s, v) for some s},

i.e., the directions where the singularity of f at s is at least A2. The spherical

focal curve of γ is given by the bifurcation set of f . Furthermore, the spherical

focal curve is the intersection of the focal surface in R3
1 with the de Sitter space

S2
1 . Observe that since − 1

2fv(s) = 〈γ(s), v〉 − 1 if v ∈ S2
1 , then the singularities

of the Lorentz distance squared function and of the height function are the same.

Therefore, the evolutes of a curve γ in S2
1 , coincide with the spherical focal curve

of γ. In [7], the authors study the evolutes of hyperbolic plane curves, that is,

a curve in H2(−1) and these evolutes also coincide with the bifurcation set in

H2(−1).

For a spacelike or a timelike curve γ parametrised by the arc length with

kg(s) 6= 0, we have that the spherical focal curve of γ is given by

α±(s) = ± kg(s)√
k2g(s) + δ(γ(s))

γ(s)± ε(γ(s))√
k2g(s) + δ(γ(s))

n(s).
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Remark 5.1. To define the spherical focal curve, we must have k2g(s) +

δ(γ(s)) > 0. Then in the case that γ is spacelike, we must have kg(s) < −1

or kg(s) > 1 and in the case that γ is timelike, the spherical focal curve is always

defined. Furthermore, as α−(s) = −α+(s) we work only with α+(s).

Consider C the cuspidal curve of the focal surface of γ in R3
1, as in Section 3.

Then, we have the next result.

Proposition 5.2. The singular points of the spherical focal curve of γ are

given by S2
1 ∩ C.

Proof. Observe that fv has singularity A≥3 at s0 if and only if k′g(s0) = 0,

equivalently α+(s0) (and α−(s0)) is the singular point of the spherical focal curve,

because

(α+)′(s) =
1

(k2g(s) + δ(γ(s)))
√
k2g(s) + δ(γ(s)))

× (δ(γ(s))k′g(s)γ(s)− ε(γ(s))kg(s)k
′
g(s)n(s)). �

In the next proposition, we study the metric structure of the spherical focal

curve of a spacelike curve and of a timelike curve.

Proposition 5.3. Away from the singular points,

(a) the spherical focal curve of a spacelike curve is timelike;

(b) the spherical focal curve of a timelike curve is spacelike.

Proof. (a) Away from the singular points of α+, i.e., where k′g(s) 6= 0 we

have that α+ is a timelike curve because

〈(α+)′(s), (α+)′(s)〉 =
−(k′g)

2(s)

(k2g(s)− 1)2
< 0.

(b) This proof is analogous to the case (a). �

We want to know what is happening at the lightlike points of a curve γ. For

this, let us find an expression of the bifurcation set near a lightlike point of γ.

Here we cannot consider γ : I → S2
1 parametrised by the arc length and the focal

set is not defined at the lightlike point.

Let γ(t) and N(t) = γ(t)∧γ′(t) be the vectors that generate the normal plane

to the vector γ′(t) and consider the family of Lorentz distance squared functions

f : I × S2
1 → R on γ. By definition, we have that the bifurcation set of f is



502 Ana Claudia Nabarro and Andrea de Jesus Sacramento

given by

Bif(f) = {±
√

1 + µ2〈γ′(t), γ′(t)〉γ(t) + µN(t) | µ

is the solution of the equation (1±)},

where µ〈γ(t) ∧ γ′(t), γ′′(t)〉 ±
√

1 + µ2〈γ′(t), γ′(t)〉〈γ(t), γ′′(t)〉 = 0. (1±)

Remark 5.4. Let γ ∈ Ω such that γ(t0) is a lightlike point of γ. In the next re-

sult, we use that 〈γ(t0)∧ γ′(t0), γ′′(t0)〉 6= 0. Indeed, if 〈γ(t0)∧ γ′(t0), γ′′(t0)〉 = 0

then exist a, b ∈ R with a2 + b2 6= 0 such that γ′′(t0) = aγ(t0) + bγ′(t0), be-

cause γ(t0) and γ′(t0) are vectors linearly independent. By supposing a 6= 0 and

b = 0, then 〈γ′′(t0), γ(t0)〉 = a 6= 0, that is a contradiction, since 〈γ(t), γ′′(t)〉 =

−〈γ′(t), γ′(t)〉. Now suppose that a = 0 and b 6= 0, then 〈γ′′(t0), γ′(t0)〉 =

b〈γ′(t0), γ′(t0)〉 = 0, that is a contradiction, because γ ∈ Ω. For a 6= 0 and

b 6= 0, we get the same contradictions. Therefore, 〈γ(t0) ∧ γ′(t0), γ′′(t0)〉 6= 0.

