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Abstract. In this paper we first give the sufficient conditions under which a par-

tial twisted smash product algebra and the usual tensor product coalgebra become a

bialgebra. Furthermore, we introduce the notion of partial representation of partial

twisted smash products and explore its relationship with partial actions of Hopf al-

gebras. Finally, we give the conditions for the partial twisted smash products to be

Frobenius.

1. Introduction

Partial group actions were considered first by Exel in the context of operator

algebras and they turned out to be a powerful tool in the study of C∗-algebras

generated by partial isometries on a Hilbert space in [9]. A treatment from a

purely algebraic point of view was given recently in [6], [7], [8]. In particular,

the algebraic study of partial actions and partial representations was initiated in

[7] and [8], motivating investigations in diverse directions. Now, the results are

formulated in a purely algebraic way independent of the C∗-algebraic techniques

which originated them.

The concepts of partial actions and partial coactions of Hopf algebras on al-

gebras were introduced by Caenepeel and Janssen in [5], in which they put the

Galois theory for partial group actions on rings into a broader context, namely, the

partial entwining structures. In particular, partial actions of a group G determine

partial actions of the group algebra kG in a natural way. Further developments

in the theory of partial Hopf actions were done by Lomp in [11].
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Alves and Batista extended several results from the theory of partial group

actions to the Hopf algebra setting, they constructed a Morita context relating

the fixed point subalgebra for partial actions of finite dimensional Hopf alge-

bras, and constructed the partial smash product in [1]. Later, they constructed

a Morita context between the partial smash product and the smash product re-

lated to the enveloping action, defined partial representations of Hopf algebras

and showed some results relating partial actions and partial representations in [2].

Furthermore, they proved a dual version of the globalization theorem: every par-

tial coaction of a Hopf algebra admits an enveloping coaction. They explored

some consequences of globalization theorems in order to present versions of the

duality theorems of Cohen–Montgomery and Blattner–Montgomery for partial

Hopf actions in [3]. The authors generalized the above results to partial twisted

smash products in [10]. Recently, they introduced partial representations of Hopf

algebras and gave the paradigmatic examples of them, namely, the partial repre-

sentation defined from a partial action and the partial representation related to

the partial smash product in [4]. In this paper, we mainly discuss the partial rep-

resentation, Frobenius properties of partial twisted smash products in the sense

of [10]. The results in [4], [5] and [13] are slightly generalized and more properties

are given.

This paper is organized as follows. In Section 2, we give the sufficient condi-

tions under which a partial twisted smash product algebra and the usual tensor

product coalgebra become a bialgebra. In Section 3, we introduce the notion of

partial representation of partial twisted smash products and explore its relation-

ship with partial actions of Hopf algebras. In Section 4, we give the conditions

for the partial twisted smash products to be Frobenius.

2. Partial twisted smash products

Definition 2.1 ([5]). A left partial action of a Hopf algebra H on a unital

algebra A is a linear map

⇀: H ⊗A→ A, h⊗ a 7→ h ⇀ a

such that

(PLA1) 1H ⇀ a = a,

(PLA2) h ⇀ (ab) = (h(1)) ⇀ a)(h(2) ⇀ b),

(PLA3) h ⇀ (g ⇀ a) = (h(1) ⇀ 1A)(h(2)g ⇀ a).
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The algebra A, on which H acts partially is called a partial left H module algebra.

Definition 2.2 ([10]). A right partial action of a Hopf algebra H on a unital

algebra A is a linear map

↼: A⊗H → A, a⊗ h 7→ a ↼ h

such that

(PRA1) a ↼ 1H = a,

(PRA2) (ab) ↼ h = (a ↼ h(1))(b ↼ h(2)),

(PRA3) (a ↼ g) ↼ h = (1A ↼ h(1))(a ↼ gh(2)).

The algebra A, on which H acts partially is called a partial right H module

algebra.

Definition 2.3 ([10]). Let H be a Hopf algebra and A an algebra. A is called

a partial H-bimodule algebra if the following conditions hold:

(i) A is not only a partial left H-module algebra with the partial left module

action ⇀ but also a partial right H-module algebra with the partial right

module action ↼ .

(ii) These two partial module structure maps satisfy the compatibility condition,

i.e., (h ⇀ a) ↼ g = h ⇀ (a ↼ g) for all a ∈ A and h, g ∈ H.

Recall from [10] that to a Hopf algebra H with an antipode S and a partial

H-bimodule algebra A one can associate a unital algebra, the partial twisted

smash product of A by H. We first propose a multiplication on the vector space

A⊗H:

(a⊗ h)(b⊗ g) = a(h(1) ⇀ b ↼ S(h(3)))⊗ h(2)g,

for all a, c ∈ A and g, h ∈ H. It is obvious that the multiplication is associative.

In order to make it to be a unital algebra, we project onto the unital subalgebra

A#H = (A⊗H)(1A ⊗ 1H).

Then we can deduce directly the form and the properties of typical elements of

this algebra

a#h = (a#h)(1A ⊗ 1H) = a(h(1) ⇀ 1A ↼ S(h(3)))⊗ h(2),

and finally verify that the product among typical elements satisfy

(a#h)(b#g) = a(h(1) ⇀ b ↼ S(h(3)))#h(2)g, (2.1)

for all h, g ∈ H and a, b ∈ A.

From the above definitions, we have
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Proposition 2.4. With the notations as above, A#H is an associative al-

gebra with a multiplication given by (2.1) and with the unit 1A#1H , and call it

by a partial twisted smash product, where 1A is the unit of A.

