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Corrigenda: The geometry of a Randers rotational surface

By RATTANASAK HAMA (Bangkok), PAKKINEE CHITSAKUL (Bangkok)
and SORIN V. SABAU (Sapporo)

In our paper [1], amongst other topics, we have determined the structure

of the cut locus of a point on a Randers rotational surface by deforming the

corresponding Riemannian cut locus using the flow of W . However, without

being anything wrong with our proofs, we have started with a wrongly positioned

Riemannian first conjugate point of q. After correcting this, our Theorem 1.5 and

its proof can be simplified as follows.

Theorem 1.5 (p. 476). Let (M,F = α + β) be a rotational Randers von

Mangoldt surface of revolution. Then, for any point q 6= p, the Finslerian cut

locus C(F )
q of q is the Jordan arc

C(F )
q = {ϕ(s, τq(s)) : s ∈ [c,∞)},

where ϕ(c, τq(c)) is the first conjugate point of q along the twisted meridian

ϕ(s, τq(s)).

Proof of Theorem 1.5. (p. 498–500) First of all, observe that from our

hypothesis we know that the h-cut locus of q is exactly τq|[c,∞), where τq(c) is the

first h-conjugate point of q along τq (see Theorem 7.3.1 in [2]).

We divide our proof in two steps.

At the first step, we will establish the correspondence of h-conjugate points

of q along τq with the F -conjugate points of q along an F -geodesic from q.

Let x̃ = τq(c) the first h-conjugate point of q along τq. Observe that in the

case of the Riemannian surface of revolution (M,h), we must have c > ρ, because

p is the unique pole for h. This is equivalent to saying that x̃ is conjugate to q

along τq (see [2], [3]).
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Recall that x̃ = τq(c) is the first h-conjugate point of q along τq means that

the Jacobi field along τq given by

Yq(s) =Ma1,ρ(s)
∂

∂θ
|τq , s ∈ [ρ,∞),

where Ma1,ρ(s) is a smooth function along τq|[ρ,∞) depending on a constant a1
chosen such that m′ is positive on [0, a1] and ρ.

Moreover, if consider the vector field J(s), along the twisted meridian Rq :

[ρ,∞)→M , Rq(s) = ϕ(s, τq(s)), defined by

J(s) := ϕτq,∗(Yq(s)),

then one can see that J is actually a Jacobi field along Rq. Indeed, one can easily

verify that the flow ϕ of W maps the solutions of the Jacobi equation for Yq
into the solutions of the Jacobi equation for J(s), and therefore we have proved

that the first F -conjugate point of q is obtained at the intersection of the parallel

through the first h-conjugate point with τq.

At the second step, we will do the same thing for cut points of q, i.e. we

will establish the correspondence of h-cut points of q with the F -cut points of q.

Namely, we will show that a point ỹ ∈ τq|[c,∞) is an h-cut point of q if and only if

the point y, found at the intersection of the parallel through ỹ with the twisted

meridian {ϕ(s, τq(s)) : s ∈ [c,∞)} is an F -cut point of q.

Indeed, such a ỹ is an h-cut point of q if and only if there exists two h-

geodesic segments α1 and α2 on M from q to ỹ of equal h-length. By making

use of Theorem 1.1 and an argument similar to Proposition 3, we can see that

under the action of the flow ϕ the end point ỹ is clearly mapped into the point

y described above and the h-maximal geodesic segments α1 and α2 are deviated

into two F -geodesic segments of same F -length from q to y. This concludes the

proof (see Figure 1).
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Figure 1. The thick line is the F -cut locus of q.
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Here are other two small typos on p. 481, line 2 from bottom. There is a “2”

missing in both formulas. The correct formulas are:

(L)+F (r0) =
2πm(r0)

1 + µ ·m(r0)
and (L)−F (r0) =

2πm(r0)

1− µ ·m(r0)
.

On p. 486, line 10 from top, the formula

∂α2

∂y2
= 2α22y

2 should be
∂α2

∂y2
= 2a22y

2 .
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