Solving the equation (1+) and using the fact that 〈γ(t),γ′′(t)〉=−〈γ′(t), γ′(t)〉,
it follows that the solutions are µ(t) or −µ(t) where

µ(t) =
〈γ′(t), γ′(t)〉√

〈γ(t) ∧ γ′(t), γ′′(t)〉2 − 〈γ′(t), γ′(t)〉3
.

Observe that in the neighborhood of t0, the term inside of the root of the de-

nominator is greater than zero, because of Remark 5.4 〈γ(t0) ∧ γ′(t0), γ′′(t0)〉6= 0.

If 〈γ(t0) ∧ γ′(t0), γ′′(t0)〉 > 0 then µ(t) is the solution of (1+) and −µ(t) is

the solution of (1−). If 〈γ(t0) ∧ γ′(t0), γ′′(t0)〉 < 0 then −µ(t) is the solution of

(1+) and µ(t) is the solution of (1−). Therefore, we have that α+(t) is a smooth

curve and we can rewrite α+(t) as√
1 + µ2(t)〈γ′(t), γ′(t)〉γ(t) + µ(t)N(t) if 〈γ(t0) ∧ γ′(t0), γ′′(t0)〉 > 0 or√
1 + µ2(t)〈γ′(t), γ′(t)〉γ(t)− µ(t)N(t) if 〈γ(t0) ∧ γ′(t0), γ′′(t0)〉 < 0.

The above bifurcation set is contained in S2
1 and then we have a spherical

curve of γ given by Bif(f) = α+ ∪ α−, where α+ and α− are symmetric.

Proposition 5.5. The spherical curve α+ is a smooth curve that intersects

the curve γ at the lightlike points of γ. The curve α− does not intersect the

curve γ, but it has the same geometry of α+, by symmetry.

Proof. Let γ(t0) be a lightlike point of γ. The parametrisation of the spher-

ical curve α+ locally at t0, is given as above and a proof of the proposition follows

directly from the substitution t = t0 at α+. �
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Here, we have an example of a spherical curve α+ of the curve γ(t) = (t2− t,
t2 + t,

√
1− 4t3 ) in S3

1 . We use the Maple software to obtain the complicated

expression of α+ and of the surface B (that we omit here) and the Figure below.

B is the bifurcation set given in Section 4.

Remark 5.6. The curve α− does not intersect the curve γ, but α− intersects

−γ at the lightlike point −γ(t0). The focal set of γ and of −γ are the same.

6. Focal set of curves in S3
1

In this section, we consider curves in de Sitter space S3
1 ⊂ R4

1 and we study

the focal set in S3
1 of these curves. To obtain the results for curves in the de

Sitter space, we have Section 5 as the motivation. Let γ : I → S3
1 be a smooth

and regular curve in S3
1 . In the case where the curve is spacelike or timelike, we

can parametrise it by the arc length s. Thus, for the spacelike curve, we take the

unit tangent vector t(s) = γ′(s). Suppose that 〈t′(s), t′(s)〉 6= 1, then ‖t′(s) +

γ(s)‖ 6= 0, and we have other unit vector n(s) = t′(s)+γ(s)
‖t′(s)+γ(s)‖ . We also define a

unit vector by e(s) = γ(s) ∧ t(s) ∧ n(s), then we have an pseudo-orthonormal

basis {γ(s), t(s), n(s), e(s)} of R4
1 along γ. The Frenet–Serret type formulae of a

spacelike curve in S3
1 (see [2]), are given by
γ′(s) = t(s)

t′(s) = −γ(s) + kg(s)n(s)

n′(s) = −δ(γ(s))kg(s)t(s) + τg(s)e(s)

e′(s) = τg(s)n(s),
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where δ(γ(s)) = sign(n(s)), kg(s) = ‖t′(s) + γ(s)‖, τg(s) = δ(γ(s))
k2g(s)

det(γ(s), γ′(s),

γ′′(s), γ′′′(s)), and det is the determinant of the 4 × 4 matrix. Here kg is called

the geodesic curvature and τg the geodesic torsion of γ (see [2]).

