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How many Ricci flat affine connections are there
with arbitrary torsion?

By ZDENĚK DUŠEK (Hradec Králové) and OLDŘICH KOWALSKI (Praha)

Abstract. In a previous paper, we solved the question how many real analytic

connections with torsion exist locally in dimension n. In the present paper, we solve the

questions how many of these connections are Ricci flat. This family of affine connections

is described in terms of the number of arbitrary functions of n variables. Suprisingly,

the condition “Ricci flat” is not too restrictive when the dimension n is approaching to

infinity.

1. Introduction

When we consider an infinite family of well-determined geometric objects,

it is natural to put the question about “how many” such objects there exist.

In the real analytic case, the Cauchy–Kowalevski Theorem is the standard tool

([4], [8], [12]). Hence a natural way how to measure an infinite family of real

analytic geometric objects is a finite family of arbitrary functions of k variables

and (optionally) a family of arbitrary functions of k − 1 variables, and, option-

ally, “modulo” another family of arbitrary functions of k − 1 variables. The last

(optional) family of functions corresponds to the family of automorphisms of any

geometric object from the given family. A good example is the following question:

How many real analytic Riemannian metrics are there in dimension 3? It is known

(see [5], [9]) that every such metric can be put locally into a diagonal form and

that all coordinate transformations preserving diagonal form of the given metric

depend on 3 arbitrary functions of two variables. Hence all Riemannian metrics
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in dimension 3 can be locally described by 3 arbitrary functions of 3 variables

modulo 3 arbitrary functions of 2 variables.

An immediate question arise if we can “calculate the number” of more basic

geometric objects, namely the affine connections in an arbitrary dimension n.

Here, we can put, in addition, some condition on the torsion and on the Ricci

tensor. To the authors’ knowledge, [1], [2], [3] may be the first contributions in

this direction. We shall be occupied with real analytic affine connections given

locally in arbitrary dimension n.

In the paper [2] the authors proved that the class of all real analytic affine

connections with torsion can be described using n(n2 − 1) arbitrary functions

of n variables modulo 2n arbitrary functions of n − 1 variables. Further, it was

proved that the class of all real analytic affine connections (with arbitrary torsion)

with skew-symmetric Ricci form depends on n(2n2−n− 3)/2 arbitrary functions

of n variables and n(n + 1)/2 arbitrary functions of n − 1 variables, modulo 2n

arbitrary functions of n − 1 variables. The class of real analytic connections

(with arbitrary torsion) with symmetric Ricci form depends on n(2n2 − n− 1)/2

arbitrary functions of n variables and n(n− 1)/2 arbitrary functions of n − 1

variables, modulo 2n arbitrary functions of n−1 variables. The analogous results

for affine connections without torsion were obtained in [1].

In the paper [3], equiaffine connections with torsion were studied. An affine

connection is equiaffine if it admits a parallel volume form. It is well known (see

e.g. [11]) that a connection with zero torsion is equiaffine if and only if the Ricci

tensor is symmetric. Hence, for the case of a connection with zero torsion, the

results obtained in [1] can be applied. In the paper [3], the class of equiaffine

connections in dimension n with arbitrary torsion, and its natural subclasses

with symmetric, or skew-symmetric Ricci tensor, respectively, were characterized

in terms of arbitrary functions of n variables and arbitrary functions of n − 1

variables.

2. Preliminaries

For the aim of the next sections, and to remain self-contained, we shall formu-

late the important special case of order one of the Cauchy–Kowalevski Theorem.

Theorem 1. Consider a system of partial differential equations for unknown

functions U1(x1, . . . , xn), . . . , UN (x1, . . . , xn) on an open domain in Rn and of the



How many Ricci flat affine connections. . . 513

form
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where Hi, i = 1, . . . , N , are real analytic functions of all variables in a neigh-

bourhood of (x1
0, . . . , x

n
0 , a

1, . . . , aN , a12, . . . , a
1
n, . . . , a

N
2 , . . . , aNn ), where xj0, a

i, aij
are arbitrary constants.

Further, let the functions ϕ1(x2, . . . , xn), . . . , ϕN (x2, . . . , xn) be real analytic

in a neighbourhood of (x2
0, . . . , x

n
0 ) and satisfy ϕi(x2

0, . . . , x
n
0 ) = ai for i = 1, . . . , N

and(∂ϕ1

∂x2
, . . . ,

∂ϕ1

∂xn
, . . . ,

∂ϕN

∂x2
, . . . ,

∂ϕN

∂xn

)
(x2

0, . . . , x
n
0 ) = (a12, . . . , a

1
n, . . . , a

N
2 , . . . , aNn ).

Then the system has a unique solution (U1(x1, . . . , xn), . . . , UN (x1, . . . , xn))

which is real analytic around (x1
0, . . . , x

n
0 ), and satisfies

U i(x1
0, x

2, . . . , xn) = ϕi(x2, . . . , xn), i = 1, . . . , N.

We now recall the results from the previous paper [1], which will be used in

further sections. We work locally with the spaces R[u1, . . . , un], or R[x1, . . . , xn],

respectively and we use the notation u = (u1, . . . , un) and x = (x1, . . . , xn).