Proof. Similar to [1]. �

Definition 2.5. Let H and A be Hopf algebras. A skew pair is a triple

(A,H, σ) endowed with a k-linear map σ : A ⊗ H → k such that the following

conditions are satisfied.

(1) σ(ab, h) = σ(a, h(1))σ(b, h(2)),

(2) σ(a(1), h)σ(a(2), g) = σ(1A, g(1))σ(a, g(2)h) = σ(1A, h(1))σ(a, gh(2)),

(3) σ(a, 1) = ε(a),

for all h, g ∈ H and a, b ∈ A.

Example 2.6. Let H be a Hopf algebra with a bijective antipode S and A

a Hopf algebra. Suppose that (A,H, σ) is a skew pair, then we can define two

actions of H and A: for any h ∈ H, b ∈ A,

h ⇀ b = b(2)σ(b(1), h),

b ↼ h = b(1)σ(b(2), (S
−1)2(h)).

It follows that

a#h = a(h(1) ⇀ 1A ↼ S(h(3)))⊗ h(2)
= σ(1A, h(1))a⊗ h(2)σ(1A, S

−1(h(3))).

It is not hard to verify that (A,⇀,↼) is a partial H-bimodule algebra and the

multiplication of A#H is

(a#h)(b#k) = σ(b(1), h(1))ab(2)#h(2)kσ(b(3), S
−1(h(3))),

for all h, k ∈ H and a, b ∈ A. Then A#H is a partial twisted smash product.

Example 2.7. Recall the definition of H4. As a k-algebra, H4 is generated by

two symbols c and x, which satisfies the relations c2 = 1, x2 = 0 and xc+ cx = 0.

The coalgebra structure on H4 is determined by

∆(c) = c⊗ c, ∆(x) = x⊗ 1 + c⊗ x, ε(c) = 1, ε(x) = 0.

Consequently, H4 has the basis l (identity), c, x, cx, we now consider the

dual H∗4 of H4. We have H4
∼= H∗4 (as Hopf algebras) via

1 7→ 1∗ + c∗, c 7→ 1∗ + c∗, x 7→ x∗ + (cx)∗, cx 7→ x∗ − (cx)∗,
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here {1∗, c∗, x∗, (cx)∗} denote the dual basis of {1, c, x, cx}, then we let T =

1∗ + c∗, P = x∗ + (cx)∗, TP = x∗ − (cx)∗, we get another basis {1, T, P, TP}
of H∗4 . Recall from [5] that let A be the subalgebra k[x] of H4, it is shown that A

is a right partial H4-comodule algebra with the coaction ρr(1) = 1
2 (1⊗1+1⊗ c+

1⊗cx), ρr(x) = 1
2 (x⊗1+x⊗c+x⊗cx). By similar way we can define A as a left

partial H4-comodule algebra with the coaction ρl(1) = 1
2 (1⊗ 1 + c⊗ 1 + cx⊗ 1),

ρl(x) = 1
2 (1⊗ x+ c⊗ x+ cx⊗ x), and it can be easily checked that A is a partial

H4-bicomodule algebra, then A is a partial H∗4 -bimodule algebra via f ⇀ a =∑
< f, a[1] > a[0] and a ↼ g =< g, a[−1] > a[0], for a ∈ A, f, g ∈ H∗. Then

A#H∗4 is a partial twisted smash product.

Theorem 2.8. Let H be a Hopf algebra with an antipode S, A be a bialgebra

and a partial H-bimodule algebra.

(1) The partial twisted smash product algebra A#H equipped with the tensor

product coalgebra structure makes A#H into a bialgebra, if the following

conditions hold:

(a) εA(h(1)⇀a↼S(h(2))) = εA(a)εH(h),

(b) ∆A(h(1)⇀a↼S(h(2))) = (h(1)⇀a(1)↼S(h(2)))⊗ (h(3)⇀a(2)↼S(h(4))),

(c) (h(1) ⇀ a)⊗ h(2) =(h(2) ⇀ a)⊗ h(1),
(d) (a ↼ S(h(1)))⊗ h(2) =(a ↼ S(h(2)))⊗ h(1).

(2) Furthermore, if A is a Hopf algebra, and we assume that the following formula

holds:

h(1) ⇀ 1A ↼ S(h(2)) = εH(h)1A. (2.2)

then A#H is also a Hopf algebra with antipode SA#H defined by:

SA#H(a#h) = (1#S(h))(SA(a)#1).

Proof. (1) First we verify ∆A#H is an algebra morphism with respect to

the multiplication on A#H and the tensor product coalgebra structure on A#H,

∆A#H((a#h)(b#l))

= ∆A#H(a(1)(h(1) ⇀ b ↼ Sh(3))#h(2)l)

= a1(h(1) ⇀ b ↼ Sh(4))(1)#h(2)l(1) ⊗ a(2)(h(1) ⇀ b ↼ Sh(4))(2)#h(3)l(2)

(d)
= a1(h(1) ⇀ b ↼ Sh(3))(1)#h(2)l(1) ⊗ a(2)(h(1) ⇀ b ↼ Sh(3))(2)#h(4)l(2)

(d)
= a1(h(1) ⇀ b ↼ Sh(2))(1)#h(3)l(1) ⊗ a(2)(h(1) ⇀ b ↼ Sh(2))(2)#h(4)l(2)
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(b)
= a1(h(1) ⇀ b ↼ Sh(2))#h(5)l(1) ⊗ a(2)(h(3) ⇀ b ↼ Sh(4))#h(6)l(2)

(d)
= a1(h(1) ⇀ b ↼ Sh(2))#h(4)l(1) ⊗ a(2)(h(3) ⇀ b ↼ Sh(6))#h(5)l(2)

(c)
= a1(h(1) ⇀ b ↼ Sh(2))#h(3)l(1) ⊗ a(2)(h(4) ⇀ b ↼ Sh(6))#h(5)l(2)

(d)
= a1(h(1) ⇀ b ↼ Sh(3))#h(2)l(1) ⊗ a(2)(h(4) ⇀ b ↼ Sh(6))#h(5)l(2)

= ∆(a#h)∆(b#l).