Since 〈t′(s)+γ(s), t′(s)+γ(s)〉= 〈t′(s), t′(s)〉−1, the condition 〈t′(s), t′(s)〉 6= 1

is equivalent to the condition kg(s) 6= 0.

If the curve is timelike, we take the unit tangent vector t(s) = γ′(s). If

we suppose a condition 〈t′(s), t′(s)〉 6= 1, then ‖t′(s) − γ(s)‖ 6= 0, and we have

other unit vector n(s) = t′(s)−γ(s)
‖t′(s)−γ(s)‖ . We also define an unit vector by e(s) =

γ(s)∧t(s)∧n(s), then we have an pseudo-orthonormal basis {γ(s), t(s), n(s), e(s)}
of R4

1 along γ. Thus, the Frenet–Serret type formulae of a timelike curve in S3
1

are given by 
γ′(s) = t(s)

t′(s) = γ(s) + kh(s)n(s)

n′(s) = kh(s)t(s) + τh(s)e(s)

e′(s) = −τh(s)n(s),

where kh(s) = ‖t′(s) − γ(s)‖ and τg(s) = − 1
k2h(s)

det(γ(s), γ′(s), γ′′(s), γ′′′(s)).

Here kh is called the hyperbolic curvature and τh the hyperbolic torsion of γ

(see [6]).

Since 〈t′(s)−γ(s), t′(s)−γ(s)〉= 〈t′(s), t′(s)〉−1, the condition 〈t′(s), t′(s)〉 6= 1

is equivalent to the condition kh(s) 6= 0.

Consider the family of Lorentz distance squared functions, f : I × S3
1 → R,

on γ

f(s, v) = 〈γ(s)− v, γ(s)− v〉,

where fv(s) = f(s, v), for some v ∈ S3
1 fixed. Observe that since v ∈ S3

1 , then

− 1
2fv(s) = 〈γ(s), v〉 − 1 and the singularities of the Lorentz distance squared

function and the height function are the same.

The bifurcation set of f is given by

Bif(f) = {v ∈ S3
1 | f ′v(s) = f ′′v (s) = 0 at (s, v) for some s},

i.e., the directions where the singularity of f at s is A≥2. This is also defined for

the lightlike points of γ.

The spherical focal surface of γ coincides with the bifurcation set of f . Fur-

thermore, for curves in S3
1 ⊂ R4

1 the spherical focal surface is the intersection of

the focal hypersurface in R4
1 with the de Sitter space S3

1 .
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For a spacelike curve γ parametrised by the arc length with kg(s) 6= 0, the

spherical focal surface of γ is given by

B±(s, µ) = µγ(s) +
µ

δ(γ(s))kg(s)
n(s)

±

√
−δ(γ(s))k2g(s) + δ(γ(s))µ2(k2g(s) + δ(γ(s))

kg(s)
e(s),

with µ ∈ R. The g-spherical cuspidal curve is defined by B±(s, µ(s)) = B±(s),

where

µ(s) =
±τg(s)k2g(s)√

τ2g (s)k4g(s)− k′2g (s)δ(γ(s))− τ2g (s)k2g(s)δ(γ(s))
.

For a timelike curve γ parametrised by the arc length with kh(s) 6= 0, the spherical

focal surface is given by

B±(s, µ) = µγ(s)− µ

kh(s)
n(s)±

√
k2h(s)− µ2(k2h(s) + 1)

kh(s)
e(s),

with µ ∈ R. The h-spherical cuspidal curve is defined by B±(s, µ(s)) = B±(s),

where

µ(s) =
±τh(s)k2h(s)√

τ2h(s)k4h(s) + k′2h (s) + τ2h(s)k2h(s)
.

Remark 6.1. The spherical focal surface of a spacelike curve is defined if

−δ(γ(s)) k2g(s) + δ(γ(s))µ2(k2g(s) + δ(γ(s)) ≥ 0. As kg(s) 6= 0, n(s) is spacelike or

timelike. In the case when n(s) is spacelike, the spherical focal surface is defined

for

µ ≤ − kg(s)√
k2g(s) + 1

or µ ≥ kg(s)√
k2g(s) + 1

,

otherwise in the case that n(s) is timelike, the spherical focal surface is defined

for

− kg(s)√
k2g(s)− 1

≤ µ ≤ kg(s)√
k2g(s)− 1

.