Lemma 2. ([1]) For any affine connection determined by Γhij(x), there exists

a local transformation of coordinates determined by x = f(u) such that the

connection in new coordinates satisfies Γ̄h11(u) = 0, for h = 1, . . . , n. All such

transformations depend on 2n arbitrary functions of n− 1 variables.

The system of coordinates with the property from the above lemma is called

pre-semigeodesic system of coordinates, see for example [10]. We finish this para-

graph with the following existence therorem, which is a corollary of Lemma 2.

Theorem 3. ([2]) All affine connections with torsion in dimension n de-

pend locally on n(n2− 1) arbitrary functions of n variables, modulo 2n arbitrary

functions of (n− 1) variables.
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Proof. After the transformation into pre-semigeodesic coordinates, we ob-

tain n Christoffel symbols equal to zero. We are left with n3 − n = n(n2 − 1)

functions. The transformations into pre-semigeodesic coordinates is uniquely de-

termined up to the choice of 2n functions ϕi0(u2, . . . , un), ϕi1(u2, . . . , un) of n− 1

variables. �

We also recall some standard facts and formulas about the Ricci tensor. In

the space Rn[ui] with coordinate vector fields Ei = ∂
∂ui , we denote the derivatives

with respect to ui by the bottom index i. Using the definition

R(X,Y )Z = ∇X∇Y Z −∇Y∇XZ −∇[X,Y ]Z, (1)

we calculate the curvature operators

R(Ei, Ej)Ek = (Γαjk)iEα − (Γβik)jEβ + ΓαjkΓγiαEγ − ΓβikΓδjβEδ.

For the Ricci form

Ric(X,Y ) = trace
[
W 7→ R(W,X)Y

]
(2)

we obtain

Ric(Ei, Ej) =

n∑
k,l=1

[
(Γkij)k − (Γkkj)i + ΓlijΓ

k
kl − ΓlkjΓ

k
il

]
. (3)

3. Ricci flat affine connections

We investigate the conditions

Ric(Ei, Ej) = 0, i, j = 1, . . . , n, (4)

and we want to show that the Cauchy–Kowalevski Theorem is applicable to this

system of equations. We rewrite it as

n∑
k=1

[
(Γkij)k − (Γkkj)i

]
=

n∑
k,l=1

[
ΓlkjΓ

k
il − ΓlijΓ

k
kl

]
, i, j = 1, . . . , n. (5)

We denote the sums of the terms on the right-hand sides by Λij and rewrite the

system into the more suitable form[
(Γ1
ij)1 + · · ·+ (Γnij)n

]
−
[
(Γ1

1j)i + · · ·+ (Γnnj)i

]
= Λij , i, j = 1, . . . , n.
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For i = 1 and j = 1, . . . , n, we keep each derivative (Γnnj)1 on the left-hand side

of the corresponding equation. We denote the sum of all remaining terms on the

left-hand side of the corresponding equation by Λ′
1j and move it to the right-hand

side. For i > 1 and j = 1, . . . , n, we keep each derivative (Γ1
ij)1 on the left-hand

side of the corresponding equation. We denote the sum of all remaining terms

on the left-hand side of the corresponding equation by Λ′
ij and move it to the

right-hand side. We obtain the new system

(Γnnj)1 = Λ1j − Λ′
1j , j = 1, . . . , n,

(Γ1
ij)1 = Λij − Λ′

ij , i = 2, . . . , n, j = 1, . . . , n. (6)

We note that the first derivatives which are on the left-hand sides of this system

are not present in any terms Λ′
ij on the right-hand sides. Now, it is clear that

we can choose all Christoffel symbols, except those whose derivatives appear on

the left-hand sides of the system, as arbitrary functions and determine the other

Christoffel symbols using the Cauchy–Kowalevski Theorem.

Theorem 4. The family of real analytic Ricci flat affine connections with

torsion in dimension n depends on n(n2 − n− 1) functions of n variables and n2

functions of n− 1 variables modulo 2n functions of n− 1 variables.

Proof. The family of all real analytic affine connections depends on n(n2−
1) Christoffel symbols. (The n Christoffel symbols are zero in pre-semigeodesic

coordinates.) The n2 Christoffel symbols are determined from the system of

equations (6). Hence, we can choose arbitrarily the n(n2−1)−n2 = n(n2−n−1)

functions. The n2 functions of n−1 variables appear by solving the system (6) by

the Cauchy–Kowalevski Theorem and the 2n functions of n− 1 variables appear

because we have used pre-semigeodesic coordinates. �

4. Conclusions

Convention. Let f(n) and h(n) be two sequences depending on natural num-

bers and let limn→∞
f(n)
h(n) = 1. Then we say that f(n) and h(n) are asymptotically

equal at infinity.

Now, we can conclude with the following

Theorem 5. The number of all real analytic Ricci flat affine connections

with arbitrary torsion is asymptotically equal at infinity to the number of all real

analytic affine connections with arbitrary torsion.



516 Z. Dušek et al. : How many Ricci flat affine connections. . .

Proof. The result follows from Theorems 3 and 4 because real analytic

functions of (n− 1) variables form a set of measure zero among the real analytic

functions of n variables (a result of Hilbert) and they need not be counted. �

Open problems. a) Find an analogue of Theorem 4 for the torsion-free case.

b) Find an analogue of Theorem 4 for Ricci parallel affine connections.
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