Next, we verify εA#H is also an algebra morphism. It is easy to verify

εA#H(a#h) = εA(a)εH(h).

In fact,

εA#H(a#h) = εA#H(a(h(1) ⇀ 1A ↼ S(h(3)))⊗ h(2))
= εA(a(h(1) ⇀ 1A ↼ S(h(3)))εH(h(2))

(a)
= εA(a)εH(h),

εA#H((a#h)(b#l)) = εA#H(a(h(1) ⇀ b ↼ S(h(3)))#h(2)l)

= εA(a(h(1) ⇀ b ↼ S(h(3)))εH(h(2)l)

(a)
= εA(a)εH(h)εA(b)εH(l)

= εA#H(a#h)εA#H(b#l).

Hence, A#H is a bialgebra.

(2) For any a ∈ A and h ∈ H, we have

(SA#H ∗ id)(a#h) = (1A#Sh(1))(SA(a)#1)(a(2)#h(2))

= (1A#Sh(1))(S(a1)a2#h(2))

= εA(a)(1A#Sh(1))(1A#h(2))

= εA(a)(Sh(3) ⇀ 1A ↼ S(Sh(1)))#(Sh(2))h4

(c)
= εA(a)(Sh(2) ⇀ 1A ↼ S(Sh(1)))#(Sh(3))h(4)

= εA(a)((Sh)1 ⇀ 1A ↼ S(Sh)2))#1H

(2.2)
= εA(a)εH(h)1A#1H .

In the similar way, one can check that

(id ∗ SA#H)(a#h) = εA(a)εH(h)1A#1H .
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Therefore, A#H is a Hopf algebra with antipode

SA#H = (1#S(h))(SA(a)#1). �

Remark 2.9. In Theorem 2.8, the conditions (b), (c) and (d) of the item (1)

can be easily verified for the case where H∗ is cocommutative (therefore, H is

commutative). If a Hopf algebra H∗ satisfies these three conditions, then H∗ is

not necessarily cocommutative.

A concrete counterexample is presented as follows.

With the notations as above, we have shown that A#H∗4 is a partial twisted

smash product. So we only consider the element P of H∗4 and check the condi-

tion (b) as follows:

∆A

(∑
P1 ⇀ x ↼ S∗(P2)

)
= ∆A(P ⇀ x ↼ S∗(1) + T ⇀ x ↼ S∗(P ))

= ∆A

(
< P,

1

2
(1 + c+ cx) > x < 1,

1

2
(1 + c+ cx) > + < T,

1

2
(1 + c+ cx) >

< P,
1

2
(1 + c+ cx) > x

)
=< P,

1

2
(1 + c+ cx) > (x⊗ 1 + 1⊗ x)+ < T,

1

2
(1 + c+ cx) >

< P,
1

2
(1 + c+ cx) > (x⊗ 1 + 1⊗ x)

=< P,
1

2
(1 + c+ cx) > (x⊗ 1 + 1⊗ x),

and ∑
(P1 ⇀ x1 ↼ S∗(P2))⊗ (P3 ⇀ x2 ↼ S∗(P4))

=
∑

(P1 ⇀ x ↼ S∗(P2))⊗ (P3 ⇀ 1 ↼ S∗(P4))

+
∑

(P1 ⇀ 1 ↼ S∗(P2))⊗ (P3 ⇀ x ↼ S∗(P4))

=
∑

(P ⇀ x ↼ S∗(1))⊗ (1 ⇀ 1 ↼ S∗(1))

+
∑

(P ⇀ 1 ↼ S∗(1))⊗ (1 ⇀ x ↼ S∗(1))

+
∑

(T ⇀ x ↼ S∗(T ))⊗ (P ⇀ 1 ↼ S∗(1))

+
∑

(T ⇀ 1 ↼ S∗(T ))⊗ (P ⇀ x ↼ S∗(1))

+
∑

(T ⇀ x ↼ S∗(T ))⊗ (T ⇀ 1 ↼ S∗(P ))
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+
∑

(T ⇀ 1 ↼ S∗(T ))⊗ (T ⇀ x ↼ S∗(P ))

+
∑

(T ⇀ x ↼ S∗(P ))⊗ (1 ⇀ 1 ↼ S∗(1))

+
∑

(T ⇀ 1 ↼ S∗(P ))⊗ (1 ⇀ x ↼ S∗(1))

=< P,
1

2
(1 + c+ cx) > (x⊗ 1 + 1⊗ x).

Direct computations show that conditions (a), (c) and (d) of Theorem 3.5 hold.

3. Partial representations

A first definition of partial representations of Hopf algebras was proposed

in [2], requiring only axioms (PR1) and (PR2) below. This was mainly motivated

by the constructions done in [5] for partial H-module algebras A, originated

from partial entwining structures. In the case of partial representations of Hopf

algebras, the authors have found a richer and more complex structure in [4], and

we have introduced partial representations of the partial twisted smash product

A#H in [10], so we would like to define a richer and more complex structure of

partial representation of the partial twisted smash product A#H. In order to

carry out the work of section 3, we assume that

(a ↼ S(h(1)))⊗ h(2) = (a ↼ S(h(2)))⊗ h(1), (3.1)

(a ↼ S(h(1)))⊗ h(2) = (S(h(2)) ⇀ a)⊗ h(1) (3.2)

and the components h(1) and h(2) can be switched independently of the k’s that

they are multiplying, for any a ∈ A and h, k ∈ H.