The spherical focal surface of a timelike curve is defined if

− kh(s)√
k2h(s) + 1

≤ µ ≤ kh(s)√
k2h(s) + 1

.

Furthermore, in both cases where B+(s, µ) and B−(s, µ) are symmetric, then we

study only B+(s, µ).
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We prove in the next results that the set of singularities of the spherical

focal surface of a spacelike curve (respectively, timelike) is equal to the g-spherical

cuspidal curve (respectively, of the h-spherical cuspidal curve). Furthermore, away

from these curves we analyse the metric structure of the spherical focal surface

in each case.

Away from the g-spherical cuspidal curve,

µ(s) 6=
±τg(s)k2g(s)√

τ2g (s)k4g(s)− k′2g (s)δ(γ(s))− τ2g (s)k2g(s)δ(γ(s))
,

or away from the h-spherical cuspidal curve, µ(s) 6= ±τh(s)k2h(s)√
τ2
h(s)k

4
h(s)+k

′2
h (s)+τ2

h(s)k
2
h(s)

,

v = λ1B
+
s + λ2B

+
µ , with λ1, λ2 ∈ R, are the vectors of the tangent plane of the

spherical focal surface at B+(s, µ) and 〈v, v〉 = λ21〈B+
s ,B

+
s 〉+ 2λ1λ2〈B+

s ,B
+
µ 〉+

λ22〈B+
µ ,B

+
µ 〉, by using the respective parametrisation of B(s, µ) for spacelike or

timelike γ.

Proposition 6.2. Let γ be a spacelike curve.

(a) The set of singular points of the spherical focal surface of γ is equal to the

g-spherical cuspidal curve.

(b) Away from the g-spherical cuspidal curve, the spherical focal surface of γ is

timelike.

Proof. (a) Considering a spacelike curve, the tangent plane at the points

of the spherical focal surface is generated by the vectors

B+
s (s, µ)

=

−µk′g(s)+δ(γ(s))τg(s)kg(s)
√
−δ(γ(s))k2g(s)+δ(γ(s))µ2(k2g(s)+δ(γ(s)))

δk2g(s)

n(s)

+

µτg(s)kg(s)
√
−δ(γ(s))k2g(s)+δ(γ(s))µ2(k2g(s)+δ(γ(s)))−δ(γ(s)µ2k′g(s))

δ(γ(s))k2g(s)
√
−δ(γ(s))k2g(s) + δ(γ(s))µ2(k2g(s) + δ(γ(s)))

e(s)
and

B+
µ (s, µ)γ(s) +

1

δ(γ(s))kg(s)
n(s)

+

 δ(γ(s))µ(k2g(s) + δ(γ(s)))

kg(s)
√
−δ(γ(s))k2g(s) + δ(γ(s))µ2(k2g(s) + δ(γ(s))

 e(s).
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The vectors B+
s and B+

µ are linearly dependent if and only if

µ(s) =
±τg(s)k2g(s)√

τ2g (s)k4g(s)− k′2g (s)δ(γ(s))− τ2g (s)k2g(s)δ(γ(s))

that is where fv has singularities of type A≥3, that is the g-spherical cuspidal

curve.

(b) Let γ be a spacelike curve. Let us suppose that n(s) is spacelike and e(s)

is timelike, thus making 〈v, v〉 = 0, and thinking of this equation as a quadratic

equation, then

∆ = 4λ22

(τgkg
√
−k2g + µ2(k2g + 1)− µk′g)2

k2g(−k2g + µ2(k2g + 1))
.

The tangent plane generated by B+
s and B+

µ can be lightlike, if ∆ = 0. As

we are supposing τg(s)kg(s)
√
−k2g(s) + µ2(k2g(s) + 1) − µk′g(s) 6= 0, for B+

s and

B+
µ be linearly independent, then we have ∆ = 0 if and only if λ2 = 0, that is, if

B+
s is lightlike. But, B+

s (s,±1) are the only lightlike vectors. Besides B+
µ (s,±1)

are timelike vectors, i.e., the tangent planes at the points (s,±1) are timelike.