Definition 3.1 ([4]). Let H be a Hopf algebra. A partial representation of H

on a unital algebra B is a linear map

π : H ⇀ B, h 7→ π(h)

such that

(PR1) π(1H) = 1B ;

(PR2) π(h)π(k(1))π(S(k(2))) = π(hk(1))π(S(k(2)));

(PR3) π(h(1))π(S(h(2)))π(k) = π(h(1))π(S(h(2))k);

(PR4) π(h)π(S(k(1)))π(k(2)) = π(hS(k(1)))π(k(2));

(PR5) π(S(h(1)))π(h(2))π(k) = π(S(h(1)))π(h(2)k).
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If (B, π) and (B′, π′) are two partial representations of H, then we say that

an algebra morphism f : B → B′ is a morphism of partial representations if

π′ = f ◦ π.

The category whose objects are partial representations of H and whose mor-

phisms are morphisms of partial representations is denoted by HParRepH.

Lemma 3.2. Let H be a Hopf algebra with antipode S and let A be a partial

H-bimodule algebra. Then

(1) h ⇀ ab ↼ g = (h(1) ⇀ a ↼ g(1))(h(2) ⇀ b ↼ g(2)),

(2) k ⇀ (h ⇀ a ↼ g) ↼ l = (k(1) ⇀ 1A ↼ l(1))(k(2)h ⇀ a ↼ gl(2)).

Proof. Straightforward. �

We say that the partial H-bimodule structure is symmetric if, in addition, it

satisfies

(PA4) k ⇀ (h ⇀ a ↼ g) ↼ l = (k(1)h ⇀ a ↼ gl(1))(k(2) ⇀ 1A ↼ l(2)),

for any h, l, k, g ∈ H and a ∈ A.

If (A,⇀,↼) and (B,⇀,↼) are two partial H-bimodule algebras, then a

morphism of partial H-module algebras is an algebra map f : A → B such that

f(h ⇀ a ↼ g) = h ⇀ f(a) ↼ g. The category of all symmetric partial H-

module algebras and the morphisms of partial H-module algebras between them

is denoted as HParActH.

Proposition 3.3. Let A be a symmetric partial H-bimodule algebra, and

let B = End(A). Define

π : H ⇀ B, h 7→ π(h)

given by π(h)(a) = h(1) ⇀ a ↼ S(h(2)) Then π satisfies the conditions (PR1)–

(PR5).

Proof. Since 1H ⇀ a ↼ 1H = a, for all a ∈ A, implies π(1H) = 1B , so

(PR1) is satisfied. With respect to (PR2), and do the following calculation:

π(h)π(k(1))π(S(k(2)))(a)

= h(1) ⇀ [k(1) ⇀ (S(k(4)) ⇀ a ↼ S2(k(3))) ↼ S(k(2))] ↼ S(h(2))

= (h(1) ⇀ 1A ↼ S(h(4)))[h(2)k(1)⇀(S(k(4))⇀a↼S2(k(3)))↼S(k(2))S(h(3))]

= (h(1) ⇀ 1A ↼ S(h(6)))(h(2)k(1) ⇀ 1A ↼ S(k(4))S(h(5)))
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[h(3)k(2)S(k(6)) ⇀ a ↼ S2(k(5))S(k(3))S(h(4))]

(3.1)
= (h(1) ⇀ 1A ↼ S(h(6)))(h(2)k(1) ⇀ 1A ↼ S(k(5))S(h(5)))

[h(3)k(2)S(k(6)) ⇀ a ↼ S2(k(4))S(k(3))S(h(4))]

= (h(1) ⇀ 1A ↼ S(h(6)))(h(2)k(1) ⇀ 1A ↼ S(k(3))S(h(5)))

[h(3)k(2)S(k(4)) ⇀ a ↼ S(h(4))]

(3.2)
= (h(1) ⇀ 1A ↼ S(h(6)))(h(2)k(1) ⇀ 1A ↼ S(k(4))S(h(5)))

[h(3)k(2)S(k(3)) ⇀ a ↼ S(h(4))]

= (h(1) ⇀ 1A ↼ S(h(6)))(h(2)k(1) ⇀ 1A ↼ S(h(5)k(2)))[h(3) ⇀ a ↼ S(h(4))]

= h(1) ⇀ ([k(1) ⇀ 1A ↼ S(k(2))]a) ↼ S(h(2)).

On the other hand, we have

π(hk(1))π(S(k(2)))(a)

= h(1)k(1) ⇀ [S(k(4)) ⇀ a ↼ S2(k(3))] ↼ S(h(2)k(2))

= (h(1)k(1) ⇀ 1A ↼ S(h(4)k(4)))[h(2)k(2)S(k(6)) ⇀ a ↼ S2(k(5))S(h(3)k(3))]

(3.1)
= (h(1)k(1) ⇀ 1A ↼ S(h(4)k(5)))[h(2)k(2)S(k(6)) ⇀ a ↼ S2(k(4))S(h(3)k(3))]

= (h(1)k(1) ⇀ 1A ↼ S(h(4)k(3)))[h(2)k(2)S(k(4)) ⇀ a ↼ S(h(3))]

(3.2)
= (h(1)k(1) ⇀ 1A ↼ S(h(4)k(4)))[h(2)k(2)S(k(3)) ⇀ a ↼ S(h(3))]

= (h(1)k(1) ⇀ 1A ↼ S(h(4)k(2)))[h(2) ⇀ a ↼ S(h(3))]

= (h(1)k(1) ⇀ 1A ↼ S(h(6)k(2)))(h(2) ⇀ 1A ↼ S(h(5)))[h(3) ⇀ a ↼ S(h(4))]

= (h(1) ⇀ 1A ↼ S(h(6)))(h(2)k(1) ⇀ 1A ↼ S(h(5)k(2)))[h(3) ⇀ a ↼ S(h(4))]

= h(1) ⇀ ([k(1) ⇀ 1A ↼ S(k(2))]a) ↼ S(h(2)).

For equation (PR3), we have

π(h(1))π(S(h(2)))π(k)(a)

= h(1) ⇀ [S(h(4)) ⇀ (k(1) ⇀ a ↼ S(k(2))) ↼ S2(h(3))] ↼ S(h(2))

= (h(1) ⇀ 1A ↼ S(h(4)))[h(2)S(h(6))⇀(k(1)⇀a↼S(k(2)))↼S2(h(5))S(h(3))]

(3.1)
= (h(1) ⇀ 1A ↼ S(h(5)))[h(2)S(h(6))⇀(k(1)⇀a↼S(k(2)))↼S2(h(4))S(h(3))]

= (h(1) ⇀ 1A ↼ S(h(3)))[h(2)S(h(4)) ⇀ (k(1) ⇀ a ↼ S(k(2)))]

(3.2)
= (h(1) ⇀ 1A ↼ S(h(4)))[h(2)S(h(3)) ⇀ (k(1) ⇀ a ↼ S(k(2)))]
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= (h(1) ⇀ 1A ↼ S(h(2)))(k(1) ⇀ a ↼ S(k(2)))

and

π(h(1))π(S(h(2))k)(a)

= h(1) ⇀ [S(h(4))k(1) ⇀ a ↼ S(k2)S2(h(3))] ↼ S(h(2))

= (h(1) ⇀ 1A ↼ S(h(4)))[h(2)S(h(6))k(1) ⇀ a ↼ S(k2)S2(h(5))S(h(3))]

(3.1)
= (h(1) ⇀ 1A ↼ S(h(5)))[h(2)S(h(6))k(1) ⇀ a ↼ S(k2)S2(h(4))S(h(3))]

= (h(1) ⇀ 1A ↼ S(h(3)))[h(2)S(h(4))k(1) ⇀ a ↼ S(k2)]

(3.2)
= (h(1) ⇀ 1A ↼ S(h(2)))[h(3)S(h(4))k(1) ⇀ a ↼ S(k2)]

= (h(1) ⇀ 1A ↼ S(h(2)))[k(1) ⇀ a ↼ S(k2)].

For equation (PR4), we have

π(h)π(S(k(1)))π(k(2))(a)

= h(1) ⇀ [S(k(2)) ⇀ (k(3) ⇀ a ↼ S(k(4))) ↼ S2(k(1))] ↼ S(h(2))

= [h(1)S(k(2))⇀(k(3)⇀a↼S(k(4)))↼S2(k(1))S(h(4))](h(2) ⇀ 1A ↼ S(h(3)))

= [h(1)S(k(4))k(5) ⇀ a ↼ S(k(6))S
2(k(1))S(h(6))]

(h(2)S(k(3)) ⇀ 1A ↼ S2(k(2))S(h(5)))(h(3) ⇀ 1A ↼ S(h(4)))

= [h(1) ⇀ a ↼ S(h(3))](h(2)S(k(3)) ⇀ 1A ↼ S(h(2)S(k(2))))

and

π(hS(k(1)))π(k(2))(a)

= h(1)S(k(2)) ⇀ [k(3) ⇀ a ↼ S(k(4))] ↼ S(h(2)S(k(1)))

= [h(1)S(k(4))k(5)⇀a↼S(k(6))S(h(3)S(k(1))](h(2)S(k(3))⇀1A↼S(h(2)S(k(2))))

= [h(1) ⇀ a ↼ S(k(4))S(h(3)S(k(1))](h(2)S(k(3)) ⇀ 1A ↼ S(h(2)S(k(2))))

(3.1)
= [h(1) ⇀ a ↼ S(k(2))S(h(3)S(k(1))](h(2)S(k(3)) ⇀ 1A ↼ S(h(2)S(k(4))))

= [h(1) ⇀ a ↼ S(h(3))](h(2)S(k(3)) ⇀ 1A ↼ S(h(2)S(k(2)))).

Finally, for equation (PR5), we have

π(S(h(1)))π(h(2))π(k)(a)

= S(h(2)) ⇀ [h(3) ⇀ [k(1) ⇀ a ↼ S(k2)] ↼ S(h(4))] ↼ S2(h(1))
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= [S(h(4))h(5)⇀ [k(1)⇀a↼S(k2)]↼S(h(6))S
2(h(1))](S(h(3))⇀1A↼S

2(h(2)))

= [k(1) ⇀ a ↼ S(k2)] ↼ S(h(4))S
2(h(1))](S(h(3)) ⇀ 1A ↼ S2(h(2)))

(3.1)(3.2)
= [k(1) ⇀ a ↼ S(k2)] ↼ S(h(4))S

2(h(3))](S(h(2)) ⇀ 1A ↼ S2(h(1)))