Since, we have ∆ > 0 at the others points, thus the spherical focal surface is

timelike. �

Proposition 6.3. Let γ be a timelike curve.

(a) The set of singular points of the spherical focal surface of γ is equal to the

h-spherical cuspidal curve.

(b) Away from the h-spherical cuspidal curve, the spherical focal surface of γ is

spacelike.

Proof. The proofs are analogous to the proofs of Proposition 6.2. In case (b),

we observe that B+
s (s,±1) are not defined, then we prove that ∆ < 0 for the

equation 〈v, v〉 = 0. �

Now our aim is to find a general expression for the Bif(f) to know what

happens to the spherical focal surface near a lightlike point of γ. For this, consider

the curve γ not parametrised by the arc length and a vector N(t) such that γ(t),

N(t), and E(t) = γ(t)∧γ′(t)∧N(t) generate the normal hyperplane to the vector

γ′(t). By definition, we have that Bif(f) of γ is a spherical focal surface of γ

given by

B±(t, µ) = µγ(t) + β(t, µ)N(t) + λ(t, µ)E(t),
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where β and λ satisfies the equations below:

λ(t, µ) =
µ〈γ′(t), γ′(t)〉 − β〈γ′′(t), N(t)〉

〈γ′′(t), E(t)〉
and

β(t, µ) is equal to

(√
(1−µ2)(〈γ′′, N〉2〈E,E〉〈γ′′, E〉2+〈N,N〉〈γ′′, E〉4)−〈N,N〉〈γ′′, E〉2〈γ′, γ′〉2〈E,E〉µ2

〈γ′′, E〉2〈N,N〉2 + 〈E,E〉〈γ′′, N〉2

± µ〈γ′, γ′〉〈γ′′, N〉〈E,E〉
〈γ′′, E〉2〈N,N〉2 + 〈E,E〉〈γ′′, N〉2

)
(t),

where µ is real number such that the root of β is defined.

Remark 6.4. The spherical focal surface B± is well defined near a lightlike

point γ(t0). Let R(t, µ) = A(t)µ2 +B(t), the term inside the squared root of the

above β, where

A(t) = (−〈γ′′, N〉2〈E,E〉〈γ′′, E〉2

− 〈N,N〉〈γ′′, E〉4 − 〈N,N〉〈γ′′, E〉2〈γ′, γ′〉2〈E,E〉)(t)

and B(t) = (〈γ′′, E〉2〈γ′′, N〉2〈E,E〉+ 〈N,N〉〈γ′′, E〉4)(t).

Then for the spherical focal surface B± be defined, we must have R(t, µ) ≥ 0.

Making the calculations at the lightlike point we have A(t0) < 0 and B(t0) > 0

(these are equal in module) and in this case the spherical focal surface B± is

defined when R(t0, µ) = A(t0)µ2 + B(t0) ≥ 0, i.e., −1 ≤ µ ≤ 1. Thus, for

continuity, there is a neighborhood near the (t0, µ) such that R(t, µ) ≥ 0.

Proposition 6.5. The spherical focal surface B± intersects the curve γ at

lightlike points and the tangent planes to B± are not defined at these points.

Proof. Let γ(t0) be a lightlike point of γ. Analysing the expression of the

spherical focal surface B± we have B±(t0, 1) = γ(t0), because β(t0, 1) = 0 and

λ(t0, 1) = 0. Since R(t0, 1) = 0, then the tangent planes to the spherical focal

surface at B±(t0, 1) are not defined. �

We observe that B+(t0,−1) = B−(t0,−1) = −γ(t0) and the bifurcation set

of γ and −γ are the same. Furthermore R(t0,−1) = 0, then the tangent planes

to the spherical focal surface B± also are not defined at these points. Then, we

have the next result.
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Proposition 6.6. The LD set of the spherical focal surface B± are the

curves B±(t0, µ), −1 < µ < 1.

Proof. The tangent planes at B±(t0, µ) exist for −1 < µ < 1. The proof

follows observing that the spherical focal surface B± is the union of the spherical

focal surface of the spacelike and timelike part of γ, with the curves B±(t0, µ),

−1 < µ < 1. �
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