= (k(1) ⇀ a ↼ S(k2))(S(h(2)) ⇀ 1A ↼ S2(h(1)))

and

π(S(h(1)))π(h(2)k)(a)

= S(h(2)) ⇀ [h(3)k(1) ⇀ a ↼ S(h(4)k)] ↼ S2(h(1))

= [S(h(4))h(5)k(1) ⇀ a ↼ S(h(6)k)S2(h(2))](S(h(3)) ⇀ 1A ↼ S2(h(1)))

= [k(1) ⇀ a ↼ S(h(4)k)S2(h(2))](S(h(3)) ⇀ 1A ↼ S2(h(1)))

(3.2)
= [k(1) ⇀ a ↼ S(h(4)k)S2(h(3))](S(h(2)) ⇀ 1A ↼ S2(h(1)))

= (k(1) ⇀ a ↼ S(k2))(S(h(2)) ⇀ 1A ↼ S2(h(1))).

Therefore, the partial action of H on A provides an example of a partial repre-

sentation of H on Endk(A). �

Partial twisted smash products give another source of examples of partial

representations of a Hopf algebra H.

Definition 3.4. Given a symmetric partial H-bimodule algebra A, the linear

map π0 : H ⇀ A#H, given by π0(h) = 1A#h is a partial representation of H.

Proof. First, the item (PR1) is easily obtained, for π0(1H) = 1A#1H =

1A#H . Now, verifying the item (PR2), we have

π0(h)π0(k(1))π0(S(k(2))) = (1A#h)(1A#k(1))(1A#S(k(2)))

= (1A#h)(k(1) ⇀ 1A ↼ S(k(3))#k(2)S(k(4)))

= (1A#h)(k(1) ⇀ 1A ↼ S(k(2))#k(3)S(k(4)))

= (1A#h)(k(1) ⇀ 1A ↼ S(k(2))#1H)

= h(1) ⇀ (k(1) ⇀ 1A ↼ S(k(2))) ↼ S(h(3))#h(2).

On the other hand, we have

π0(hk(1))π0(S(k(2))) = (1A#hk(1))(1A#S(k(2)))

= h(1)k(1) ⇀ 1A ↼ S(h(3)k(3))#h(2)k(2)S(k(4))
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(3.1)
= h(1)k(1) ⇀ 1A ↼ S(h(3)k(2))#h(2)k(3)S(k(4))

= h(1)k(1) ⇀ 1A ↼ S(h(3)k(2))#h(2)

= (h(1)k(1)⇀1A↼S(h(5)k(2)))(h(2)⇀1A↼S(h(4)))#h(3)

= h(1) ⇀ (k(1) ⇀ 1A ↼ S(k(2))) ↼ S(h(3))#h(2).

For the equation (PR3), we have

π0(h(1))π0(S(h(2)))π0(k) = (1A#h(1))(1A#S(h(2)))(1A#k)

= (h(1) ⇀ 1A ↼ S(h(3))#h(2)S(h(4)))(1A#k)

= (h(1) ⇀ 1A ↼ S(h(2))#h(3)S(h(4)))(1A#k)

= (h(1) ⇀ 1A ↼ S(h(2))#1H)(1A#k)

= h(1) ⇀ 1A ↼ S(h(2))#k

and

π0(h(1))π0(S(h(2))k) = (1A#h(1))(1A#S(h(2)k))

= h(1) ⇀ 1A ↼ S(h(3))#h(2)S(h(4))k

= h(1) ⇀ 1A ↼ S(h(2))#h(3)S(h(4))k

= h(1) ⇀ 1A ↼ S(h(2))#k.

For (PR4), we have

π0(h)π(S(k(1)))π0(k(2)) = (1A#h)(1A#S(k(1)))(1A#k(2))

= (1A#h)(S(k(3)) ⇀ 1A ↼ S2(k(1))#S(k(2))k(4))

= h(1) ⇀ (S(k(3)) ⇀ 1A ↼ S2(k(1))) ↼ S(h(3))#h(2)S(k(2))k(4)

= (h(1)⇀1A↼S(h(5)))(h(2)S(k(3))⇀1A↼S2(k(1))S(h(4)))#h(3)S(k(2))k(4)

and

π0(hS(k(1)))π0(k(2)) = (1A#hS(k(1)))(1A#k(2))

= h(1)S(k(3)) ⇀ 1A ↼ S(h(3)S(k(1)))#h(2)S(k(2))k(4)

= (h(1)S(k(5))⇀1A↼S(h(5)S(k(1))))(h(2)S(k(4))k(6)⇀1A↼S(h(4)S(k(2))k(8)))

#h(3)S(k(3))k(7)

= (h(1)S(k(3)) ⇀ (k4 ⇀ 1A ↼ S(k(6)))) ↼ S(h(3)S(k(1)))#h(2)S(k(2))k(5)

= (h(1) ⇀ 1A ↼ S(h(5)))(h(2)S(k(3))⇀1A↼S2(k(1))S(h(4)))#h(3)S(k(2))k(4).
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Finally, for (PR5), we have

π0(S(h(1)))π0(h(2))π0(k) = (1A#S(h(1)))(1A#h(2))(1A#k)

= (S(h(3)) ⇀ 1A ↼ S2(h(1))#S(h(2))h(4))(1A#k)

= (S(h(5))⇀1A↼S2(h(1)))(S(h(4))h(6)⇀1A↼S(S(h(2))h(8)))#S(h(3))h(7)k

= S(h(3)) ⇀ (h(4) ⇀ 1A ↼ S(h(6))) ↼ S2(h(1))#S(h(2))h(5)k

= S(h(3)) ⇀ 1A ↼ S2(h(1))#S(h(2))h(4)k

= π(S(h(1)))π(h(2)k).

Therefore, π0 is indeed a partial representation of H on the partial twisted smash

product A#H. �

In order to obtain the natural transformation of partial twisted smash prod-

ucts, we introduce the following definition and this definition is similar to [4].

Definition 3.5. Consider unital algebras A and B, and a Hopf algebra H that

acts partially on A. A covariant pair associated to these data is a pair of maps

(ϕ, π) where ϕ : A → B is an algebra morphism and π : H → B is a partial

representation such that, for any h ∈ H and a ∈ A,

(CP1) ϕ(h ⇀ a ↼ S(h(2))) = π(h(1))ϕ(a)π(S(h(2)))

(CP2) ϕ(a)π(S(h(1)))π(h(2)) = π(S(h(1)))π(h(2))ϕ(a).

With this definition at hand, we can prove that the partial twisted smash

product has the following universal property.

Theorem 3.6. Let A and B be unital algebras and H a Hopf algebra with a

symmetric partial action on A. Suppose that (ϕ, π) is a covariant pair associated

to these data. Then there exists a unique algebra morphism Φ : A#H → B

such that ϕ = Φ ◦ ϕ0 and π = Φ ◦ π0, where the map ϕ0 : A → A#H given by

ϕ0(a) = a#1H is an algebra morphism.

Proof. Define the linear map

Φ : A#H → B a#h 7→ ϕ(a)π(h).

Let us verify that this is, in fact, an algebra morphism:

Φ((a#h)(b#g)) = Φ(a(h(1) ⇀ b ↼ S(h(3)))#h(2)g)

= ϕ(a(h(1) ⇀ b ↼ S(h(3))))π(h(2)g)
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= ϕ(a(h(1) ⇀ b ↼ S(h(2))))π(h(3)g)

= ϕ(a)π(h(1))ϕ(b)π(S(h(2)))π(h(3)g)

= ϕ(a)π(h(1))ϕ(b)π(S(h(2)))π(h(3))π(g)

= ϕ(a)π(h(1))π(S(h(2)))π(h(3))ϕ(b)π(g)

= ϕ(a)π(h)ϕ(b)π(g)

= Φ(a#h)Φ(b#g).

By construction, one can easily see that ϕ = Φ◦ϕ0 and π = Φ◦π0. Finally, for the

uniqueness, suppose that there is another morphism Ψ : A#H → B factorizing

both ϕ and π. Then we have

Ψ(a#h) = Ψ((a#1H)(1A#h)) = Ψ(a#1H)Ψ(1A#h)

= Ψ(ϕ0(a))Ψ(π0(h)) = ϕ(a)π(h) = Φ(a#h). �

With the above theorem we have the following result.

Theorem 3.7. Let H be a Hopf algebra, then there exist functors

Π0 : HParActH −→ HParRepH, Π0(A, ·) = (A#H,π0)

and

Π : HParActH −→ HParRepH, Π(A, ·) = (Endk(A), π).

and a natural transformation Φ : Π0 → Π.

Proof. It is not hard to see that the constructions of the functors are in-

deed functorial. Moreover, if (A, ·) is a symmetric partial H-bimodule, Π(A, ·) =

(Endk(A), π) is the associated partial representation on Endk(A) and ϕ : A →
End(A) is the map ϕ(a)(a′) = aa′, then (ϕ, π) is a covariant pair. Indeed, for any

h ∈ H and a, a′ ∈ A, and let us check (CP1)

π(h(1))ϕ(a)π(S(h(2)))(a
′)

= h(1) ⇀ [a(S(h(4)) ⇀ a′ ↼ S2(h(3)))] ↼ S(h(2))

= (h(1) ⇀ a ↼ S(h(4)))[h(2) ⇀ (S(h(6)) ⇀ a′ ↼ S2(h(5))) ↼ S(h(3))]

= (h(1)⇀a↼S(h(6)))(h(2)⇀1A↼S(h(5)))[h(3)S(h(8))⇀a′↼S2(h(7))S(h(4))]

= (h(1) ⇀ a ↼ S(h(4)))[h(2)S(h(6)) ⇀ a′ ↼ S2(h(5))S(h(3))]

(3.1)
= (h(1) ⇀ a ↼ S(h(3)))[h(2)S(h(6)) ⇀ a′ ↼ S2(h(5))S(h(4))]
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= (h(1) ⇀ a ↼ S(h(3)))[h(2)S(h(4)) ⇀ a′]

c(3.2)
= (h(1) ⇀ a ↼ S(h(4)))[h(2)S(h(3)) ⇀ a′]

= ϕ(h(1) ⇀ a ↼ S(h(2)))(a
′).

Next, for (CP2), we find

π(S(h(1)))π(h(2))ϕ(a)(a′)

= S(h(2)) ⇀ [h(3) ⇀ aa′ ↼ S(h(4))] ↼ S2(h(1))

= S(h(2)) ⇀ [(h(3) ⇀ a ↼ S(h(5)))(h(4) ⇀ a′ ↼ S(h(6)))] ↼ S2(h(1))

= ϕ(a)π(S(h(1)))π(h(2))(a
′).

Consequently, similar to [4], there exists an algebra morphism Φ : A#H →
Endk(A) such that π = Φ ◦ π0, and hence Φ is a morphism of partial representa-

tions. �

4. Frobenius properties

In this section, we shall discuss what conditions the algebra extension A#H/A

is Frobenius, generalizing the partial result in [5].

Let i : R → S be a ring homomorphism. Recall from [5] that i is called

Frobenius (or we say that S/R is Frobenius) if there exists a Frobenius system

(v, e). This consists of an R-bimodule map v : S → R and an element e =
∑
e1⊗R

e2 ∈ S ⊗R S such that se = es, for all s ∈ S, and
∑
v(e1)e2 =

∑
v(e2)e1 = 1.

A Hopf algebra H over a commutative ring k is Frobenius if and only if it is

finitely generated projective, and the space of integrals is free of rank one. If H is

Frobenius, then there exists a left integral t ∈ H and a left integra ϕ ∈ H∗ such

that < ϕ, t >= 1. The Frobenius system is (ϕ, t(2)⊗S−1(t(1))). In particular, we

have

< ϕ, t(2) > S−1(t(1)) = t(2) < ϕ,S−1(t(1)) >= 1H .

If t ∈ H is a left integral, then it is easy to prove that

t(2) ⊗ S−1(t(1))h = ht(2) ⊗ S−1(t(1)),

for all h ∈ H.
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Proposition 4.1. Let H be a Frobenius Hopf algebra, let t and ϕ be as

above, and take a partial H-module algebra A. Suppose that (h(1) ⇀ 1A ↼

S(h(2))) is central in A, for every h ∈ H, and that t satisfies the following cocom-

mutativity property

t(1) ⊗ t(2) ⊗ t(3) ⊗ t(4) = t(1) ⊗ t(2) ⊗ t(4) ⊗ t(3).

Then A#H/A is Frobenius, with Frobenius system (v = (A#ϕ) ◦ ι, e =

(1A#t(2))1A ⊗A (1A ⊗ S−1(t(1)))1A), where ι : A#H → A#H is the inclusion

map.

Proof. For all a ∈ A and h ∈ H, we have

(1A ⊗ t(2))1A ⊗A (1A ⊗ S−1(t(1)))1A(a#h)1A

= (1A ⊗ t(2)) ⊗A (1A ⊗ S−1(t(1)))(a#h)1A

= (1A ⊗ t(2)) ⊗A (1A ⊗ S−1(t(1)))(a(h(1) ⇀ 1A ↼ S(h(3)))#h(2))1A

= (1A ⊗ t(4)) ⊗A (S−1(t(3)) ⇀ (a(h(1) ⇀ 1A ↼ S(h(3)))) ↼ t(1))#S−1(t(2))h(2))1A

= (1A ⊗ t(4))(S
−1(t(3))⇀(a(h(1)⇀1A↼S(h(3))))↼t(1)) ⊗A (1A#S−1(t(2))h(2))1A

= (t(4) ⇀ (S−1(t(3)) ⇀ (a(h(1) ⇀ 1A ↼ S(h(3)))) ↼ t(1)) ↼ S(t(6))#t(5))

⊗A (1A#S−1(t(2))h(2))1A

= (t(4) ⇀ 1A ↼ S(t(8))(t(5)S
−1(t(3)) ⇀ (a(h(1) ⇀ 1A ↼ S(h(3)))) ↼ t(1)S(t(7)))#t(6)

⊗A (1A#S−1(t(2))h(2))1A

= (t(5) ⇀ 1A ↼ S(t(8))(t(4)S
−1(t(3)) ⇀ (a(h(1) ⇀ 1A ↼ S(h(3)))) ↼ t(1)S(t(7)))#t(6)

⊗A (1A#S−1(t(2))h(2))1A

= (t(4) ⇀ 1A ↼ S(t(6))((a(h(1) ⇀ 1A ↼ S(h(3)))) ↼ t(1)S(t(2)))#t(5)

⊗A (1A#S−1(t(3))h(2))1A

= (t(2) ⇀ 1A ↼ S(t(4))((a(h(1) ⇀ 1A ↼ S(h(3))))#t(3) ⊗A (1A#S−1(t(1))h(2))1A

= ((a(h(1) ⇀ 1A ↼ S(h(3))))(t(2) ⇀ 1A ↼ S(t(4))#t(3) ⊗A (1A#S−1(t(1))h(2))1A

= (((a(h(1)⇀1A↼S(h(3))))(h(2)t(2)⇀1A↼S(h(4)t(4)))#h(3)t(3))⊗A(1A#S−1(t(1)))1A

= (a(h(1) ⇀ 1A ↼ S(h(3)))#h(2)t(2))1A ⊗A (1A#S−1(t(1)))1A

= (a#h)(1A#t(2)) ⊗A (1A#S−1(t(1)))1A

= (a#h)1A(1A#t(2))1A ⊗A (1A#S−1(t(1)))1A.

Using the fact that ϕ is a left integral, we easily find that

v((a#h)1A) =< ϕ, h(2) > a(h(1) ⇀ 1A ↼ S(h(3))) =< ϕ, h > a.
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The left A-linearity of v is obvious, and the right A-linearity can be established

as follows:

v((a#h)1Ab) = v((a#h)b1A)

= v((a(h(1) ⇀ b ↼ S(h(3))#h(2))1A)

=< ϕ, h(2) > a(h(1) ⇀ 1A ↼ S(h(3)))

=< ϕ, h > ab = v((a#h)1A)b.

Finally,

v((1A#t(2))1A)((1A#S−1(t(1)))1A) = (< ϕ, t(2) > 1A#S−1(t(1)))1A

= 1A#1H ,

and

((1A#t(2))1A)v((1A#S−1(t(1)))1A) = (1A#t(2))(< ϕ,S−1(t(1)) >

= 1A#1H . �
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